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Abstract 
 

   This paper presents an approach for computing option 
valuation models as a function of the underlying distribution’s first 
two moments about zero.  The moments approach is a useful aid 
in computing closed-form expressions of option valuations when 
the underlying distribution exhibits mean-reversion, seasonality, 
and other non-standard features.  This approach is applied to the 
case when the underlying asset terminal distribution follows either 
the lognormal or the normal distribution.  The moments approach 
is particularly useful for real options where attention is often 
focused on identifying the appropriate underlying distribution to 
model. 
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1 Introduction 
 
The objective here is to provide an alternative moments approach for developing 
option valuation models within two single factor frameworks.  These two single 
factor frameworks are based on the reference instrument following either a 
lognormal distribution or a normal distribution.  The reference instrument’s 
stochastic differential equation is assumed linear in the instrument, although not 
necessarily linear in time.  The reference index does not have to be a marketable 
asset. 
   The goal here is to introduce an alternative representation of well-known 
results.  This alternative representation is particularly useful in situations where  
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the focus is on estimating the underlying distribution rather than creating the 
appropriate self-financing, dynamic replicating portfolio.  For example, if the 
objective is to estimate the value of an option based on temperature at a particular 
location, the focus is typically more on meteorology than particular hedging 
strategies.  Another example is an energy option where the underlying energy 
source is known to exhibit highly seasonal prices. 
   The paper proceeds as follows: Section II presents two theorems for the 
expected terminal value of options where the underlying instrument follows either 
lognormal or normal distribution.  Section III presents the key general linear 
theorem of Mikosch [8] with a particular focus on option valuation.  Section IV 
illustrates a variety of option valuation models based on the moments approach. 
 
 
2 Expected Terminal Values 
 
In this section, the expected terminal values for call and put options are given for 
the lognormal distribution in Theorem 1 and for the normal distribution in 
Theorem 2.  The implications of these results are illustrated with practical 
examples in Section IV.  The objective here is not to resolve whether it is 
appropriate to take the expectation under the equivalent martingale measure (risk 
neutral probability measure) and discount at the risk free interest rate or whether 
some other expectation should be taken and discounted at an alternative interest 
rate.  The focus is on finding the appropriate expected terminal value from which 
option values and risk measures can be computed.  The usefulness of the 
following two theorems will be illustrated particularly in Section IV. 
 
Theorem 1.  Expected Terminal Option Values - Lognormal Distribution 
Assuming the terminal value of the underlying reference index, tS , is distributed 
lognormal, then1 
 
 [ ] [ ] ( ) ( )lllt0t0 BdXNdNSECE −−=        (1a) 
 [ ] ( ) [ ] ( )lt0llt0 dNSEBdXNPE −−+−=        (1b) 
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In standard option valuation formulas, the mean and the variance are expressed in 
continuously compounded, annualized terms.  Note that equation (1) applied 
here is the well-known Black-Scholes-Merton option pricing model once these 
terminal values are discounted. 
   Therefore, if the underlying reference index follows a lognormal distribution, 
then we could apply Theorem 1 to estimate the expected terminal option value.  
The focus is on estimating the first two moments of the underlying reference 
index distribution.  We now illustrate this framework with the normal 
distribution. 
 
Theorem 2.  Expected Terminal Option Values - Normal Distribution 
Assuming the terminal value of the underlying reference index, tS , is distributed 
normal, then2 
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[ ] [ ][ ] ( ) ( ) ( )n
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   With these two representations of the terminal expected value for options, we 
turn now to general solutions for two classes of stochastic differential equations.  
These first two theorem help focus attention on estimation of moments around 
zero.  Section III provides a straightforward framework to compute these 
moments. 
 
 
3 Moment Estimation From Stochastic Differential Equations 
 
The usual finance assumptions are made (see, for example, Harrison and Kreps 
[4]  
                                                 

2  Proof available upon request.  
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and Harrison and Pliska [5]).3  Two categories of Itô processes are considered, 
linear lognormal models and linear normal models.  The goal here is to express 
the stochastic integral or stochastic differential equation in a form that leads to 
inferences about the distribution implied for the underlying instrument.  Mikosch 
[8] identifies the following useful theorem. 
 
Theorem 3.  General Linear Equation 
Consider the stochastic integral, 
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or the stochastic differential form 
 

( ) ( )[ ] ( ) ( )[ ] t2t12t1t dztStdttStdS σ+σ+μ+μ=      (3b) 
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   This theorem is applied in two cases related to option valuation, linear 
lognormal, and linear normal stochastic processes.  Almost all single factor 
finance applications can be classified as one of these two cases. 
 
3.1  Linear Lognormal Stochastic Processes 
 
An Itô process is classified as a linear lognormal model if it can be represented in 
stochastic integral form as 
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or in stochastic differential form as 
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( ) ( )[ ] ( ) tt12t1t dzStdttStdS σ+μ+μ=        (4b) 
 
where the drift term has two components, one a linear function of the underlying 
asset ( ( )t1μ ) and the other independent of the asset value ( ( )t2μ ).  Note that the 
noise term is a linear function of the underlying asset and can be a function of 
time.  The underlying asset for any 0>τ  follows a lognormal distribution. 
   Linear lognormal models have a wide variety of applications in finance, a 
selected few are identified here: 
Model 1:  SdzSdtdS σ+μ=  (Geometric Brownian Motion) 
The model originally used by Black and Scholes [2] and Merton [7].  Also used 
in Rendleman and Bartter’s [12] interest rate model. 
Model 2:  ( ) ttttt dzSdtSLdS σ+−α=   (Mean Reversion) 
This model was suggested by Pilipović [10] for modeling the mean reversion in 
energy prices.  She also has a two factor model where tL  is assumed to follow 
geometric Brownian motion.  Multifactor models are the subject of another 
paper. 
Model 3:  
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Und
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Also suggested by Pilipović [10] to handle deterministic seasonality. 
   Based on Theorem 1 and equation (3) where ( ) 02 =τσ , let 
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Substituting equation (5) into (6) and rearranging, we have 
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Theorem 4.  Linear Lognormal Stochastic Process Moments 
Assuming the future value of the reference index follows a linear lognormal  
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stochastic process, the first two moments can be expressed as:4 
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   Although the first two moments are rather messy, for most finance 
applications, these two moments can be reduced to rather simple expressions as 
illustrated in Section IV. 
 
 
3.2  Linear Normal Stochastic Processes 
 
An Itô process is classified as a linear normal model if it can be represented in 
stochastic integral form as 
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or in stochastic differential equation (SDE) form as 
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( ) ( )[ ] ( ) t22t1t dztdttStdS σ+μ+μ=        (11b) 
 
where the drift term has two components, one a linear function of the underlying 
asset ( ( )t1μ ) and the other independent of the asset value ( ( )t2μ ).  Note that the 
noise term is a linear function of the underlying asset and can be a function of 
time.  The underlying asset for any 0>τ  follows a lognormal distribution. 
   Linear normal models have a wide variety of applications in finance; a few are 
listed briefly here. 
Model 1:  dzdtdS σ+μ=  (Arithmetic Brownian motion with arithmetic drift) 
An arithmetic Brownian motion model used in various forms by Bachelier [1], 
Murphy [9], and Johnson and Barz [6].  See also Smith [14]. 
Model 2:  dzSdtdS σ+μ=  (Arithmetic Brownian motion with geometric drift) 
Used by Poitras [11] to model spreads.  Also found in Cox and Ross [3], 
equation (10), p. 151. 
Model 3:  ( ) dzdtSdS σ+−ακ=  (Mean reverting arithmetic Brownian motion) 
A mean reverting model used by Schwartz [13], where 0>κ .  This model has 
also been used by Vasicek’s model for interest rates follows this generic form. 
   Based on Theorem 3 and equation (3c) where ( ) 01 =τσ , let 
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Theorem 5.  Linear Normal Stochastic Process Moments 
Assuming the future value of the reference index follows a linear normal 
stochastic process, the first two moments can be expressed as:5 
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   Although the first two moments appear complex, for most finance applications, 
these two moments can be reduced to rather simple expressions as illustrated in 
Section IV. 
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4 Illustrations of the Moments Option Valuation Model 
 
4.1  Lognormal Distribution Applications 
 
The results given in Theorem 1 and 4 above are illustrated with the following two 
applications, geometric Brownian motion with geometric drift and geometric 
Brownian motion with mean reversion. 
 
Geometric Brownian Motion with Geometric Drift 
Consider ( ) ( ) ( ) ( ) 0;;0; 2121 =τσσ=τσ=τμμ=τμ , then based on Theorem 3 
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and thus from equation (3d) 
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Substituting equation (22) into equation (1), we have the following results. 
 
Theorem 6.  Expected Terminal Option Values: GBM with Geometric Drift 
Assuming geometric Brownian motion with geometric drift, 
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Geometric Brownian Motion with Mean Reversion 
A mean reverting model is now illustrated where 
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and 
 

dtLdL tt μ=             (24d) 
 
Note that 
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   Comparing this model with equation (3), we have 
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Based on equations (3d) and Theorems 1 and 4 and a bit of algebra, we have the 
results presented in the following results. 
 
Theorem 7.  Expected Terminal Option Values: GBM with Mean Reversion 
Assuming geometric Brownian motion with mean reversion, 
 

[ ] [ ] ( ) ( )lllt0t0 BdXNdNSECE −−=        (29a) 
[ ] ( ) { } ( )l0llt0 dNtexpSBdXNPE −μ−+−=       (29b) 

( )[ ]
2

B
B

XSEln
d l

l

t
l +=           (29c) 

( ) ( )[ ] 212
t

2
tl SESElnB =           (29d) 

 



A moments approach to option valuation models                      1111 
 
where 
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The second moment requires more effort, we have6 
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4.2  Normal Distribution Applications 
 
The results given in Theorem 2 and 5 are illustrated with two specific applications 
of linear normal models, arithmetic Brownian motion with arithmetic drift and 
arithmetic Brownian motion with geometric drift. 
 
Arithmetic Brownian Motion with Arithmetic Drift 
Consider an underlying asset where ( ) ( ) ( ) ( ) σ=τσ=τσμ=τμ=τμ 2121 ;0;;0 .  
Then based on Theorem 3 and equation (11a), 
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0t σμ+  and from Theorem 5, we have 

 
 ( ) tSSE 0t μ+=            (32a) 

( ) ( )2
0

22
t tStSE μ++σ=           (32b) 

                                                 

6 Proof available upon request. 
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Substituting the first two moments into Theorem 2, we have the appropriate 
terminal expected option value for ABM with arithmetic drift. 
 
Theorem 8.  Expected Terminal Option Values: ABM with Arithmetic Drift 
Assuming arithmetic Brownian motion with arithmetic drift, 
 

[ ] [ ] ( ) ( )nn0t0 dntdNXtSCE σ+−μ+=       (33a) 

[ ] [ ] ( ) ( )nn0t0 dntdNtSXPE −σ+−μ+−=       (33b) 

t
XtS

d 0
n

σ

−μ+
=            (33c) 

 
Arithmetic Brownian Motion with Geometric Drift 
Consider ( ) ( ) ( ) ( ) σ=τσ=τσ=τμμ=τμ 2121 ;0;0; , then based on Theorem 3 and 
equation (11), 
 

∫∫
=τ

=τ
τ

=τ

=τ
τ σ+τμ+=

t

0

t

0
0t dzdSSS          (34a) 

 
or 
 

ttt dzdtSdS σ+μ=            (34b) 
 
which is ABM with geometric drift.  From Theorem 5, we have 
 
 ( ) { }texpSSE 0t μ=            (35a) 

( ) { } { }
μ

−μ
σ+μ=

2
1t2expt2expSSE 22

0
2
t        (35b) 

 
Substituting the first two moments we have the terminal expected option value. 
 
Theorem 9.  Expected Terminal Option Values: ABM with Geometric Drift 
Assuming arithmetic Brownian motion with geometric drift, 

[ ] { }[ ] ( ) { } ( )nn0t0 dn
2

1t2expdNXtexpSCE
μ

−μ
σ+−μ=     (36a) 

[ ] { }[ ] ( ) { } ( )nn0t0 dn
2

1t2expdNtexpSXPE −
μ

−μ
σ+−μ−=    (36b) 

{ }
{ }
μ

−μ
σ

−μ
=

2
1t2exp

XtexpS
d 0

n           (36c) 
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4 Conclusion 
 
In this paper we have presented a methodology for deriving closed-form solutions 
for two categories of linear single factor terminal expected option values.  
Terminal expected option values are useful for a variety of option problems.  
Two linear single factor model applications based on either the lognormal 
distribution or the normal distribution are illustrated.  These linear factor models 
are based on the reference instrument’s stochastic differential equation is linear in 
the instrument, although not necessarily linear in time.  For many option-related 
trading decisions, the analysis hinges critically on estimating the first two 
moments of the underlying distribution. 
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