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A Note on Grüss Type Inequality
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Abstract. In this short note, we establish a new form of the inequality
of Grüss type for functions whose first and second derivatives are absolutely
continuous and third derivative is bounded both above and below almost ev-
erywhere.
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1. Introduction

Let f and g be two bounded functions defined on [a, b] with γ1 ≤ f(x) ≤ Γ1

and γ2 ≤ g(x) ≤ Γ2, where γ1, γ2, Γ1, Γ2 are four constants. Then the classic
Grüss inequality reads as follows:

1

b − a

∫ b

a

f(x)g(x)dx− 1

b − a

∫ b

a

f(x)dx
1

b − a

∫ b

a

g(x)dx ≤ 1

4
(Γ1−γ1)(Γ2−γ2).

In the years thereafter, numerous generalizations, extensions and variants
of Grüss inequality have appeared in the literature (see [1, 2, 3, 4, 5, 6, 7,
8, 9]). The purpose of the present note is to establish a new form of the
inequality of Grüss type for functions whose first and second derivatives are
absolutely continuous and third derivative is bounded both above and below
almost everywhere.
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2. Grüss inequality

In this section, we shall obtain the following main result.

Theorem 2.1. Let f : [a, b] → (−∞,∞) be a function such that the derivative
f

′
, f ′′ is absolutely continuous on [a, b]. Assume that there exist constants

γ, Γ ∈ (−∞,∞) such that γ ≤ f
′′′
(x) ≤ Γ a.e. on [a, b]. Then we have∣∣∣(a2 + ba + b2)(bf”(a) − af ”(b)) − 3(b2f

′
(b) − a2f

′
(a))

+ 6(bf(b) − af(a)) −
∫ b

a

f(x)dx
∣∣∣

≤(Γ − γ)
b4 + 3C4/3 − 4bC

4
.

where

C =
(b + a)(b2 + a2)

4
.

Proof. Firstly, it is easy to check

(a2 + ba + b2)(bf”(a) − af ”(b)) − 3(b2f
′
(b) − a2f

′
(a))

+ 6(bf(b) − af(a)) −
∫ b

a

f(x)dx

= b3f
′′
(b) − a3f

′′
(a) − 3(b2f

′
(b) − a2f

′
(a)) + 6(bf(b) − af(a))

− (b + a)(b2 + a2)[f ”(b) − f ”(a)] −
∫ b

a

f(x)dx

=

∫ b

a

{
x3 − 1

b − a

∫ b

a

x3dx

}
f

′′′
(x)dx.

Let

A =

{
x ∈ [a, b] : x3 ≥ 1

b − a

∫ b

a

x3dx

}
;

Ac =

{
x ∈ [a, b] : x3 <

1

b − a

∫ b

a

x3dx

}
.

Then we have∫ b

a

{
x3 − 1

b − a

∫ b

a

x3dx

}
f

′′′
(x)dx

≤Γ

∫
A

{
x3 − 1

b − a

∫ b

a

x3dx

}
dx + γ

∫
Ac

{
x3 − 1

b − a

∫ b

a

x3dx

}
dx
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and ∫ b

a

{
x3 − 1

b − a

∫ b

a

x3dx

}
f

′′′
(x)dx

≥γ

∫
A

{
x3 − 1

b − a

∫ b

a

x3dx

}
dx + Γ

∫
Ac

{
x3 − 1

b − a

∫ b

a

x3dx

}
dx.

Since ∫
A

{
x3 − 1

b − a

∫ b

a

x3dx

}
dx = −

∫
Ac

{
x3 − 1

b − a

∫ b

a

x3dx

}
dx,

it follows that ∣∣∣∣
∫ b

a

{
x3 − 1

b − a

∫ b

a

x3dx

}
f

′′′
(x)dx

∣∣∣∣(2.1)

≤ (Γ − γ)

∫
A

{
x3 − 1

b − a

∫ b

a

x3dx

}
dx

= (γ − Γ)

∫
Ac

{
x3 − 1

b − a

∫ b

a

x3dx

}
dx.

Therefore, it is enough to discuss the following integral,∫
A

{
x3 − 1

b − a

∫ b

a

x3dx

}
dx.(2.2)

From the definition of the set A, it follows that

A =

{
x ∈ [a, b];

3

√
(b + a)(b2 + a2)

4
≤ x ≤ b

}
,

and we can claim that

a ≤ 3

√
(b + a)(b2 + a2)

4
≤ b, ∀ a < b.(2.3)

In fact, we can assume b = ka, where k is chosen from R based on a. If a ≥ 0
which implies b > 0, then k > 1 and the inequality (2.3) is equivalent to

1 ≤ (k + 1)(k2 + 1)

4
≤ k3

which is obvious. Similarly if a < 0, b ≤ 0, then 0 ≤ k ≤ 1 and the inequality
(2.3) is equivalent to

1 ≥ 3

√
(k + 1)(k2 + 1)

4
≥ k,(2.4)

if a < 0, b ≥ 0, then k ≤ 0 and the inequality (2.3) is equivalent also to

1 ≥ 3

√
(k + 1)(k2 + 1)

4
≥ k,(2.5)
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It is easy to see (2.4) and (2.5) hold correspondingly. Hence the integral (2.2)
can be obtained, ∫

A

{
x3 − 1

b − a

∫ b

a

x3dx

}
dx(2.6)

=

∫ b

3
�

(b+a)(b2+a2)
4

{
x3 − 1

b − a

∫ b

a

x3dx

}
dx

=
b4 −

(
(b+a)(b2+a2)

4

)4/3

4
− (a + b)(a2 + b2)

4

[
b −

(
(b + a)(b2 + a2)

4

)1/3
]

=
b4 + 3

(
(b+a)(b2+a2)

4

)4/3

− 4b (b+a)(b2+a2)
4

4
.

The desired result can be obtained.
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