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Abstract. In this short note, we establish a new form of the inequality
of Griiss type for functions whose first and second derivatives are absolutely
continuous and third derivative is bounded both above and below almost ev-
erywhere.
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1. INTRODUCTION

Let f and g be two bounded functions defined on [a, b] with v < f(z) < Ty
and vy < g(z) < 'y, where 1, 7,1'1, 'y are four constants. Then the classic
Griiss inequality reads as follows:

bia/a f(x)g(x)dx—ﬁ/a f(x)d:z:bia/a g(x)dz < i(rl_%)(m—”h)-

In the years thereafter, numerous generalizations, extensions and variants
of Griiss inequality have appeared in the literature (see [1, 2, 3, 4, 5, 6, 7,
8, 9]). The purpose of the present note is to establish a new form of the
inequality of Griiss type for functions whose first and second derivatives are
absolutely continuous and third derivative is bounded both above and below
almost everywhere.
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2. GRUSS INEQUALITY

In this section, we shall obtain the following main result.

Theorem 2.1. Let f : [a,b] — (—o00,00) be a function such that the derivative
f', f" is absolutely continuous on [a,b]. Assume that there exist constants
7,T' € (—o0,00) such that v < f"(z) <T a.e. on [a,b]. Then we have

(0> +ba+ ") (bf (a) — af (b)) — 3(b°f (b) — a*f (a))

+6(010) — o (@) - | ' fla)da]

bt + 3043 — 4bC
0 .

<(I'=7)

where

(b +a)(*+a?)
C = 4 .

Proof. Firstly, it is easy to check

(@ +ba+0*)(bf (a) — af (b)) — 3(b°f (b) — a*f (a))

+6(0f(b) —af(a)) — [ flz)de

a
1 " ’

= f"(b) — a*f " (a) = 3(b°f (b) — a*f (a)) + 6(bf (b) — af(a))

—(b+a)(b* +a)[f (0) = f (a)] = [ flz)dz

a

b 1 b 111
:/(; {IB—H i I3dx}f (l‘)dl‘
1 b
A:{xe[a,b]:x32—/x3dx};
b—a J,

1 b
Acz{xe[a,b]:x3< / x3dx}.
b—a /,
Then we have

b 1 b m
/a {x3 =, x3dx} [ (x)dx
3 1 > 3 1 * 3
<r x° — x’dx p dx +y x” — x’dx ¢ dx
A b—a /, c b—a /,

Let
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b ]. b "
/a {x3 =) x3dx} [ (x)dx
1 b 1 b
27/ = / 2dx b de + F/ = / 2dx b dr.
A b—a /, c b—a /,

and

it follows that

(2.1)

1 b
=(y— F)/ {:1:3 5 x3dx} dr.

Therefore, it is enough to discuss the following integral,

(2.2) /A{x?’— bia/abxgdm}dx.

From the definition of the set A, it follows that

A= {xe[a,b];i/(b+a)(b2+a2) Sxﬁb},

4

and we can claim that

b b2 2
(2.3) a<<’/(+a)(4 ) h Va<h
In fact, we can assume b = ka, where k is chosen from R based on a. If a > 0
which implies b > 0, then k£ > 1 and the inequality (2.3) is equivalent to

(k+1)(k*+1)
4

1< < K3

which is obvious. Similarly if a < 0,6 < 0, then 0 < k£ < 1 and the inequality
(2.3) is equivalent to

E+1)(k2+1
(2.4) 12{’/(+)i +)2k,
if @ <0,b >0, then & <0 and the inequality (2.3) is equivalent also to

(2.5) 1> \/ (k¥ 1)flk2 LD




402

Gao-Hui Peng and Yu Miao

It is easy to see (2.4) and (2.5) hold correspondingly. Hence the integral (2.2)
can be obtained,

(2.6) /A{x?’— bi&/abx?’dx} dz

b 1 b
= / - / 23de b dx
3/ Cta)®?+a?) b—a /,
b <(b+a)(b2+a2)

Caet) @) [, (b e
s

4 4 4
4 (bta)B+a?) | ¥/ (b+a) (b2 +a?)
bt 3 (L)) T gyl

4

The desired result can be obtained. O
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