A Note on Grüss Type Inequality

Gao-Hui Peng ${ }^{1}$
College of Mathematics and Information Science
North China Institute of Water Conservancy and Hydroelectric Power
Henan Province 450011, P.R. China
peng119119@163.com

Yu Miao

College of Mathematics and Information Science
Henan Normal University, Henan Province, 453007, P.R. China yumiao728@yahoo.com.cn

Abstract

In this short note, we establish a new form of the inequality of Grüss type for functions whose first and second derivatives are absolutely continuous and third derivative is bounded both above and below almost everywhere.

Mathematics Subject Classification: 26D15

Keywords: Grüss inequality, absolutely continuous

1. Introduction

Let f and g be two bounded functions defined on $[a, b]$ with $\gamma_{1} \leq f(x) \leq \Gamma_{1}$ and $\gamma_{2} \leq g(x) \leq \Gamma_{2}$, where $\gamma_{1}, \gamma_{2}, \Gamma_{1}, \Gamma_{2}$ are four constants. Then the classic Grüss inequality reads as follows:
$\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \frac{1}{b-a} \int_{a}^{b} g(x) d x \leq \frac{1}{4}\left(\Gamma_{1}-\gamma_{1}\right)\left(\Gamma_{2}-\gamma_{2}\right)$.
In the years thereafter, numerous generalizations, extensions and variants of Grüss inequality have appeared in the literature (see $[1,2,3,4,5,6,7$, $8,9]$). The purpose of the present note is to establish a new form of the inequality of Grüss type for functions whose first and second derivatives are absolutely continuous and third derivative is bounded both above and below almost everywhere.

[^0]
2. GRÜSS INEQUALITY

In this section, we shall obtain the following main result.
Theorem 2.1. Let $f:[a, b] \rightarrow(-\infty, \infty)$ be a function such that the derivative $f^{\prime}, f^{\prime \prime}$ is absolutely continuous on $[a, b]$. Assume that there exist constants $\gamma, \Gamma \in(-\infty, \infty)$ such that $\gamma \leq f^{\prime \prime \prime}(x) \leq \Gamma$ a.e. on $[a, b]$. Then we have

$$
\begin{gathered}
\mid\left(a^{2}+b a+b^{2}\right)\left(b f^{\prime \prime}(a)-a f^{\prime \prime}(b)\right)-3\left(b^{2} f^{\prime}(b)-a^{2} f^{\prime}(a)\right) \\
\quad+6(b f(b)-a f(a))-\int_{a}^{b} f(x) d x \mid \\
\leq(\Gamma-\gamma) \frac{b^{4}+3 C^{4 / 3}-4 b C}{4} .
\end{gathered}
$$

where

$$
C=\frac{(b+a)\left(b^{2}+a^{2}\right)}{4}
$$

Proof. Firstly, it is easy to check

$$
\begin{aligned}
& \begin{aligned}
&\left(a^{2}+b a+b^{2}\right)\left(b f^{\prime \prime}(a)-a f^{\prime \prime}(b)\right)-3\left(b^{2} f^{\prime}(b)-a^{2} f^{\prime}(a)\right) \\
& \quad+6(b f(b)-a f(a))-\int_{a}^{b} f(x) d x \\
&=b^{3} f^{\prime \prime}(b)-a^{3} f^{\prime \prime}(a)-3\left(b^{2} f^{\prime}(b)-a^{2} f^{\prime}(a)\right)+6(b f(b)-a f(a)) \\
& \quad-(b+a)\left(b^{2}+a^{2}\right)\left[f^{\prime \prime}(b)-f^{\prime \prime}(a)\right]-\int_{a}^{b} f(x) d x \\
&= \int_{a}^{b}\left\{x^{3}-\frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} f^{\prime \prime \prime}(x) d x .
\end{aligned}
\end{aligned}
$$

Let

$$
\begin{aligned}
& A=\left\{x \in[a, b]: x^{3} \geq \frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} \\
& A^{c}=\left\{x \in[a, b]: x^{3}<\frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \int_{a}^{b}\left\{x^{3}-\frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} f^{\prime \prime \prime}(x) d x \\
\leq & \Gamma \int_{A}\left\{x^{3}-\frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} d x+\gamma \int_{A^{c}}\left\{x^{3}-\frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} d x
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{a}^{b}\left\{x^{3}-\frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} f^{\prime \prime \prime}(x) d x \\
\geq & \gamma \int_{A}\left\{x^{3}-\frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} d x+\Gamma \int_{A^{c}}\left\{x^{3}-\frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} d x
\end{aligned}
$$

Since

$$
\int_{A}\left\{x^{3}-\frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} d x=-\int_{A^{c}}\left\{x^{3}-\frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} d x
$$

it follows that

$$
\begin{align*}
& \left|\int_{a}^{b}\left\{x^{3}-\frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} f^{\prime \prime \prime}(x) d x\right| \tag{2.1}\\
& \leq(\Gamma-\gamma) \int_{A}\left\{x^{3}-\frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} d x \\
& =(\gamma-\Gamma) \int_{A^{c}}\left\{x^{3}-\frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} d x
\end{align*}
$$

Therefore, it is enough to discuss the following integral,

$$
\begin{equation*}
\int_{A}\left\{x^{3}-\frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} d x \tag{2.2}
\end{equation*}
$$

From the definition of the set A, it follows that

$$
A=\left\{x \in[a, b] ; \sqrt[3]{\frac{(b+a)\left(b^{2}+a^{2}\right)}{4}} \leq x \leq b\right\}
$$

and we can claim that

$$
\begin{equation*}
a \leq \sqrt[3]{\frac{(b+a)\left(b^{2}+a^{2}\right)}{4}} \leq b, \quad \forall a<b \tag{2.3}
\end{equation*}
$$

In fact, we can assume $b=k a$, where k is chosen from R based on a. If $a \geq 0$ which implies $b>0$, then $k>1$ and the inequality (2.3) is equivalent to

$$
1 \leq \frac{(k+1)\left(k^{2}+1\right)}{4} \leq k^{3}
$$

which is obvious. Similarly if $a<0, b \leq 0$, then $0 \leq k \leq 1$ and the inequality (2.3) is equivalent to

$$
\begin{equation*}
1 \geq \sqrt[3]{\frac{(k+1)\left(k^{2}+1\right)}{4}} \geq k \tag{2.4}
\end{equation*}
$$

if $a<0, b \geq 0$, then $k \leq 0$ and the inequality (2.3) is equivalent also to

$$
\begin{equation*}
1 \geq \sqrt[3]{\frac{(k+1)\left(k^{2}+1\right)}{4}} \geq k \tag{2.5}
\end{equation*}
$$

It is easy to see (2.4) and (2.5) hold correspondingly. Hence the integral (2.2) can be obtained,

$$
\begin{gather*}
=\int_{\sqrt[3]{\frac{(b+a)\left(b^{2}+a^{2}\right)}{4}}}^{b}\left\{x^{3}-\frac{1}{b-a} \int_{a}^{b} x^{3} d x\right\} d x \tag{2.6}\\
=\frac{b^{4}-\left(\frac{(b+a)\left(b^{2}+a^{2}\right)}{4}\right)^{4 / 3}}{4}-\frac{(a+b)\left(a^{2}+b^{2}\right)}{4}\left[b-\left(\frac{(b+a)\left(b^{2}+a^{2}\right)}{4}\right)^{1 / 3}\right] \\
=\frac{b^{4}+3\left(\frac{(b+a)\left(b^{2}+a^{2}\right)}{4}\right)^{4 / 3}-4 b \frac{(b+a)\left(b^{2}+a^{2}\right)}{4}}{4}
\end{gather*}
$$

The desired result can be obtained.

References

[1] X. L. Cheng and J. Sun, A note on the perturbed trapezoid inequality, JIPAM. J. Inequal. Pure Appl. Math. 3(2), Article 29, (2002).
[2] S. S. Dragomir, A companion of the Grüss inequality and applications, Appl. Math. Lett. 17 429-435 (2004).
[3] S. S. Dragomir, P. Cerone and A. Sofo, Some remarks on the trapezoid rule in numerical integration, Indian J. Pure Appl. Math. 31(5), 475-494 (2000).
[4] S. S. Dragomir, Y. J. Cho and S. S. Kim, Inequalities of Hadamard's type for Lipschitizian mappings and their applications, J. Math. Anal. Appl. 245, 489-501 (2000).
[5] S. S. Dragomir and S. Wang, An inequality of Ostrowski-Grüss' type and its applications to the estimation of error bounds for some special means and for home numerical quadrature rules, Computers Math. Applic. 33 (11), 15-20 (1997).
[6] N. Elezović, Lj. Marangunić and J. Pec̆arić, Some improvements of Grüss type inequality. J. Math. Inequal. 1(3), 425-436 (2007).
[7] Z. Liu, A sharp integral inequality of Ostrowski-Grüss type, Soochow J. Math. 32(2), 223-231 (2006).
[8] M. Matić, J. Pec̆arić and N. Ujević, Improvement and further generalization of inequalities of Ostrowski-Grüss type, Computers Math. Applic. 39 (3/4), 161-175 (2000).
[9] A. M. Mercer, An improvement of the Grüss inequality. JIPAM. J. Inequal. Pure Appl. Math. 6(4), Article 93 (2005).

Received: July, 2008

[^0]: ${ }^{1}$ This research is supported by the youth scientific research funds of North China Institute of Water Conservancy and Hydroelectric Power (HSQJ2005015).

