
Applied Mathematical Sciences, Vol. 3, 2009, no. 9, 415 - 420

A Class of Parallel Iterative Method

for 1D Diffusion Equation

Bin Zheng

School of Mathematics and Information Science
Shandong University of Technology

Zibo, Shandong, 255049, P. R. China
zhengbin2601@126.com

Abstract

In this paper, we first derive an absolutely stable implicit finite dif-
ference scheme with four order accurate in spatial step size and two
order in time step size for diffusion equations. Based on the scheme
we present a class of alternating group explicit iterative method. The
method is suitable for parallel computation. Results of the convergence
analysis shows that the method is convergent. In the end, several nu-
merical examples are presented to confirm the analysis for the method.
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1 Introduction

We consider the following periodic boundary value problem:⎧⎪⎪⎨⎪⎪⎩
∂u
∂t = a∂2u

∂x2 , 0 ≤ t ≤ T

u(x, 0) = f(x),
u(x, t) = u(x + 1, t).

(1.1)

Many researches on numerical methods of diffusion equations have been
done, but researches on finite difference methods for the periodic boundary
value problem has scarcely presented. As we all know, Most of explicit methods
are short in stability and accuracy, while implicit methods are unadaptable for
parallel computing, and need to solve large equation set. Thus it is a great
task to present parallel numerical methods with absolute stability. A class of
alternating group method (AGE) for paraboic equations are presented in [1].
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Because of the parallelism and absolute stability, the AGE method is widely
cared and developed by many authors such as B.l.Zhang, G.W.Yuan etc in
[2-4], while R. Tavakoli derived a class of domain-split method based on the
AGE method for 1D and 2D diffusion equation in [5,6]. Most of the developed
methods have the same advantage of good stability and parallelism, but almost
all the methods have O(h2) accuracy for spatial step in the case of using six
grid points.

We organize this paper as follows: In section 2, we present a O(τ 2+h4) order
unconditionally stable symmetry six-point implicit scheme for solving (1.1) at
first. Based on the scheme two alternating group explicit iterative methods
are constructed. In section 3, convergence analysis and stability analysis are
given. In section 4, results of several numerical examples are presented.

2 The Alternating Group Iterative Method(AGI)

The domain Ω : [0, 1]×[0, T ] will be divided into (m×ξ) meshes with spatial

step size h= 1
m in x direction and the time step size τ=T

ξ . Grid points are

denoted by (xi, tn), xi = ih(i = 0, 1, · · ·, m), tn = nτ(n = 0, 1, · · · , T
τ ). The

numerical solution of (1.1) is denoted by un
i , while the exact solution u(xi, tn)

Let δtu
n
j =

un+1
j −un

j

τ
, δ2

xu
n
j =

un
i+1−2un

i +un
i−1

h2 . We present an implicit finite
difference scheme with parameters for solving (1.1) as below:

κ1δtu
n
j−1 + κ2δtu

n
j + κ3δtu

n
j+1 =

a

2
(δ2

xu
n+1
j + δ2

xu
n
j ) (2.1)

Applying Taylor formula to the scheme at (xi, tn). Considering ∂ku
∂tk

=

ak ∂2ku
∂t2k , then we have the truncation error:

(κ1+κ2+κ3−1)a(
∂2u

∂x2
)n
i +(−κ1+κ3)ah(

∂3u

∂x3
)n
i −

1

2
(κ1+κ2+κ3−1)a2τ(

∂4u

∂x4
)n
i +

1

2
(κ1 + κ3 − 1

6
)ah2(

∂4u

∂x4
)n
i +

1

6
(κ3 − κ1)ah3(

∂5u

∂x5
)n
i +

1

2
(κ1 − κ3)a

2τh(
∂5u

∂x5
)n
i +

1

4
(−κ1 − κ3 +

1

6
)a2τh2(

∂6u

∂x6
)n
i +

1

12
(κ1 + κ3 − 1

6
)a2τh3(

∂7u

∂x7
)n
i + O(τ 2 + h4)

Let ⎧⎪⎨⎪⎩
κ1 + κ2 + κ3 − 1 = 0

−κ1 + κ3 = 0
κ1 + κ3 − 1

6
= 0

that is, κ1 = κ3 = 1
12

, κ2 = 5
6
. Then we can easily have that the truncation

error of the scheme is O(τ 2 + h4).
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Let r= aτ
24h2 , then from (2.1) we have:

(1−6r)un+1
i−1 +(10+12r)un+1

i +(1−6r)un+1
i+1 = (1+6r)un

i−1+(10−12r)un
i +(1+6r)un

i+1

(2.2)
Let Un = (un

1 , un
2 , · · · , un

m)T , then from (2.1) we can have AUn+1 = FUn =
F̃ n. here

A =

⎛⎜⎜⎜⎜⎜⎜⎝
10 + 12r 1 − 6r 1 − 6r
1 − 6r 10 + 12r 1 − 6r

... ... ...
1 − 6r 10 + 12r 1 − 6r

1 − 6r 1 − 6r 10 + 12r

⎞⎟⎟⎟⎟⎟⎟⎠
m×m

F =

⎛⎜⎜⎜⎜⎜⎜⎝
10 − 12r 1 + 6r 1 + 6r
1 + 6r 10 − 12r 1 + 6r

... ... ...
1 + 6r 10 − 12r 1 + 6r

1 + 6r 1 + 6r 10 − 12r

⎞⎟⎟⎟⎟⎟⎟⎠
m×m

The alternating group iterative method will be constructed in two cases as
follows:

First we let m = 4k, k is an integer. Let A = 1
2(G1 + G2), here

G1 =

⎛⎜⎜⎜⎜⎜⎜⎝
B1

...
...

...
B1

⎞⎟⎟⎟⎟⎟⎟⎠
m×m

, G2 =

⎛⎜⎜⎜⎜⎜⎜⎝
B2 C1

B1

...
B1

CT
1 B2

⎞⎟⎟⎟⎟⎟⎟⎠
m×m

B1 =

⎛⎜⎜⎜⎝
10 + 12r 1 − 6r 0 0

0 10 + 12r 2(1 − 6r) 0
0 2(1 − 6r) 10 + 12r 1 − 6r
0 0 1 − 6r 10 + 12r

⎞⎟⎟⎟⎠

B2 =

(
10 + 12r 1 − 6r
1 − 6r 10 + 12r

)
, C1 =

⎛⎜⎜⎜⎝
0 0 0 2(1 − 6r)
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠
Then the alternating group iterative method I can be denoted as below:{

(ρI + G1)U
n+1(k+ 1

2
) = (ρI − G2)U

n+1(k) + 2F̃ n

(ρI + G2)U
n+1(k+1) = (ρI − G1)U

n+1(k+ 1
2
) + 2F̃ n

(2.3)

Here ρ is the iterative parameter. k is the iterative number, k = 0, 1, · · ·.
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Second we let m = 4k + 2, k is an integer. Let A = 1
2(G1 + G2), here

G1 =

⎛⎜⎜⎜⎜⎜⎜⎝
B1

...
...

B1

B2

⎞⎟⎟⎟⎟⎟⎟⎠
m×m

, G2 =

⎛⎜⎜⎜⎜⎜⎜⎝
B2 C2

B1

...
...

CT
2 B1

⎞⎟⎟⎟⎟⎟⎟⎠
m×m

B1 =

⎛⎜⎜⎜⎝
10 + 12r 1 − 6r 0 0

0 10 + 12r 2(1 − 6r) 0
0 2(1 − 6r) 10 + 12r 1 − 6r
0 0 1 − 6r 10 + 12r

⎞⎟⎟⎟⎠

B2 =

(
10 + 12r 1 − 6r
1 − 6r 10 + 12r

)
, C2 =

(
0 0 0 2(1 − 6r)
0 0 0 0

)

Then the alternating group iterative method II can be derived as below:

{
(ρI + G1)U

n+1(k+ 1
2
) = (ρI − G2)U

n+1(k) + 2F̃ n

(ρI + G2)U
n+1(k+1) = (ρI − G1)U

n+1(k+ 1
2
) + 2F̃ n

. (2.4)

3 Convergence and Stability Analysis

Lemma[7] Let θ >0, and G + GT is positive, then (θI + G)−1exists, and{ ‖(θI + G)−1‖ 2 ≤ θ−1

‖(θI − G)(θI + G)−1‖2 < 1
(3.1)

From the construction of the matrixes we can see that G1, G2, (G1 +
GT

1 ), (G2 + GT
2 ) are all nonnegative matrixes. Then we have

‖(ρI − G1)(ρI + G1)
−1‖2 ≤ 1, ‖(ρI − G2)(ρI + G2)

−1‖2 ≤ 1

From (2.2), we can obtain Un+1 = GUn+2(ρI+G2)
−1[(ρI−G1)(ρI+G1)

−1F̃ n+
F̃ n]. here G = (ρI +G2)

−1(ρI−G1)(ρI +G1)
−1(ρI−G2) is the growth matrix.

Let G̃ = (ρI+G2)G(ρI+G2)
−1 = (ρI−G1)(ρI+G1)

−1(ρI−G2)(ρI+G2)
−1,

then ρ(G) = ρ(G̃) ≤ ‖G̃‖2 ≤ 1., which shows the AGI1 method given by (2.3)
is convergent. Then we have:

Theorem The alternating group iterative method I is convergent.

Analogously we have:

Theorem The alternating group iterative method II is convergent.
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4 Numerical Experiments

We consider the following initial boundary value problem of diffusion equa-
tions: ⎧⎪⎪⎨⎪⎪⎩

∂u
∂t = ∂2u

∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T

u(x, 0) = sin(2πx),
u(0, t) = 0, u(1, t) = 0.

(4.1)

The exact solution for the problem is u(x, t) = e−4π2tsin(2πx). Let A.E
denote maximum absolute error, while P.E denote maximum relevant error.
A.E=|un

i − u(xi, tn)|, P.E=100 × |un
i − u(xi, tn)/u(xi, tn)|. Let ρ = 1. In order

to verify the alternating group method, we finished the following examples
in variant conditions. We will use the iterative error 1 × 10−8 to control the
process of iterativeness, and the results of numerical experiments are listed in
the following tables:

Table 1: The numerical results for the iterative method I m = 16

τ = 10−3, t = 100τ τ = 10−4, t = 100τ τ = 10−4, t = 1000τ
A.E 5.477 ×10−5 2.056 ×10−4 5.392 ×10−4

P.E 2.748 ×10−1 3.144 ×10−2 2.812 ×10−1

average iterative times 23.53 21.52 16.344

Table 2: The numerical results for the iterative method I m = 20

τ = 10−3, t = 100τ τ = 10−4, t = 100τ τ = 10−4, t = 1000τ
A.E 4.120 ×10−5 1.834 ×10−4 5.185 ×10−4

P.E 2.143 ×10−1 2.730 ×10−2 2.689 ×10−1

average iterative times 23.77 21.79 16.573

Table 3: The numerical results for the iterative method II at m = 18

τ = 10−3, t = 100τ τ = 10−4, t = 100τ τ = 10−4, t = 1000τ

A.E 4.650 ×10−5 1.877 ×10−4 5.165 ×10−4

P.E 2.447 ×10−1 2.842 ×10−2 2.718 ×10−1

average iterative times 23.71 21.72 16.507

Table 4: The numerical results for the iterative method II at m = 22

τ = 10−3, t = 100τ τ = 10−4, t = 100τ τ = 10−4, t = 1000τ

A.E 3.433 ×10−5 1.803 ×10−4 5.191 ×10−4

P.E 1.802 ×10−1 2.707 ×10−2 2.719 ×10−1

average iterative times 23.74 21.79 16.561

The results of table 1-4 shows that the alternating group methods are con-
verge, and don’t lead to numerical instability in any cases in the process of
computation, which accords to the conclusion of convergence and error analy-
sis. Besides those, from the construction of the AGI methods we notice that
the AGI methods are suitable for parallel computation obviously.
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5 Conclusions

In this paper, we present two alternating group iterative(AGI) methods for
diffusion equations. The methods are based on an O(τ 2 + h4) order implicit
scheme, which is of absolute stability. Of course we can establish another alter-
nating group iterative method based on other implicit schemes, which shows
the construction of the AGI methods mentioned in this paper is a universal
process, and the methods can also be applied to other partial differential equa-
tions. Considering the parallelism, the AGI methods are convenient to use in
solving large equation set.
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