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Abstract

We introduce a new quadratic spline method for computing approx-
imations to the solution a system of fourth order boundary value prob-
lems associated with obstacle, unilateral and contact problems. It is
shown that the present method is of order two and gives approxima-
tions which are better than those produced by some other collocation,
finite difference and spline methods. Numerical examples are presented
to illustrate the applicability of the new method.
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1. Introduction

Variational inequalities theory has become an effective and powerful tool
for studying obstacle, unilateral, contact problems arising in mathematical
and engineering sciences including fluid flow through porous media, elastic-
ity, transportation and economics equilibrium, optimal control, nonlinear op-
timization and operation research see, for example [1-11,13-18].

The area of obstacle problems arising in fluid flow through porous media
and elasticity forms an important foundation for the applications of variational
inequalities. It has been shown by Kikuchi and Oden [11] that the problem
of equilibrium of elastic bodies in contact with a rigid frictionless foundation
can be studied in the framework of variational inequalities. In a variational
inequality formulation, the location of the free boundary (contact area) become
an intrinsic part of the solution and no special techniques are needed to locate
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it. Various numerical methods are being developed and applied to find the
numerical solutions of the obstacle problems, see, for example [1-11,13-18]
and the references therein. In principle, the finite difference methods cannot
be applied directly to solve the obstacle problems. However, If the obstacle
is known, then the variational inequalities can be characterized by a system
of differential equations by using the penalty function method of Lewy and
Stampacchia [8]. The main computational advantage of this technique is its
simple applicability for solving system of differential equations. In recent years,
Al-Said et al [1-6], Khalifa and Noor [9] and Noor and Al-Said [16,17] have
used such types of penalty function in solving a class of contact problems in
elasticity in conjection with collocation, finite difference and spline techniques.

For the purpose of numerical experience, we consider an example of an
elastic beam lying over an elastic obstacle. The formulation and the approxi-
mation of the elastic beam is very simple. However, it should be pointed out
that the kind of numerical problems which occur for more complicated system
will be the same. To convey an idea, we consider a system of fourth order
boundary value problem of the type

u(4) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f(x), a ≤ x ≤ c,

g(x)u(x) + f(x) + r, c ≤ x ≤ d,

f(x), d ≤ x ≤ b,

with the boundary and continuity conditions

u(a) = u(b) = α1, u′′(a) = u′′(b) = α2,

(1.1b)

u(c) = u(d) = β1, u′′(c) = u′′(d) = β2,

where f and g are continuous functions on [a,b] and [c,d], respectively. The
parameters r, αi, i = 1, 2 and βi, i = 1, 2 are real constants. The possibil-
ity of using collocation method with quintic spline as a basis functions for
solving (1.1) was discussed by Khalifa and Noor [9]. Their numerical results
indicated that the quintic spline collocation method produced second order
approximations. After this, Al-Said and Noor [3] used a second order finite
difference method to compute second order approximations for the solution of
(1.1). For related results, see [2-6,9,10,13,16-18] and the references therein. In
the present paper, we develop a new quadratic spline method for solving the
boundary value problem (1.1) over the whole interval [a, b]. In section 2, we
derive the numerical method and briefly discuss its error analysis. Section 3 is
devoted to the numerical experiments and comparison with other methods.
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2. Numerical Method

For simplicity, we first develop the quadratic spline method for solving the
fourth order boundary value problem

u(4) = g(x)u+ f(x)

u(c) = u(d) = β1 (2.1)

u′′(c) = u′′(d) = β2,

then we use it to solve (1.1) in section 3. For this purpose we divide the interval
[c, d] into n equal subintervals using the grid points xi = c+ih, i = 0, 1, 2, . . . , n,

x0 = c, xn+1 = d and h =
d− c

n+ 1
, where n is a positive integer.

Consider the problem of constructing a quadratic spline S(x) satisfying the

interpolation conditions S(xi) = u(xi), for i = 1, 2, . . . , n. Also, let Mi = S
(2)
i

for i = 1, 2, . . . , n. Now for the differential equation in (2.1) at the konts xi we
may have

Mi−1 − 2Mi +Mi+1 = h2u
(4)
i +O(h6) (2.2)

The parameters of quadratic spline S(x) satisfy the consistency relation

Mi−1 + 2Mi +Mi+1 =
4

h2
[Si−1 − 2Si + Si+1] (2.3)

for i = 2, 3, . . . , n− 1, see Al-Said [1] for more details.
It follows from (2.2) and (2.3) that

Mi−1 =
1

h2
[ui−1 − 2ui + ui+1] − h2

4
u

(4)
i +O(h6) (2.4)

for i = 2, 3, . . . , n.
Now from (2.3) and (2.4) we have the consistency relations

ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2 =
h4

4
[u

(4)
i−1 + 2u

(4)
i + u

(4)
i+1] + ti (2.5)

for i = 2, 3, . . . , n. Equation (2.5) form a linear system of n − 2 equations in
the n unknowns ui, i = 1, 2, . . . , n. Thus, we need two more equations, one at
each end of the range of integration. These equations are given by

5u1 − 4u2 + u3 = 2u0 − h2u′′0 +
1

4
h4[

2

3
u

(4)
0 + 2u

(4)
1 + u

(4)
2 ] + t1, (2.6)

for i = 1, and

un−2 − 4un−1 + 5un = 2un+1 − h2u′′n+1 +
1

4
h4[u

(4)
n−1 + 2u(4)

n +
2

3
u

(4)
n+1] + tn,(2.7)
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for i = n.
The local truncation errors ti related to the consistency relations (2.5)-(2.7)

are given by

ti =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− 31
360
h6u

(6)
i−1 +O(h7), for i = 1

1
12
h6u

(6)
i +O(h7), for 2 ≤ i ≤ n− 1

− 31
360
h6u

(6)
i +O(h7), for i = n.

(2.8)

Now, using a standard convergence analysis, see, for example Al-Said and
Noor [4], it can be shown that our method is a second order convergent process,
that is ‖e‖ ≈ O(h2), where e = (ei) is the discretization error.

3. Application and Numerical Results

To illustrate the application of the spline method developed in the previous
sections, we consider the fourth order obstacle boundary value problem of
finding u such that

u(4) ≥ f(x), on Ω = [−1, 1]
u ≥ ψ(x), on Ω = [−1, 1][
u(4) − f(x)

]
[u− ψ(x)] = 0 on Ω = [−1, 1]

u(−1) = u(1) = 0, u′′(−1) = u′′(1) = 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

where f is a given force acting on the beam and ψ(x) is the elastic obsta-
cle. Equation (3.1) describes the equilibrium configuration of an elastic beam,
pulled at the ends and lying over an elastic obstacle. We study the problem
(3.1) in the framework of variational inequality approach. To do so, we define
the set K as

K = {v : v ∈ H2
0 (Ω) : v ≥ ψ on Ω}, (3.1)

which is a closed convex set in H2
0 (Ω), where H2

0 (Ω) is a Sobolev space, which
is in fact a Hilbert space. It can be easily shown that the energy functional
associated with the obstacle problem (3.1) is

I[v] =
∫ 1

−1

{
d4v

dx4
− 2f(x)

}
v(x)dx, for all v ∈ H2

0 (Ω)

=
∫ 1

−1

(
d2v

dx2

)2

dx− 2
∫ 1

−1
f(x)v(x)dx

= a(v, v) − 2〈f, v〉, (3.2)

where

a(u, v) =
∫ 1

−1

(
d2u

dx2

)(
d2v

dx2

)
dx (3.3)
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and

〈f, v〉 =
∫ 1

−1
f(x)v(x)dx. (3.4)

It can be easily proved that the form a(u, v) defined by (3.4) is bilinear, sym-
metric and positive (in fact, coercive) and the functional f defined by (3.5) is
a linear continuous functional. It is well known [7,8,11] that the minimum u of
the functional I[v] defined by (3.3) on the closed convex set K in H2

0 (Ω) can
be characterized by the variational inequality

a(u, v − u) ≥ 〈f, v − u〉, for all v ∈ K. (3.5)

Thus we conclude that the obstacle problem (3.1) is equivalent to solving the
variational inequality problem (3.6). This equivalence has been used to study
the existence of a unique solution of (3.1), see [7,8,11]. Now using the idea of
Lewy and Stampacchia [8], the problem (3.6) can be written as

u(4) + ν{u− ψ}(u− ψ) = f, (3.6)

where ψ is the obstacle function and ν(t) is a penalty function defined by

ν(t) =

{
4, t ≥ 0
0, t < 0.

(3.7)

We assume that the obstacle function ψ(x) is defined by

ψ(x) =

⎧⎪⎨
⎪⎩

−1
4

for −1 ≤ x ≤ −1
2

and 1
2
≤ x ≤ 1

1
4

for −1
2
≤ x ≤ 1

2
.

(3.8)

From (3.7) - (3.9), we obtain the following system of equations

u(4) =

{
f, for − 1 ≤ x ≤ −1

2
and 1

2
≤ x ≤ 1

1 − 4u+ f, for − 1
2
≤ x ≤ 1

2

(3.9)

with the boundary conditions

u(−1) = u(−1
2
) = u(1

2
) = u(1) = 0

u′′(−1) = u′′(−1
2
) = u′′(1

2
) = u′′(1) = 0

(3.10)

and the conditions of continuity of u and u′′ at x = −1
2

and 1
2
.

Example 3.1 In this example, we consider the system of differential equation
(3.10) when f = 0, namely,

u(4) =

{
0, for − 1 ≤ x ≤ −1

2
and 1

2
≤ x ≤ 1

1 − 4u, for − 1
2
≤ x ≤ 1

2

(3.11)
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with the boundary conditions

u(−1) = u(−1
2
) = u(1

2
) = u(1) = 0

u′′(−1) = −u′′(−1
2
) = u′′(1

2
) = −u′′(1) = ε

(3.12)

where ε→ 0. The analytical solution for this boundary value problem is

u(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−2
3
x3 − 3

2
x2 − 13

12
x− 1

4
)ε, for −1 ≤ x ≤ −1

2

0.5 − 1
φ3

[φ1 sin x sinh x+ φ2 cosx cosh x], for −1
2
≤ x ≤ 1

2

(−2
3
x3 + 3

2
x2 − 13

12
x+ 1

4
)ε, for 1

2
≤ x ≤ 1 ,

(3.13)
where φ1 = sin 1

2
sinh 1

2
, φ2 = cos 1

2
cosh1

2
and φ3 = cos 1 + cosh 1.

Example 3.2 For f = 1, the problem (3.10) becomes

u(4) =

{
1, for − 1 ≤ x ≤ −1

2
and 1

2
≤ x ≤ 1

2 − 4u, for − 1
2
≤ x ≤ 1

2

(3.14)

with the boundary conditions (3.11). The analytical solution for this boundary
value problem is

u(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
24
x4 + 1

8
x3 + 1

8
x2 + 3

64
x+ 1

192
, for −1 ≤ x ≤ −1

2

0.5 − 1
φ3

[φ1 sin x sinh x+ φ2 cosx cosh x], for −1
2
≤ x ≤ 1

2

1
24
x4 − 1

8
x3 + 1

8
x2 − 3

64
x+ 1

192
, for 1

2
≤ x ≤ 1 ,

(3.15)
where φ1, φ2 and φ3 are as defined in example 4.1.

The problems (3.12) and (3.15) were solved over the whole interval [-1,1]
using the spline method developed in section 2 with a variety of h and ε
values. The observed maximum errors in absolute values are given in Tables
1 and 2. From the these tables we can notice that if the stepsize h is reduced
by a factor 1/2, then the errors are approximately reduced by a factor 1/4.
Thus, the numerical results confirm that our present method is a second-order
convergent process as predicted in section 3. These problems were also solved in
[2-4,6,10] using second order finite difference and spline methods, and problem
(3.12) was solved [9] using collocation method with quintic B-spline as basis
functions. Some of their results are also given in Tables 1 and 2. From these
tables we may notice that our present method gives better results than the
others.
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Table 1: Observed maximum errors for example 3.1 with ε = 10−6.
h Our method [3] [4] [6] [9] [10]
1
8 6.5 ×10−6 1.4 ×10−4 1.3 ×10−5 7.2 ×10−6 3.0 ×10−4 1.9 ×10−5

1
16 1.6 ×10−6 3.6 ×10−5 3.2 ×10−6 2.2 ×10−6 7.0 ×10−5 4.8 ×10−6

1
32 4.1 ×10−7 8.9 ×10−6 8.1 ×10−7 5.7 ×10−7 1.4 ×10−5 1.2 ×10−6

Table 2: Observed maximum errors for example 3.2.
h Our method [3] [4] [6] [9]
1
12

6.8 ×10−6 6.2 ×10−5 1.2 ×10−5 7.8 ×10−6 8.4 ×10−6

1
24

1.6 ×10−7 1.6 ×10−5 2.8 ×10−6 1.9 ×10−6 2.2 ×10−6

1
48

4.2 ×10−7 3.9 ×10−6 6.9 ×10−7 4.9 ×10−7 5.4 ×10−7
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