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Abstract

In this paper, we suggest and analyze a new two-step iterative method
for solving nonlinear fuzzy equations using the Harmonic mean rule. We
prove that this method has quadratic convergence. The fuzzy quantities
are presented in parametric form. Sever examples are given to illustrate
the efficiency of the proposed method.
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1 Introduction

In recent years much attention has been given to develop iterative type meth-
ods for solving nonlinear equations like F (x) = 0.

The concept of fuzzy numbers and arithmetic operation with these numbers
were first introduced and investigated by Zadeh [13]. One of the major appli-
cations of fuzzy number arithmetic is nonlinear equations whose parameters
are all or partially represented by fuzzy numbers[1, 6, 10]. Standard analytical
techniques presented by Buckley and Qu in [2 − 5]. In this paper we have an
adjustment on the classic Newton’ method in order to accelerate the conver-
gence or to reduce the number of operations and evaluations in each step of
the iterative process.

We suggest and analyze an iterative method by using the Harmonic mean
rule. This method is an implicit-type method. To implement this, we use
Newton’s method as predictor method and then use this method as corrector
method. Several examples are given to illustrate the efficiency and advantage
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of this two-steep method. In Section 2, we bring some basic definitions and
results on fuzzy numbers. In Section 3 we develop a modification on Newton’s
method to introduce Harmonic Newton’s method for solving of nonlinear real
equations and quadratic convergence of this method has been proved. In Sec-
tion 4 we apply the obtained results from Section 3 for solving of nonlinear
fuzzy equations. The proposed algorithm is illustrated by some examples in
Section 5 and a comparison with previous methods will be done, and conclusion
is in Section 6.

2 Preliminaries

Definition 2.1 A fuzzy number is set like u : R → I = [0, 1] which satisfies,
[8, 12, 14],

1. u is upper semi-continuous,

2. u(x) = 0 outside some interval [c, d],

3. There are real numbers a, b such that c � a � b � d and

3.1. u(x) is monotonic increasing on [c, a],

3.2. u(x) is monotonic decreasing on [a, b],

3.3. u(x) = 1, a � x � b.

Definition 2.2 A fuzzy number u in parametric form is a pair (u, u) of
functions u(r), u(r), 0 � r � 1, which satisfies the following requirements:

1. u(r) is a bounded monotonic increasing left continuous function,

2. u(r) is a bounded monotonic decreasing left continuous function,

3. u(r) � u(r), 0 � r � 1.

A crisp number α is simply represented by u(r) = u(r) = α, 0 � r � 1.
A popular fuzzy number is triangular fuzzy number u = (a, b, c), with the

membership function

u(x) =

{
x−a
b−a

, a � x � b
x−c
b−c

, b � x � c,

where c �= a, c �= b and hence

u(r) = a + (c − a)r, u(r) = b + (c − b)r.
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Let TF (R) be the set of all triangular fuzzy numbers. The addition and
scalar multiplication of fuzzy numbers are defined by the extension principle
and can be equivalently represented as follows.

For arbitrary u = (u, u), v = (v, v) and k > 0 we defined addition u + v
and multiplication by real number k > 0 as

(u + v)(r) = u(r) + v(r), (u + v)(r) = u(r) + v(r),
(ku)(r) = ku(r), (ku)(r) = ku(r).

3 Harmonic Newton’s method

Let us consider the problem of finding a real zero of a function F : D ⊆ R
n →

R
n, that is, a real solution α, of the nonlinear equation system F (x) = 0, of n

equations with n variables. This solution can be obtained as a fixed point of
some function G : R

n → R
n by means of the fixed point iteration method

xk+1 = G(xk), k = 0, 1, . . . ,

where x0 is the initial estimation. The best known fixed point method is the
classical Newton’s method, given by

xk+1 = xk − JF (xk)
−1F (xk), k = 0, 1, 2, . . . ,

where JF (xk) is the Jaccobian Matrix of the function F evaluated in xk.
Let F : D ⊆ R

n → R
n be a sufficiently differentiable function and α be a

zero of the system of nonlinear equations F (x) = 0. The following result will
be used describe the Newton’s method and Harmonic Newton’s method; see
its proof in[9].

Lemma 3.1 Let F : D ⊆ R
n → R

n be continuously differentiable on a convex
set D. Then, for any x, y ∈ D, F satisfies

F (y)− F (x) =

∫ 1

0

JF (x + t(y − x))(y − x)dt. (1)

Once the iterate xk has been obtained, using (1):

F (y) = F (xk) +

∫ 1

0

JF (xk + t(y − xk))(y − xk)dt. (2)

If we estimate JF (xk + t(y − xk)) in the interval [0, 1] by its value in t = 0,
that is by JF (xk), and take y = α, then

0 ≈ F (xk) + JF (xk)(α − xk),
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is obtained, and a new approximation of α can be done by

xk+1 = xk − JF (xk)
−1F (xk),

what is the Classical Newton method (CN) for k = 0, 1, . . .
If an estimation of (2) is made by means of the trapezoidal rule and y = α is
taken, then

0 ≈ F (xk) +
1

2
[JF (xk) + JF (α)](α − xk),

is obtained and a new approximation xk+1 of α is given by

xk+1 = xk − 2[JF (xk) + JF (xk+1)]
−1F (xk).

In order to avoid the implicit problem that this equation involves, we use the
(k + 1)th iteration of Newton method in the right side,

xk+1 = xk − 2[JF (xk) + JF (zk)]
−1F (xk), k = 0, 1, . . . , (3)

where

zk = xk − JF (xk)
−1F (xk).

This method is called Trapezoidal Newton’s method (TN).
The Trapezoidal Newton’s method can be understood as a substitution of

JF (xk) in Newton’s method by the arithmetic mean of JF (xk) and JF (zk). If
harmonic mean is used in stead of arithmetic one, then the following formula
is obtained:

xk+1 = xk − 1

2
JF (zk)

−1JF (xk)
−1[JF (xk) + JF (zk)]F (xk), k = 0, 1, . . . , (4)

that is,

xk+1 = xk − 1

2
JF (zk)

−1[I + JF (xk)
−1JF (zk)]F (xk), k = 0, 1, . . . , (5)

where I is the identity matrix of size n × n, and

zk = xk − JF (xk)
−1F (xk).

This alternative of Newton’s method will be called Harmonic Newton’s method
(HN). Now in the following, we satisfy the quadratical convergence of Harmonic
Newton’s method. Two following lemmas are technical lemmas whose proof
can be found in [9].
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Lemma 3.2 Let F : R
n → R

n be a differentiable function such that

‖JF (u) − JF (v)‖ � ‖u − v‖
for any u, v ∈ D convex set. Then there exists γ > 0 such that for any x, y ∈ D,

‖F (y)− F (x) − JF (x)(y − x)‖ � γ

2
‖x − y‖2.

Lemma 3.3 Let A ∈ L(Rn) be nonsingular. If E ∈ L(Rn) and ‖A−1‖.‖E‖ �
1, then A + E is nonsingular and

‖(A + E)−1‖ � ‖A−1‖
1 − ‖A−1‖.‖E‖ .

Lemma 3.4 Let F : R
n → R

n be a differentiable function in α, where α is a
solution of the system of nonsingular equations F (x) = 0. Let us suppose that
JF (x) is continuous and JF (α)is nonsingular. Then the functions

G(x) = x − C(x)−1F (x),

where C(x) = 2JF (x)JF (z)[JF(x) + JF (z)]−1 and z = x − JF (x)−1F (x), is
well-defined in a neighborhood of α, is differentiable and

JG(α) = I − JF (α)−1JF (α) = 0.

Proof: Firstly, let us prove that C(x) is nonsingular for any x in a neighbor-
hood of α. Let β be β = ‖JF (α)−1‖ and ε be such that 0 < ε < (2β)−1 is satis-
fied. By continuity of JF in α there exists a δ > 0 such that ‖JF (x)−JF (α)‖ � ε
if ‖x − α‖ � δ.

Now by the convergence of Classical Newton’s method in [9] or [11], it can
be assured that ‖z−α‖ � δ, then ‖JF (z)−JF (α)‖ � ε and also it is concluded
that ‖JF (z) − JF (x)‖ � 2ε if ‖x − α‖ � δ.
Then by using lemma (3.3), it is proved that JF (z) is nonsingular and

‖JF (z)−1‖ = ‖(JF (α) + (JF (z) − JF (α)))−1‖
� ‖JF (α)−1‖

1−‖JF (α)−1‖‖JF (z)−JF (α)‖ � β
1−βε

< 2β,

and also, from Banach’s Lemma it can be stated that C(x) is nonsingular and

‖C(x)−1‖ = ‖(2JF (x)JF (z)(JF (x) + JF (z))−1)−1‖
= ‖1

2
JF (z)−1JF (x)−1(JF (x) + JF (z))‖

= 1
2
‖JF (z)−1 + JF (z)−1JF (x)−1JF (z)‖

= 1
2
‖JF (z)−1 + JF (z)−1JF (x)−1JF (z)
−JF (z)−1JF (x)−1JF (x) + JF (z)−1JF (x)−1JF (x)‖

= ‖JF (z)−1 + 1
2
JF (z)−1JF (x)−1(JF (z) − JF (x))‖ � 2β + 2εβ2
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as ε is arbitrary and β is constant, then it can be concluded ‖C(x)−1‖ � 2β
for ‖x − α‖ � δ. So, the function G(x) is well-defined in the neighborhood of
α, S = {x : ‖x − α‖ � δ}.

Now, by differentiability of F in α, it can be assumed that δ is small enough
to

‖F (x) − F (α) − JF (α)(x − α)‖ � ε‖x − α‖, ∀x ∈ S.

Then, for any x ∈ S,

‖G(x) −G(α) − (I − C(α)−1JF (α))(x − α)‖
= ‖C(α)−1JF (α)(x − α) −C(x)−1F (x)‖
� ‖C(x)−1(F (x) − F (α) − JF (α)(x − α))‖

+‖(C(x)−1(C(x) −C(α))(C(α)−1JF (α)(x − α)‖
� ‖C(x)−1‖.‖F (x) − F (α)− JF (α)(x − α)‖

+‖C(x)−1‖.‖C(x) − C(α)‖.‖x − α‖
� (2βε + 2βε)‖x − α‖ = 4βε‖x − α‖,

As ε is arbitrary and β is constant, then it can be concluded from the previous
inequalities that G is differentiable in α, and also

JG(α) = I − C(α)−1JF (α) = I − JF (α)−1JF (α) = 0. �

To complete of discussion, in the following, we bring the proof of the quadratic
convergence of Trapezoidal Newton’s method. The Ostrowiski’s Theorem in
the following, is needed to convergence theorem.

Theorem 3.1 Let G : R
n → R

n is differentiable function in α, that is a
solution of the system x = G(x). Let {xk+1}k�0 be the sequence of iterates
obtained by means of fixed point iteration, xk+1 = G(xk), k = 0, 1, . . .. If the
spectral radius of JG(α) is lower than 1, then {xk}k�0 converges to α.

Proof: See the proof in [9].

Theorem 3.2 Let F : R
n → R

n be differentiable at each point of an open
neighborhood D of α ∈ R, that is a solution of the system F (x) = 0. Let us
suppose that JF (x) is continuous and nonsingular in α. Then the sequence
{xk}k�0 obtained using the iterative expression (3) converges to α and

lim
k→∞

‖xk+1 − α‖
‖xk − α‖ = 0.

Moreover, if there exists γ > 0 such that

‖JF (x) − JF (α)‖ � γ‖x − α‖,
for any x in D, then there exists a constant M > 0 such that

‖xk+1 − α‖ � M‖xk − α‖2, ∀k � k0,

where k0 depends on the initial estimation x0.
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Proof: From Lemma 3.4 we can assure that

G(x) = x− C(x)−1F (x),

where C(x)−1 = 1
2
JF (z)−1JF (x)−1(JF (x) + JF (z)), z = x − JF (x)−1F (x), is

well-defined in a neighborhood of α, is differentiable in α and JG(α) = I −
JF (α)−1JF (α) = 0, and also that ‖C(x)−1‖ < 2β, where β = ‖JF (α)−1‖.

If the sequence {xk}k�0 is obtained by means of fixed point iteration on G,
using Theorem 3.1 it can be concluded that {xk}k�0 converges to α. Moreover,
as G is differentiable in α,

lim
k→∞

‖G(xk) − G(α) − JG(α)(xk − α)‖
‖xk − α‖ = 0,

but JG(α) = 0, so this limit is equivalent to:

lim
k→∞

‖G(xk) − G(α)‖
‖xk − α‖ = lim

k→∞
‖xk+1 − α‖
‖xk − α‖ = 0.

Now, if ‖JF (x) − JF (α)‖ � γ‖x − α‖ for any x in a neighborhood of α,
an analogous reasoning to the one made in the proof of Lemma 3.2 allows
us to assure that, for any x in the neighborhood of α and from C(x) =
2JF (x)JF (z)[JF(x) + JF (z)]−1, C(α) = JF (α) in Lemma 3.4,

‖F (x)−F (α)−C(α)(x−α)‖ = ‖F (x)−F (α)−JF(α)(x−α)‖ � 1

2
γ‖x−α‖2

So, by the convergence of Classical Newton’s method, ‖JF (z) − JF (α)‖ �
γ‖x − α‖ and ‖JF (x) − JF (α)‖ � γ‖x − α‖ for any x in the neighborhood of
α , so is obtained that,

‖C(x) − C(α)‖ = ‖2JF (x)JF (z)(JF (x) + JF (z))−1 − JF (α)‖
= ‖(JF (x) + JF (z))−1(2JF (x)JF (z) − JF (α)(JF (x) + JF (z)))‖
= ‖(JF (x) + JF (z))−1(JF (x)(JF (z) − JF (α)) + JF (z)(JF (x) − JF (α))‖
� ‖(JF (x) + JF (z))−1(JF (x)γ‖x − α‖ + JF (z)γ‖x − α‖) � ε

then is concluded that

‖G(x) − G(α)‖ = ‖x − C(x)−1F (x) − α‖
= ‖C(x)−1[F (x) − F (α) − C(α)(x − α)] − C(x)−1[C(x) − C(α)](x − α)‖
� ‖C(x)−1[F (x) − F (α) − C(α)(x − α)]‖ + ‖C(x)−1[C(x) − C(α)](x − α)‖
� ‖C(x)−1‖.‖F (x) − F (α) − C(α)(x − α)‖ + ‖C(x)−1‖.‖C(x) − C(α)‖.‖x − α‖
� γβ‖x− α‖2 + 2γβ‖x− α‖2 = 3γβ‖x− α‖2,

in a neighborhood of α. Thus,

‖xk+1 − α‖ � M‖xk − α‖2,

is satisfied with M = 3γβ. �
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4 Harmonic Newton’s method for fuzzy equa-

tions

Now our aim in this section is to obtain a solution for nonlinear equation
F (x) = 0.
The parametric form is as follows:

{
F (x, x; r) = 0,
F (x, x; r) = 0.

∀r ∈ [0, 1] (6)

Suppose that α = (α, α) is the solution to the system (6), i.e,

{
F (α, α; r) = 0,
F (α, α; r) = 0,

∀r ∈ [0, 1]

Therefore, if x0 = (x0, x0) is an approximation solution for this system, then
∀r ∈ [0, 1], there are h(r), k(r) such that

{
α(r) = x0(r) + h(r),
α(r) = x0(r) + k(r).

Now by using of the Taylor series of F , F about (x0, x0), then ∀r ∈ [0, 1],

⎧⎪⎪⎨
⎪⎪⎩

F (α, α; r) = F (x0, x0; r) + hF x(x0, x0; r) + kF x(x0, x0; r) + O(h2 + hk + k2)
= 0,

F (α, α; r) = F (x0, x0; r) + hF x(x0, x0; r) + kF x(x0, x0; r) + O(h2 + hk + k2)
= 0,

and if x0 and x0 are near to α and α, respectively, then h(r) and k(r) are small
enough. Let us suppose that all needed partial derivatives exists are bounded.
Therefore for enough small h(r) and k(r), where ∀r ∈ [0, 1], we have,

{
F (x0, x0; r) + hF x(x0, x0; r) + kF x(x0, x0; r) = 0,

F (x0, x0; r) + hF x(x0, x0; r) + kF x(x0, x0; r) = 0,

and hence h(r) and k(r) are unknown quantities that can be obtained by
solving the following equations, ∀r ∈ [0, 1],

JF (x0, x0; r)

[
h(r)
k(r)

]
=

[ −F (x0, x0; r)
−F (x0, x0; r)

]
, (7)

where

JF (x0, x0; r) =

[
F x(x0, x0; r) F x(x0, x0; r)

F x(x0, x0; r) F x(x0, x0; r)

]
.
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is the Jaccobian Matrix of the function F = (F, F ) evaluated in x0 = (x0, x0).
Hence, the next approximations for x(r) and x(r) are as follows

{
x1(r) = x0(r) + h(r),
x1(r) = x0(r) + k(r),

for all r ∈ [0, 1].

We can obtain approximated solution, r ∈ [0, 1], by using the recursive
scheme {

xn+1(r) = xn(r) + hn(r),
xn+1(r) = xn(r) + kn(r),

(8)

where n = 1, 2, . . . Analogous to (7),

JF (xn, xn; r)

[
hn(r)
kn(r)

]
=

[ −F (xn, xn; r)
−F (xn, xn; r)

]
, (9)

Now, let JF (xn, xn; r) be nonsingular, then from (6) recursive scheme of
Newton’s method is obtained as follows,

[
xn+1(r)
xn+1(r)

]
=

[
xn(r)
xn(r)

]
− JF (xn, xn; r)

−1

[
F (xn, xn; r)
F (xn, xn; r)

]
. (10)

From Harmonic Newton’s method (HN) in Section 3, by substitution of
JF (xn, xn; r) in (9) by

C(xn, xn; r) = 2JF (x; r)JF (z; r)(JF (x; r) + JF (z; r))−1

= 2JF (xn, xn; r)JF (zn, zn; r)(JF (xn, xn; r) + JF (zn, zn; r))−1,

where [
zn

zn

]
=

[
xn(r)
xn(r)

]
− JF (xn, xn; r)−1

[
F (xn, xn; r)
F (xn, xn; r)

]
,

and by using Lemma 3.4, C(xn, xn; r) is nonsingular, then similar to (10) in
Newton’s method, recursive scheme for Harmonic Newton’s method (HN) is
obtained as follows
[

xn+1(r)
xn+1(r)

]
=

[
xn(r)
xn(r)

]
−1

2
JF (z; r)−1JF (x; r)−1(JF (x; r)+JF (z; r))

[
F (xn, xn; r)
F (xn, xn; r)

]
,

(11)
or
[

xn+1(r)
xn+1(r)

]
=

[
xn(r)
xn(r)

]
−1

2
JF (zn; r)

−1(I+JF(xn; r)
−1JF (zn; r))

[
F (xn, xn; r)
F (xn, xn; r)

]
,

(12)
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where n = 1, 2, . . . and I is the identity matrix of size n × n.
For initial guess, one can use the fuzzy number

x0 = (x(0), x(1), x(0))

and in parametric form

x0(r) = x(0) + (x(1) − x(0))r, x0(r) = x(0) + (x(1) − x(0))r,

when x(0) � x(1) � x(0).

Finally, in the following it is shown that, under certain conditions, Har-
monic Newton’s method for fuzzy equation F (x) = 0 is convergent and that
this convergence is quadratical.

Theorem 4.1 Let ∀r ∈ [0, 1], the functions F and F are continuously dif-
ferentiable with respect to x and x. Assume that there exists (α(r), α(r)) ∈ R

2

and a β > 0 such that ‖JF (α, α; r)−1‖ � β and JF will be Lipschitz continuous
with respect to x and x with constant γ, then the Trapezoidal Newton’s method
converges to (α, α), and there exists a M > 0 such that,

‖(xn+1, xn+1) − (α, α)‖ � M‖(xn, xn) − (α, α)‖2.

Proof. From Theorem 3.2, for n = 2, the result is concluded. �

5 Numerical application

Example 5.1 Consider the fuzzy nonlinear equation [2]

(3, 4, 5)x2 + (1, 2, 3)x = (1, 2, 3).

Without any loss of generality, assume that x is positive, then the parametric
form of this equation is as follows

{
(3 + r)x2(r) + (1 + r)x(r) = (1 + r),
(5 − r)x2(r) + (3 − r)x(r) = (3 − r),

or equality {
(3 + r)x2(r) + (1 + r)x(r) − (1 + r) = 0,
(5 − r)x2(r) + (3 − r)x(r) − (3 − r) = 0.

To obtain initial guess we use above system for r = 0 and r = 1, therefore

{
3x2(0) + x(0) − 1 = 0,
5x2(0) + 3x(0) − 3 = 0,

and

{
4x2(1) + 2x(1) − 2 = 0,
4x2(1) + 2x(1) − 2 = 0.
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Figure 1: Solution of example 1

Consequently x(0) = 0.43425, x(0) = 0.53066 and x(1) = x(1) = 0.5.
Therefore initial guess is x0 = (0.43425,0.5, 0.53066). After 2 iterations, we
obtain the solution by Harmonic Newton’s method with the maximum error
less than 10−15, by (TN) after two iterations the maximum error less than
10−11 and by (CN) after two iterations the maximum error would be less than
10−3. For more details see Figure 1. Now suppose x is negative, we have

{
(3 + r)x2(r) + (1 + r)x(r) − (1 + r) = 0,
(5 − r)x2(r) + (3 − r)x(r) − (3 − r) = 0.

For r = 0, we have, x(0) 	 −0.90705 and x(0) 	 −1.11373, hence x(0) > x(0),
therefore negative root does not exist.

Example 5.2 Consider fuzzy nonlinear equation [2]

(1, 2, 3)x3 + (2, 3, 4)x2 + (3, 4, 5) = (5, 8, 13).

Without any loss of generality, assume that x is positive, then parametric
form of this equation is as follows

{
(1 + r)x3(r) + (2 + r)x2(r) + (3 + r) = (5 + 3r),
(3 − r)x3(r) + (4 − r)x2(r) + (5 − r) = (13 − 5r),

or equality {
(1 + r)x3(r) + (2 + r)x2(r) − (2 + 2r) = 0,
(3 − r)x3(r) + (4 − r)x2(r) − (8 − 4r) = 0,

Similar to Example 5.1, to obtain initial guess we use above system for r = 0
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Figure 2: Positive solution of example 2

and r = 1, therefore

{
x3(0) + 2x2(0) − 2 = 0,
3x3(0) + 4x2(0) − 8 = 0,

and

{
2x3(1) + 3x(1)2 − 4 = 0,
2x3(1) + 3x2(1) − 4 = 0.

Consequently x(0) = 0.83928, x(0) = 1.05636 and x(1) = x(1) = 0.91082.
Therefore initial guess is x0 = (0.83928,0.91082,1.05636). After two iterations,
we obtain the solution by Harmonic Newton’s method with the maximum error
less than 10−11, by (TN) after two iterations the maximum error less than 10−8

and by (CN) after two iterations the maximum error would be less than 10−2.
For more details see Figure 2.

6 Conclusion

In this paper, we suggested numerical solving method for fuzzy nonlinear
equations. This method is an implicit-type method. To implement this, we use
Newton’s method as predictor method and then use this method as corrector
method. The method is discussed in detail. Several examples are given to
illustrate the efficiency and advantage of this two-steep method.
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