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Abstract

This paper presents, a preconditioned version of global FOM and
GMRES methods for solving Lyapunov matrix equations

AX + XAT = −BTB.

These preconditioned methods are based on the global full orthogo-
nalization and generalized minimal residual methods. For constructing
effective preconditioners, we will use ADI spiliting of above lyapunov
matrix equations. Numerical experiments show that the solution of
Lyapunov matrix equation can be obtained with high accuracy by us-
ing the preconditioned version of global FOM and GMRES algorithms
and this version are more robust and more efficient than those without
preconditioning.
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1 Introduction

Lyapunov matrix equations play a essential role in control theory [2, 3, 4, 10].
In this paper, we focus on the numerical solution of the Lyapunov matrix
equations

AX + XAT = −BBT . (1)

The necessary and sufficient condition for (1) to have a unique solution is that

λ(A) ∩ λ(−AT ) = ∅,
where λ(A) and λ(−AT ) are the spectrums of A and −AT , respectively. More-
over, for the symmetric right hand side, as in (1), this solution is also symmet-
ric. There are a number of direct methods for solving the Lyapunov matrix
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equations (1) numerically, the most important of which are the Bartels-Stewart
[1], Hessenberg-Schur [6] and the Hammarling methods [7]. But these methods
is not suitable for big and sparse Lyapunov matrix equations. In [11], Y saad
proposed Krylov subspace methods of Galerkin type for computing low rank
solutions of large and sparse Lyapunov matrix equations. His methods are
used for such large and sparse Lyapunov matrix equations which have stable
matrix coefficient A, i.e., all eigenvalues of matrix A have negative real parts,
and B be a vector in IRn. The preconditioned Krylov subspace methods for
large and sparse lypunov matrix equations is presented by M. Hochbruck and
G. Starke [8]. They constructed SSOR and ADI(r) preconditioners for accel-
erating the rate of convergence of Krylov subspace methods. In addition, for
solving Lyapunov matrix equations, they used coupled two-term recurrence
version of QMR iterative method without look-ahead which have proposed by
Freund and Nachtigal [5]. Recently K. Jbilou et al.[9] proposed global FOM
and GMRES algorithms for solving matrix equations with multiple right hand
sides. They extended the global GMRES method (which has presented for
matrix equations ) for solving Lyapunov matrix equations. In this paper we
extend the global FOM method for Lyapunov matrix equations. Also, we
want to propose a preconditioned version of these algorithms. We will show
how we can use SSOR and ADI(r) preconditioner for these algorithms to com-
puting symmetric solutions for the Lyapunov matrix equations. As we know,
the Lyapunov matrix equations (1) can be written as a big linear system of
equations

(In ⊗ A + A ⊗ In)x = b (2)

where ⊗ denote the Kronecker product, xij, bij , i, j = 1, ..., n are entries of
matrices X and −BBT respectively, and x = (x11, ..., x1n, ..., xn1, ..., xnn)T and
b = (b11, ..., b1n, ..., bn1, ..., bnn)T . One possibility to derive iterative methods for
the solution of (1) is to take any of the well-known iterative schemes for the
solution of large system (2) with the coefficient matrix

A = In ⊗ A + A ⊗ In

and the reformulate it in terms of (1). In this manner, the ADI method [12]
with respect to the spiliting of the linear system into I ⊗Aand A⊗ I leads to
smiths method

(A − pjIn)X
′
j−1 = −[BBT + Xj−1(A + pjIn)T ] (3)

Xj(A − pjIn)T = −[BBT + (A + pjIn)X
′
j−1]

with real parameters pj, j = 1, ..., we will refer to this as the ADI method
for Lyapunov matrix equations. Our purpose in this paper is to study global
FOM and GMRES algorithms based on Kronecker sum formulation and to
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present several preconditioner for this approach theorically and numerically.
Since the solution X of (1) is symmetric matrix it is of particular interest to
have symmetric iterates throughout the iteration. we will investigate this topic
and prove that this is the case for global FOM and GMRES methods without
preconditioning, and when using (point) SSOR or ADI-type preconditioners.
M. Huchbrock and G. Starke used the stationary ADI method, i.e., pj = p, j =
1, ..., to preconditioned Lyapunov matrix equations. This approach takes the
form

A(A − pIn)−1Y (A − pIn)−T + (A − pIn)−1Y (A − pIn)−T AT = −BT B (4)

(A − pIn)−1Y (A − pn)−T = X

corresponding to right preconditioning for the corresponding linear system.
Therefore, we need information about the location of the eigenvalues of the
matrix A to choice appropriate parameter p ( or parameter sets for higher order
of ADI preconditioning ). Because the matrix A is relatively small compared
to the size of problem, it pays to compute (or at least estimate ) its eigenvalues
and optimal parameters.

Throughout this paper, we use the following notations. e
(k)
1 denotes the

first axis vector of dimension k, IE = IEn×n denotes the vector space, on
the field IR, of square matrices of dimension n × n. For X and Y in IE, we
define the inner product < X, Y >F =tr(XTY ), where tr(Z) denotes the trace
of the square matrix Z and XT denotes the transpose of the matrix X. The
associated norm is the well-known Frobenius norm denoted by ‖ . ‖F . For a
matrix V ∈ IE, the block Krylov subspace Km(A, V ) is the subspace generated
by the columns of the matrices V, AV, ..., Am−1V . A set of members of IE is
said to be F-Orthonormal if it is orthonormal with respect to scaler product
< . , . >F .

This paper is organized as follows. In Section 2, a brief description of
the global FOM and GMRES methods for solving matrix equations are given,
and The point SSOR and ADI preconditioners for solving Lyapunov matrix
equations are summarized in Section 3. In Section 4 some numerical examples
are tested. Finally, Section 5 summarizes the main conclusion of this paper.

2 Global FOM and GMRES Algorithms For

Solving Lyapunov Matrix Equations

Global FOM and GMRES methods for matrix equations have recently pre-
sented by K. Jbilou et al. These methods are based on global oblique and
orthogonal projections of the initial matrix residual onto a matrix Krylov sub-
space. As we know [9], the modified global Arnoldi algorithm constructs an
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F-Orthonormal basis V1, V2, ..., Vm, of Krylov subspace Km(A, V ). This algo-
rithm is as follows:

Algorithm 1. Modified global Arnoldi algorithm
1. Choose an n × p matrix V1 such that ‖ V ‖F= 1.
2. For j = 1, ..., m Do:
3. Ṽj = AVj,
4. For i = 1, ... , j Do:
5. hij = tr(V T

i Ṽj),
6. Ṽj = Ṽj − hijVi,
7. hj+1,j =‖ Ṽj ‖F

8. EndDo.
9. If hj+1,j = 0 then stop.
10. Set Vj+1 = Ṽj/hj+1,j .
11. EndDo

Here we give a brief description of the global GMRES and FOM methods
for solving Lyapunov matrix equations. For presenting these methods, first we
define the following linear operator,

S : IRn×n → IRn×n

SX = AX + XAT .

By this definition we can see that equation (1) is equivalent with

SX = −BT B. (5)

Therefore, we can obtain the solution of Lyapunov matrix equations (1), by
solving matrix equations (5). Thus, the global FOM and GMRES methods
for solving Lyapunov matrix equations, use Algorithm 1 for constructing an
F-Orthonormal basis V1, V2, ..., Vm, of Krylov subspace

Km(S, V ) = span{V,SV, ...,Sm−1V }.
We note that SmV = S(Sm−1V ). Let us collect the matrices Vi constructed by
the Algorithm 1 ( for obtaining an F-Orthonormal basis of Krylov subspace
Km(S, V )) in the n × mn and n × (m + 1)n F-Orthonormal matrices

Vm = [V1, V2, ..., Vm]

and
Vm+1 = [Vm, Vm+1],

respectively. Also denote by Hm the upper m × m Hessenberg matrix whose
nonzero entries are the scalars hij and the (m+1)×m matrix H̃m is the same
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as Hm except for an additional row whose only nonzero element is hm+1,m in
the (m + 1, m) position. In this paper, also we used the notation ∗ for the
following product:

Vk ∗ α =

k∑

i=1

αiVi,

where α = (α1, α2, ..., αk) is a vector in IRm, and, by the same way, we set

Vm ∗ Hm = [Vm ∗ H(1)
m ,Vm ∗ H(2)

m , ...,Vm ∗ H(m)
m ],

where H
(j)
m denotes the j-th column of the matrix Hm. It can be easily seen

that the relations

Vm ∗ (α + β) = Vm ∗ α + Vm ∗ β, and (Vm ∗ Hm) ∗ α = Vm ∗ (Hmα),

where α, β ∈ IRm, are satisfy. By using these notations, we we have the
following relations which will be used later.
Proposition 1. Let Vm = [V1, V2, ..., Vm], where the n × k matrices Vi, i =
1, ..., k are defined by the global Arnoldi algorithm. Then we have

‖ Vm ∗ α ‖F =‖ α ‖2,

where α ∈ IRm

Proof : See [9].
Theorem 1. Let Vm, Hm and H̃m be defined as before. Then using the
product ∗, the following relations hold:

SVm = Vm ∗ Hm + Um+1,

and
SVm = Vm+1 ∗ H̃m,

where Um+1 = hm+1,m[0n×p, ..., 0n×p, Vm+1].
Proof : See [9].
Now, suppose that X0 ∈ IRn×n, is an initial guess to the solution X and
R0 = −BT B − SX0 = −BT B − AX0 − X0A

T is associated residual. At step
m, the global full othogonalization method for solving (5), constructing the
new approximation Xm to the solution (5), such that

Xm − X0 = Zm ∈ Km(S, R0) (6)

with the orthogonality relation

Rm = −BT B − SXm ⊥F Km(S, R0) (7)
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Relation (6) implies that

Xm = X0 + Vm ∗ ym,

for some ym ∈ IRm. Hence from the orthogonality relation (7) we have

< Rm, Vi >F= 0 i = 1, ..., m.

Thus, we have

< R0 − A(Vm ∗ ym) − (Vm ∗ ym)AT , Vi >F , i = 1, ..., m,

and this equations lead to

m∑

j=1

< SVj , Vi >F y(j)
m =< R0, Vi >F= 0 i = 1, ..., m. (8)

where ym = (y1
m), ..., y

(m)
m )T ∈ IRm. Using proposition 1 and theorem 1 and the

fact that the matrices Vi, i = 1, ..., m form an F-orthogonal basis for Krylov
subspace Km(S, R0), the linear system (8) can be written as follows:

Hmy =‖ R0 ‖F e
(m)
1 (9)

where Hm is the m×m upper Hessenberg matrix produced by modified global
Arnoldi algorithm for constructing an F-orthonormal basis of Krylov subspace
Km(S, R0). from the relation (9), we see that at step m, we have to solve only
one m × m linear system to get m-dimensional vector ym and then Xm =
X0 +Vm ∗ ym. Thus, we can write the global full orthogonalization method for
solving Lyapunov matrix equations as follows.
Algorithm 2. Global full orthogonalization method for solving (1).
1. Choose an initial approximate solution X0 and compute R0 = −BT B−SX0

and V1 = R0/ ‖ R0 ‖F .
2. For j = 1, ..., m apply Algorithm 1 to compute the F-orthonormal basis

V1, V2, ..., Vm of Km(S, R0) and the matrix Hm.

3. Compute ym the solution of matrix equations of Hmy =‖ R0 ‖F e
(m)
1 .

4. Compute Xm = X0 + Vm ∗ ym.
Since the right hand-side of the Lypunov matrix equations (1) is symmetric
matrix, we can present the following result:
Proposition 2. If X0 is symmetric, then the iterates Xm, m = 1, ... produced
by Algorithm 2 are all symmetric.
Proof : As −BT B and X0 are symmetric, the residual R0 = −BT B−AX0−
X0A

T and V1 = R0/ ‖ R0 ‖F are also symmetric. Then it is easy verified
by induction that V1, V2, ..., Vm, constructed by Algorithm 1 with operator S,
are all symmetric. Hence, as Xm = X0 + Vm ∗ ym, it follows that the iterates
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Xm, m = 1, ... produced by Algorithm 2 are all symmetric �.
By similar manner, we can obtained the global generalized minimal residual
method for solving matrix equations(5). Thus the global GMRES algorithm
for solving the Lyapunov matrix equations (1) can be written as follows [9].
Algorithm 3. Global Generalized Minimal Residual Method for
Solving (1).
1. Choose an initial approximate solution X0 and compute R0 = −BT B−SX0

and V1 = R0/ ‖ R0 ‖F .
2. For j = 1, ..., m apply Algorithm 1 to compute the F-orthonormal basis

V1, V2, ..., Vm of Km(S, R0) and the matrix H̃m.

3. Compute ym the minimizer of ‖‖ R0 ‖F e
(m+1)
1 − H̃my ‖2 .

4. Compute Xm = X0 + Vm ∗ ym.
It can be easily see that proposition 2 also satisfies for Algorithm 3. Also
the following proposition shows that, the convergence bound for the global
GMRES algorithm applied to (5) depends on the spectrum operator S
Proposition 3. The norm of the residual produced by Algorithm 3 at step
m, m = 1, 2, ... satisfy the following inequality:

‖ RG
m ‖F≤ Lε

2πε
‖ RG

0 ‖F min
p∈Pm,p(0)=1

(sup
λ∈Λε

| p(λ) |),

where ε is positive number, RG
m is the mth residual of the global GMRES

algorithm and Lε be the arc length of the boundary of following set

Λε(S) = {z ∈ IC :‖ (zI − S)−1 ‖≥ ε−1}.

Now, suppose that, the accute angle between two matrices C and D in space
IE is defined by

cos(C, D) =
< C, D >F

‖ C ‖F‖ D ‖F
.

Also, let θm be the accute angle between R0 and the matrix subspace SKm(S, R0),
and φm be the accute angle between R0 and QmR0, where QmR0, is the oblique
projection onto SKm(S, R0), along the F-orthogonal of Km(S, R0). Thus, we
can have [9]

‖ RG
m ‖F=

1 − cos2θm

tan2φm
‖ RF

m ‖F ,

where RF
m is the mth residual of the global FOM Algorithm 2.

3 SSOR and ADI Preconditiononig

In this section, we want to explain two type of preconditioners (which have
presented by M. Hochbruck and G. Starke [8]), for accelerating the rate of
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convergence of global FOM and GMRES algorithms for solving Lyapunov ma-
trix equations. The first preconditioner for Lyapunov matrix equations is well
known SSOR preconditioning of the corresponding system (2), and the second
preconditioner based on ADI spiliting of (1). By spiliting the matrix A accord-
ing to A = D − L − U into its diagonal, strictly lower triangular and strictly
upper triangular part, the corresponding decomposition of matrix

A = In ⊗ A + A ⊗ In

can be given by
A = D −L− U

where
D = In ⊗ D + D ⊗ In,

L = In ⊗ L + L ⊗ In,

and
U = In ⊗ U + U ⊗ In.

Thus, the SSOR preconditionerning matrix is given by

MSSOR =
1

ω(2 − ω)
(D − ωL)D−1(D − ωU).

As we know [8], during the evaluating the SSOR preconditioner we have to
solve the following two linear systems:

(D − ωL)y = x ⇔ (D − ωL)Y + Y (D − ωLT ) = X (10)

(D − ωU)y = x ⇔ (D − ωU)Y + Y (D − ωUT ) = X

Thus, for point SSOR preconditioner with ω ∈ IR we have the following theo-
rem.
Theorem2. If we start with symmetric matrix X0 ∈ IRn×n, then the global
FOM and GMRES algorithms for solving Lyapunov matrix equations, using
(point) SSOR preconditioning (10) with ω ∈ IR produced symmetric iterates
Xm.
Proof: The proof of this theorem is easy ( see [8]).
For the second type of the preconditioner, we will explain the construction of
effective preconditioners based on ADI spiliting of (1). As we know the rate
of convergence of ADI method, As introduced in in (4), is strongly based on
choosing appropriate parameter p. As we see in the proposition 3,the con-
vergence bound for the global GMRES method for solving Lyapunov matrix
equations involve the following quantity

min{ max
z∈Λε(S)

| p(λ) |: p ∈ Pm, p(0) = 1}. (11)
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With this, our goal to choose the preconditioner in such that a way that the
quantity (11) is minimized. M. Hochbruck and G. Starke choose the parameter
p in such way that the spectrum of preconditioned operator

S1 : IRn×n → IRn×n

S1 = −2p[A(A − pIn)−1X(A − pIn)−T + (A − pIn)−1X(A − pIn)−T AT ]

be in a small disk bound 1. From (3), the ADI iteration operator T1 is given
by

T1 : IRn×n → IRn×n

T1 = (A + pIn)(A − pIn)−1X(A + pIn)T (A − pIn)−T .

It is easy to see that T1 + S = I, where I denotes the identity operator on
IRn×n. They showed that finding an optimal ADI preconditioner in the sense
of (4), leads to ADI parameter problem of choosing p in such way that

max {| 1 − γ |: γ ∈ λ(S1)} = max
λ∈λ(A)

| λ + p

λ − p
|2,

is minimized. Also the similar approach to ADI preconditioning of higher
degree can be derived as following. Suppose that all parameter pi, i = 1, ..., r
in the polynomial qr(z) = (z−p1)...(z−pr) have positive real parts. In analogy
to T1, the corresponding ADI iteration Tr, defined by

Tr : IRn×n → IRn×n

TrX = qr(−A)[qr(A)]−1X[qr(A)]−T [qr(−A)]T ,

and also the preconditioned operator Sr is as follows:

Sr : IRn×n → IRn×n

SrX = X − qr(−A)[qr(A)]−1X[qr(A)]−T [qr(−A)]T .

M. Hochbruck and G. Starke showed that, obtaining appropriate parameters
p1, ..., pr in such way that the preconditioned operator Sr be as close as possible
to the identity operator, leads to solving the following parameter problem

min
qr∈Pr

max
λ∈λ(A)

| qr(−λ)

qr(λ)
|2 .

In this paper we only use ADI(1) and ADI(2) preconditioners. Since the
dimension of the matrix A is small compare to the complexity of the over-
all problem here, we may assume that the eigenvalues of of A or good ap-
proximations of them are known. Then, for small r, the above parameter
problem can be solved using minimization procedures. For r = 2, we have
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q2 = (z − p1)(z − p2) = z2 − r1z + r0. Then the corresponding parameters
problem for r = 1 is given by

min
p∈IR

max
λ∈λ(A)

| λ + p

λ − p
|,

and for r = 2 is given by

min
τ0,τ1∈IR

max
λ∈λ(A)

| λ2 + τ1λ + τ0

λ2 − τ1λ + τ0
| .

The following theorem states that, ADI preconditioning also has the desirable
property that starting with a symmetric matrix, the global FOM and GMRES
for solving Lyapunov matrix equations are all symmetric.
Theorem 3. Let the polynomial qr have real coefficients. Then, the starting
with symmetric matrix X0 ∈ IRn×n, the global FOM and GMRES for solving
Lyapunov matrix equations are all symmetric iterates Xm.
Proof:The proof of this theorem is easy ( see [8]).

4 Numerical Experiments

In this section, we present the performance of the Algorithm 2 and Algorithm
3 with ADI(r) and SSOR preconditioners. For all the examples, we have used
the stopping criterion

‖ Rk ‖F=‖ BBT + AXk + XkA
T ‖F≤ 10−7,

and the maximum number of iterations allowed, is set to 1000. For all the
experiments, the initial guess is X0 = 0n×n. The right-hand-side matrix −BT B
is chosen so that X = (xij) with xij = 1, 1 ≤ i, j ≤ n , solves equation (1).
We use the matrix A is as follows:

A = −tridiag(−1 +
p

n + 1
, 2,−1 +

p

n + 1
)

where n is the order of matrix A. The results obtained by the Algorithm 2 and
Algorithm3 are reported in Tables 1-2 with m = 3, p = 1 and different values
of n. Tables 1-2 show that the number of iterations and the CPU Times in
the preconditioned version of the global FOM (PGLF) and the global GMRES
(PGLG) algorithms is very smaller than those of the global FOM (GLF) and
the global GMRES (GLG) algorithms.
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Table 1.Number of iterations (and CPU Times, second) of the GL-FOM(m)

n \ GLF PGLF-ADI(1) PGLF-ADI(2) PGLF-SSOR

100 13(1.075) 6(0.37) 4(0.251) 6(0.312)
200 23(8.125) 6(3.41) 4(1.462) 6(2.325)
300 30(33.15) 6(10.2) 4(5.711) 6(7.186)
400 38(92.85) 6(20.4) 4(10.31) 6(15.53)
500 46(213.2) 6(36.5) 4(19.11) 6(29.41)
600 54(412.2) 6(47.5) 4(32.11) 6(49.38)
700 64(754.1) 6(72.5) 4(49.25) 6(76.62)
800 74(1300) 6(107) 4(55.11) 6(117.7)
900 83(2014) 6(151) 4(102.2) 6(159.5)
1000 92(3099) 6(208) 4(140.2) 6(223.5)

Table 2.Number of iterations (and CPU Times, second) of the
GL-GMRES(m)

n \ GLG PGLG-ADI(1) PGLG-ADI(2) PGLG-SSOR

100 13(0.7) 6(0.44) 4(0.314) 6(0.492)
200 22(8.2) 6(2.22) 4(1.505) 6(2.415)
300 † 6(6.81) 4(4.605) 6(7.186)
400 † 6(15.1) 4(10.85) 6(15.53)
500 † 6(27.8) 4(19.87) 6(29.41)
600 † 6(46.6) 4(31.92) 6(49.38)
700 † 6(84.1) 4(49.25) 6(79.62)
800 † 6(107) 4(72.15) 6(116.2)
900 † 6(150) 4(102.8) 6(160.1)
1000 † 6(206) 4(144.5) 6(218.5)

†=no solution has been obtained after 1000 iterations by GL-FOM(m).

5 Conclusion

We have proposed the preconditioned version of global Arnoldi algorithm for
solving Lyapunov matrix equations. Our preconditioning is based on the al-
ternating direction implicit (ADI) and SSOR methods. The numerical exper-
iments show that the solution of Lyapunov matrix equations can be obtained
with high accuracy applying the preconditioned version of Algorithms 2 and
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3. In addition, using the preconditioned version of Algorithms 2 and 3 reduce
the computer storage and arithmetic work required.
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