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Abstract

Let H denote the class of functions f which are harmonic and uni-
valent in the open unit disc D = {z: |z| < 1}. This paper defines and
investigates a family of complex-valued harmonic functions that are ori-
entation preserving and univalent in D and are related to the functions
starlike of complex order. The author obtain coefficient conditions,
growth result, extreme points, convolution and convex combinations.
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1 Introduction

A continuous complex-valued function f = u-+1iv defined in a simply connected
complex domain F is said to be harmonic in F if both u and v are real harmonic
in £/. There is a close inter-relation between analytic functions and harmonic
functions. For example, for real harmonic functions v and v there exist analytic

functions U and V so that u = Re (U) and v = I'm (V). Then

f(z) = h(z) +9(2)

where h and g are, respectively, the analytic functions (U+V)/2 and (U—-V")/2.
In this case, the Jacobian of f = h + g is given by

Jp =W (2)]* = g'(2)".

The mapping z — f(z) is orientation preserving and locally one-to-one in E
if and only if J; > 0 in E. The function f = h + g is said to be harmonic
univalent in E if the mapping z — f(z) is orientation preserving, harmonic
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and one-to-one in K. We call h the analytic part and g the co-analytic part of
f=h+7

Let 'H denote the class of functions f = h+g which are harmonic and univalent
in D the unit disc with the normalization

h(z)=z+ ianz”, g(z) = ibnz”. (1)

There have been rigorous works conducted on the class of complex harmonic
functions H. In [2], Sheil-Small and Clunie obtained properties for functions
in this class. Since then, there have been other subclasses of H that were
developed. These include the class of harmonic functions starlike in the unit
disc D (see Jahangiri [4]) and convex harmonic functions in D (see Kim et
al. [5]). Other related works also appear in [1], [3] and [8]. Silverman in [7]
formed the class H, a subclass of H which consists harmonic functions with
negative coefficients. The class H is defined below.

Let H be the subclass of H consisting of functions f = h + g so that the
functions h and g take the form

[e.o] oo

h(z) =z=)_lanlz", g(z) == [bal2". (2)

n=2 n=2

Another interesting class of functions is the class of functions starlike of or-
der b(b € C\{0}), first introduced by Nasr and Aouf in [6]. Wiatrowski [9]
introduced the class of functions which are convex of order b(b € C\{0}). The
authors, by combining defined the new class of functions as follows :

Definition 1.1 Let f € H. Then f € HS*(b,3) if and only if it satisfies

‘1 [Zﬂz) || <. (3)

b |2 f(2)

forb e C\{0},0 < B <1, 2/ = Gz =re?), f'(2) = 5(f(2) = f(re?)), 0 <
r<1land0<0<2nr,

Also, let HS™ (b, 3) = HS*(b, 5) N H.
In this paper, the author is motivated to determine properties of this new class

which include coefficients results, growth bounds, extreme points, convolution
properties and convex combinations.
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2 Results

The results begin with a necessary and sufficient condition for functions in

HS* (b, B).

Theorem 2.1 Let f = h+g with h and g of the form (2). Then f € HS (b, 3)
if and only if

fyn—w+mwma+§yn+n+ﬁMMASﬁm. (4)

Proof. Suppose that f € HS™(b, 3). Let w(z) be defined by

/ h! . /
RO B0 7 B
2 f(2) h(z) + g(z
Then from (3), we obtain the following inequality:
=30 5(n = 1)]ay|2" + X0 (n+ 1)|b,| 2"
w(z)| = n=a(7 n=2 < pBlb|, (z € D).
0 2) s I rwe e 3. (€ D)
Since |z| = 7(0 < r < 1) and f € HS™(b, 3), we obtain
© o(n—1D)]a,|r" '+ 32, (n + 1)|b,|r" !

1= 3005 fan|rm™t = 3208, |bn[rm

Now letting » — 17 through real values in (5), we then have

i(n—l\an]JrZ:anL ]b]<ﬂ]b|<1—2\an]—21b ]) (6)

Thus, (6)leads us to the desired assertion (4) of Theorem 2.1.

Conversely, by applying the hypothesis (4) and letting |z| = r(0 < r < 1), we
find from (3) that

(2 (2) = 29'(2)) = (h(Z) +9(2)| = BlbllR(z) + g(2)]

- ‘— n—1|an|z —|—Zn—|—1|b| ‘

n=2

—mbwz =3 foul = 3 bl 7

< Sn—1)+ 8] yan!+2 [(n 4 1) + BIo]] [bn] — Bl0]
n=2

=2

0, by(4). O

IN
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Hence, f € HS™ (b, 3) which completes the proof of Theorem 2.1.

The harmonic functions

f(Z):Z_iﬂxnzn_iﬂy z", (7)

= n—1+ 0|0 =n+ 1+ 607"

where >0°, |z, + >0, |yn] = 1, show that the coefficient bound given in
Theorem 2.1 is sharp.

The functions of the form (7) are in HS* (b, 5) since

© n—1+8b © 5+ 1+ 8lb 0 0
s L s O SN S ] = 1
n=2 ﬁ|b| n=2 ﬁ|b| n=2 n=2

The growth result for functions in HS™ (b, ) is discussed in the following the-
orem.

Theorem 2.2 If f € HS™ (b, 3) then

Blol - 5
< — 1
|f(z)|_7“+1+ﬁ|b|r, lz| =r <
and
Blbl 5

Proof. Let f € HS™(b,3). Taking the absolute value of f we have

T+ Z(|an| +1bnl) 7

1f(2)] <

n=2

< T+Z(|an|+|bn|) r?
n=2

D (L L, )

— o e )
plo] & <n—1+ﬂyb| n+1+ﬂyb|b )

S T am 2\ T e T
plol

< r+
= "y
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and

[e.9]

FI = = (lan| + [bal) 7"

a2\ T el T
gl

> _
SR

n=2

> =S (laal + [bal) 7
n=2

_ o1l (Hﬁ!bl L+pb, )
e TP G R

> 50| °°< n—1+ 5| n+1+6|b||b |>

Next, we determine the extreme points of closed hulls of ﬁS*(b, 3) denoted by
clcoHS™ (b, 3).

Theorem 2.3 f € clcoHS™ (b, 3) if and only if f(2) = S, (Xnhn + Yngn)

where

b
hi(z) = z, ha(2) = n—f‘ijmm 2" (n=2,3,.),
_ plol .
gn(2> =z — m z (77/ = 2,3, ),

L (Xn+Y,)=1 X,>0andY, >0.

Proof. For h, and g, as given above, we may write

o0

f(z) = Z(thn + Yngn)

n=1

< gyl CRTTY )
= Y (X4 Y-S — 0 x,on oS 0y e
,; P Dty ;RS Dras pry TR

e ] = 0] _
: ;n—1+ﬁ|b| i ;n+1+ﬁ|b|
fhen 014 8] 1+ A
o0 + X n+1+
it LVRE SUAS L
n=2 ﬁ| | n=2 5| |

_ °°n—1+ﬁ\bl< Ao )
2 Tae \noiaE

n=

< 041+ 8)p 3l
+§ 3]0 <n+1+ﬁ\b|Y">

n
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n=2 n=2
= 1-Xi—"
< 1

Therefore f € clcoHS™ (b, 3).

Conversely, suppose that f € clcoHS (b, 3). Set

n—1+ ||
X, =2 PP (n=2.3,4, ),
Sl )
. L+ 6o
n+1+
Y, =2 TP =2,3,4, ),
Sl )

where > (X, +Y,) = 1. Then
fz2) = Nz)+9(2)
= 2= |agl" — Z |b,,| Z
n=2 =2

S R . W

- n— 1+ 5]b] —n+1+p0b"
= 2+ 2 (h(2) — DX+ L (0nl) - AV,
= i(thn +Y,9,). O
n=1
For harmonic functions f(z) = z — Y00, |a,|2" — X020, |bu]Z ™ and F(z) =
2= 300 o |An|2" = 32, | Balz ™, we define the convolution of f and F as
(f*F)(2)=2— ilanAn]z"— ilann\Z". (8)

In the next theorem, we examine the convolution properties of the class WS*(b, B).

Theorem 2.4 For 0 < a < 3 < 1, let f € HS"(b,8) and F € HS™(b,a).
Then (f x F) € HS™ (b, 3) C HS™(b, ).

Proof. Write f(z) = 2—30%, |a,|2" =300 5 |bn|Z " and F(z) = 2—30% 5 | A, | 2" —
*° 5 |Brn|z ™. Then the convolution of f and F'is given by (8).

Note that |A,| < 1 and |B,| < 1 since F € HS™(b, ). Then we have

S [ — 1+ Blb[]|an| A, 1+Zn+1+ﬂ!bl]!b || Bnl

n=2 n=2
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< S —1+Bbllanl + Y [n+ 1+ 81b]]|bnl-
n=2

n=2

Therefore, (f x F) € HS"(b, 8) € HS"(b,a) since the right hand side of the
above inequality is bounded by [|b| while 5]b| < «/|b]. O

Now, we determine the convex combination properties of the members of

HS™ (b, ).
Theorem 2.5 The class HS (b, 3) is closed under convex combination.

Proof. For i =1,2,3, ..., suppose that f; € HS™(b, ) where f; is given by

o0 o0
filz) =2z— Z |ani|2" — Z |brilz "
n=2 n=2

For >, ¢; =1, 0 < ¢; <1, the convex combinations of f; may be written as

S ) = e S alanals - S el ers S cobinals” 5 bl ™
i=1 n=2 n=2 n=2 n=2
= chi — Z <Zci|an7¢|> Z" - Z (Zcz|bnz|> z"
i=1 n=2 \i=1 n=2 \i=1
= z- Z <Z ci|an,i|> 2" — Z (Z Ci|bn,i|> z".
n=2 \i=1 n=2 \i=1
Next, consider
(o] (o] (o] (o]
Z ([n — 1+ 6|b|] Zci‘an,i’ ) + Z <[n + 1+ (0] Zci‘bn,i’ )
n=2 i=1 n=2 i=1

= ¢ Z[n — 1+ 8)bl]lans] + .- + cm Z[n — 1+ Blb|]|anm| + ..

n=2 n=2
+ i[n + 14 BJb|)|bna] + -+ cm i[n + 1+ B1b]]|bnm| + -
n=2 n=2
= ic {i[n — 1+ Blb|]|an| + i[n +1+ B\b|]\bn,iy} :
Now, f; € HS™(b, ), therefore from Theorem 2.1, we have
> o= 1 BBl + 3+ 1+ G < B

Hence
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nea ([0 = 14 B} 3232y cilangl]) + 302, ([0 + 1+ BIb[] 252 cilbnl])
< Bl 322 ¢
= Blb].
By using Theorem 2.1 again, we have Y22, ¢; f; € WS*(b, B). O
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