Starlike Functions of Complex Order

Aini Janteng

School of Science and Technology Universiti Malaysia Sabah, Locked Bag No. 2073 88999 Kota Kinabalu, Sabah, Malaysia aini_jg@ums.edu.my

Abstract

Let \mathcal{H} denote the class of functions f which are harmonic and univalent in the open unit disc $D = \{z : |z| < 1\}$. This paper defines and investigates a family of complex-valued harmonic functions that are orientation preserving and univalent in \mathcal{D} and are related to the functions starlike of complex order. The author obtain coefficient conditions, growth result, extreme points, convolution and convex combinations.

Mathematics Subject Classification: 30C45

 $\mathbf{Keywords:}$ harmonic functions, starlike of complex order, coefficient estimates

1 Introduction

A continuous complex-valued function f = u + iv defined in a simply connected complex domain E is said to be harmonic in E if both u and v are real harmonic in E. There is a close inter-relation between analytic functions and harmonic functions. For example, for real harmonic functions u and v there exist analytic functions u and v that u = Re(u) and v = Im(v). Then

$$f(z) = h(z) + \overline{g(z)}$$

where h and g are, respectively, the analytic functions (U+V)/2 and (U-V)/2. In this case, the Jacobian of $f = h + \overline{g}$ is given by

$$J_f = |h'(z)|^2 - |g'(z)|^2.$$

The mapping $z \mapsto f(z)$ is orientation preserving and locally one-to-one in E if and only if $J_f > 0$ in E. The function $f = h + \overline{g}$ is said to be harmonic univalent in E if the mapping $z \mapsto f(z)$ is orientation preserving, harmonic

and one-to-one in E. We call h the analytic part and g the co-analytic part of $f = h + \overline{g}$.

Let \mathcal{H} denote the class of functions $f = h + \overline{g}$ which are harmonic and univalent in \mathcal{D} the unit disc with the normalization

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = \sum_{n=2}^{\infty} b_n z^n.$$
 (1)

There have been rigorous works conducted on the class of complex harmonic functions \mathcal{H} . In [2], Sheil-Small and Clunie obtained properties for functions in this class. Since then, there have been other subclasses of \mathcal{H} that were developed. These include the class of harmonic functions starlike in the unit disc \mathcal{D} (see Jahangiri [4]) and convex harmonic functions in \mathcal{D} (see Kim et al. [5]). Other related works also appear in [1], [3] and [8]. Silverman in [7] formed the class $\overline{\mathcal{H}}$, a subclass of \mathcal{H} which consists harmonic functions with negative coefficients. The class $\overline{\mathcal{H}}$ is defined below.

Let $\overline{\mathcal{H}}$ be the subclass of \mathcal{H} consisting of functions $f = h + \overline{g}$ so that the functions h and g take the form

$$h(z) = z - \sum_{n=2}^{\infty} |a_n| z^n, \quad g(z) = -\sum_{n=2}^{\infty} |b_n| z^n.$$
 (2)

Another interesting class of functions is the class of functions starlike of order $b(b \in \mathcal{C}\setminus\{0\})$, first introduced by Nasr and Aouf in [6]. Wiatrowski [9] introduced the class of functions which are convex of order $b(b \in \mathcal{C}\setminus\{0\})$. The authors, by combining defined the new class of functions as follows:

Definition 1.1 Let $f \in \mathcal{H}$. Then $f \in \mathcal{HS}^*(b,\beta)$ if and only if it satisfies

$$\left| \frac{1}{b} \left[\frac{zf'(z)}{z'f(z)} - 1 \right] \right| < \beta. \tag{3}$$

for $b \in \mathcal{C} \setminus \{0\}$, $0 < \beta \le 1$, $z' = \frac{\partial}{\partial \theta}(z = re^{i\theta})$, $f'(z) = \frac{\partial}{\partial \theta}(f(z) = f(re^{i\theta}))$, $0 \le r < 1$ and $0 \le \theta < 2\pi$,

Also, let $\overline{\mathcal{H}}\mathcal{S}^*(b,\beta) = \mathcal{H}\mathcal{S}^*(b,\beta) \cap \overline{\mathcal{H}}$.

In this paper, the author is motivated to determine properties of this new class which include coefficients results, growth bounds, extreme points, convolution properties and convex combinations.

2 Results

The results begin with a necessary and sufficient condition for functions in $\mathcal{HS}^{\star}(b,\beta)$.

Theorem 2.1 Let $f = h + \overline{g}$ with h and g of the form (2). Then $f \in \overline{\mathcal{H}}\mathcal{S}^*(b,\beta)$ if and only if

$$\sum_{n=2}^{\infty} [(n-1) + \beta|b|]|a_n| + \sum_{n=2}^{\infty} [(n+1) + \beta|b|]|b_n| \le \beta|b|.$$
 (4)

Proof. Suppose that $f \in \overline{\mathcal{H}}\mathcal{S}^*(b,\beta)$. Let w(z) be defined by

$$w(z) = \frac{zf'(z)}{z'f(z)} - 1 = \frac{zh'(z) - \overline{zg'(z)}}{h(z) + \overline{g(z)}} - 1.$$

Then from (3), we obtain the following inequality:

$$|w(z)| = \left| \frac{-\sum_{n=2}^{\infty} (n-1)|a_n|z^n + \sum_{n=2}^{\infty} (n+1)|b_n|\bar{z}^n|}{z - \sum_{n=2}^{\infty} |a_n|z^n - \sum_{n=2}^{\infty} |b_n|\bar{z}^n} \right| < \beta|b|, \quad (z \in \mathcal{D}).$$

Since $|z| = r(0 \le r < 1)$ and $f \in \overline{\mathcal{H}}\mathcal{S}^*(b,\beta)$, we obtain

$$\frac{\sum_{n=2}^{\infty} (n-1)|a_n|r^{n-1} + \sum_{n=2}^{\infty} (n+1)|b_n|r^{n-1}}{1 - \sum_{n=2}^{\infty} |a_n|r^{n-1} - \sum_{n=2}^{\infty} |b_n|r^{n-1}} < \beta|b|.$$
 (5)

Now letting $r \to 1^-$ through real values in (5), we then have

$$\sum_{n=2}^{\infty} (n-1)|a_n| + \sum_{n=2}^{\infty} (n+1)|b_n| \le \beta|b| \left(1 - \sum_{n=2}^{\infty} |a_n| - \sum_{n=2}^{\infty} |b_n|\right).$$
 (6)

Thus, (6) leads us to the desired assertion (4) of Theorem 2.1.

Conversely, by applying the hypothesis (4) and letting $|z|=r(0\leq r<1)$, we find from (3) that

$$|(zh'(z) - \overline{zg'(z)}) - (h(z) + \overline{g(z)})| - \beta|b||h(z) + \overline{g(z)}|$$

$$= \left| -\sum_{n=2}^{\infty} (n-1) |a_n| z^n + \sum_{n=2}^{\infty} (n+1) |b_n| \overline{z}^n \right|$$

$$-\beta|b| \left| z - \sum_{n=2}^{\infty} |a_n| z^n - \sum_{n=2}^{\infty} |b_n| \overline{z}^n \right|$$

$$< \sum_{n=2}^{\infty} [(n-1) + \beta|b|] |a_n| + \sum_{n=2}^{\infty} [(n+1) + \beta|b|] |b_n| - \beta|b|$$

$$\leq 0, by (4). \square$$

Hence, $f \in \overline{\mathcal{H}}\mathcal{S}^{\star}(b,\beta)$ which completes the proof of Theorem 2.1.

The harmonic functions

$$f(z) = z - \sum_{n=2}^{\infty} \frac{\beta|b|}{n-1+\beta|b|} x_n z^n - \sum_{n=2}^{\infty} \frac{\beta|b|}{n+1+\beta|b|} \overline{y}_n \overline{z}^n,$$
 (7)

where $\sum_{n=2}^{\infty} |x_n| + \sum_{n=2}^{\infty} |y_n| = 1$, show that the coefficient bound given in Theorem 2.1 is sharp.

The functions of the form (7) are in $\mathcal{HS}^*(b,\beta)$ since

$$\sum_{n=2}^{\infty} \frac{n-1+\beta|b|}{\beta|b|} |a_n| + \sum_{n=2}^{\infty} \frac{n+1+\beta|b|}{\beta|b|} |b_n| = \sum_{n=2}^{\infty} |x_n| + \sum_{n=2}^{\infty} |y_n| = 1.$$

The growth result for functions in $\overline{\mathcal{H}}\mathcal{S}^{\star}(b,\beta)$ is discussed in the following theorem.

Theorem 2.2 If $f \in \overline{\mathcal{H}}\mathcal{S}^*(b,\beta)$ then

$$|f(z)| \le r + \frac{\beta|b|}{1+\beta|b|}r^2, \quad |z| = r < 1$$

and

$$|f(z)| \ge r - \frac{\beta|b|}{1 + \beta|b|}r^2, \quad |z| = r < 1.$$

Proof. Let $f \in \overline{\mathcal{H}}\mathcal{S}^*(b,\beta)$. Taking the absolute value of f we have

$$|f(z)| \leq r + \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^n$$

$$\leq r + \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^2$$

$$= r + \frac{\beta|b|}{1 + \beta|b|} \sum_{n=2}^{\infty} \left(\frac{1 + \beta|b|}{\beta|b|} |a_n| + \frac{1 + \beta|b|}{\beta|b|} |b_n| \right) r^2$$

$$\leq r + \frac{\beta|b|}{1 + \beta|b|} \sum_{n=2}^{\infty} \left(\frac{n - 1 + \beta|b|}{\beta|b|} |a_n| + \frac{n + 1 + \beta|b|}{\beta|b|} |b_n| \right) r^2$$

$$\leq r + \frac{\beta|b|}{1 + \beta|b|} r^2$$

and

$$|f(z)| \geq r - \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^n$$

$$\geq r - \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^2$$

$$= r - \frac{\beta|b|}{1 + \beta|b|} \sum_{n=2}^{\infty} \left(\frac{1 + \beta|b|}{\beta|b|} |a_n| + \frac{1 + \beta|b|}{\beta|b|} |b_n| \right) r^2$$

$$\geq r - \frac{\beta|b|}{1 + \beta|b|} \sum_{n=2}^{\infty} \left(\frac{n - 1 + \beta|b|}{\beta|b|} |a_n| + \frac{n + 1 + \beta|b|}{\beta|b|} |b_n| \right) r^2$$

$$\geq r - \frac{\beta|b|}{1 + \beta|b|} r^2. \quad \Box$$

Next, we determine the extreme points of closed hulls of $\overline{\mathcal{H}}\mathcal{S}^{\star}(b,\beta)$ denoted by $cloo\overline{\mathcal{H}}\mathcal{S}^{\star}(b,\beta)$.

Theorem 2.3 $f \in clco\overline{\mathcal{H}}\mathcal{S}^{\star}(b,\beta)$ if and only if $f(z) = \sum_{n=1}^{\infty} (X_n h_n + Y_n g_n)$ where

$$h_1(z) = z, \ h_n(z) = z - \frac{\beta|b|}{n-1+\beta|b|} z^n \ (n = 2, 3, ...),$$

$$g_n(z) = z - \frac{\beta|b|}{n+1+\beta|b|} \bar{z}^n \ (n = 2, 3, ...),$$

$$\sum_{n=1}^{\infty} (X_n + Y_n) = 1, \ X_n \ge 0 \ and \ Y_n \ge 0.$$

Proof. For h_n and g_n as given above, we may write

$$f(z) = \sum_{n=1}^{\infty} (X_n h_n + Y_n g_n)$$

$$= \sum_{n=1}^{\infty} (X_n + Y_n) z - \sum_{n=2}^{\infty} \frac{\beta |b|}{n - 1 + \beta |b|} X_n z^n - \sum_{n=2}^{\infty} \frac{\beta |b|}{n + 1 + \beta |b|} Y_n \bar{z}^n$$

$$= z - \sum_{n=2}^{\infty} \frac{\beta |b|}{n - 1 + \beta |b|} X_n z^n - \sum_{n=2}^{\infty} \frac{\beta |b|}{n + 1 + \beta |b|} Y_n \bar{z}^n.$$

Then

$$\sum_{n=2}^{\infty} \frac{n-1+\beta|b|}{\beta|b|} |a_n| + \sum_{n=2}^{\infty} \frac{n+1+\beta|b|}{\beta|b|} |b_n|$$

$$= \sum_{n=2}^{\infty} \frac{n-1+\beta|b|}{\beta|b|} \left(\frac{\beta|b|}{n-1+\beta|b|} X_n \right)$$

$$+ \sum_{n=2}^{\infty} \frac{n+1+\beta|b|}{\beta|b|} \left(\frac{\beta|b|}{n+1+\beta|b|} Y_n \right)$$

$$= \sum_{n=2}^{\infty} X_n + \sum_{n=2}^{\infty} Y_n$$
$$= 1 - X_1 - Y_1$$
$$\leq 1.$$

Therefore $f \in clco\overline{\mathcal{H}}\mathcal{S}^*(b,\beta)$.

Conversely, suppose that $f \in cloo \overline{\mathcal{H}} \mathcal{S}^*(b, \beta)$. Set

$$X_n = \frac{n-1+\beta|b|}{\beta|b|}|a_n|, (n=2,3,4,...),$$

and

$$Y_n = \frac{n+1+\beta|b|}{\beta|b|}|b_n|, (n=2,3,4,...),$$

where $\sum_{n=1}^{\infty} (X_n + Y_n) = 1$. Then

$$f(z) = h(z) + \overline{g(z)}$$

$$= z - \sum_{n=2}^{\infty} |a_n| z^n - \sum_{n=2}^{\infty} |b_n| \overline{z}^n$$

$$= z - \sum_{n=2}^{\infty} \frac{\beta |b|}{n - 1 + \beta |b|} X_n z^n - \sum_{n=2}^{\infty} \frac{\beta |b|}{n + 1 + \beta |b|} Y_n \overline{z}^n$$

$$= z + \sum_{n=2}^{\infty} (h_n(z) - z) X_n + \sum_{n=2}^{\infty} (g_n(z) - z) Y_n$$

$$= \sum_{n=1}^{\infty} (X_n h_n + Y_n g_n). \quad \Box$$

For harmonic functions $f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n - \sum_{n=2}^{\infty} |b_n| \bar{z}^n$ and $F(z) = z - \sum_{n=2}^{\infty} |A_n| z^n - \sum_{n=2}^{\infty} |B_n| \bar{z}^n$, we define the convolution of f and F as

$$(f \star F)(z) = z - \sum_{n=2}^{\infty} |a_n A_n| z^n - \sum_{n=2}^{\infty} |b_n B_n| \bar{z}^n.$$
 (8)

In the next theorem, we examine the convolution properties of the class $\overline{\mathcal{H}}\mathcal{S}^{\star}(b,\beta)$.

Theorem 2.4 For $0 < \alpha \leq \beta \leq 1$, let $f \in \overline{\mathcal{H}}\mathcal{S}^{\star}(b,\beta)$ and $F \in \overline{\mathcal{H}}\mathcal{S}^{\star}(b,\alpha)$. Then $(f \star F) \in \overline{\mathcal{H}}\mathcal{S}^{\star}(b,\beta) \subset \overline{\mathcal{H}}\mathcal{S}^{\star}(b,\alpha)$.

Proof. Write $f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n - \sum_{n=2}^{\infty} |b_n| \bar{z}^n$ and $F(z) = z - \sum_{n=2}^{\infty} |A_n| z^n - \sum_{n=2}^{\infty} |B_n| \bar{z}^n$. Then the convolution of f and F is given by (8).

Note that $|A_n| \leq 1$ and $|B_n| \leq 1$ since $F \in \overline{\mathcal{H}}\mathcal{S}^*(b,\alpha)$. Then we have

$$\sum_{n=2}^{\infty} [n-1+\beta|b|]|a_n||A_n| + \sum_{n=2}^{\infty} [n+1+\beta|b|]|b_n||B_n|$$

$$\leq \sum_{n=2}^{\infty} [n-1+\beta|b|]|a_n| + \sum_{n=2}^{\infty} [n+1+\beta|b|]|b_n|.$$

Therefore, $(f \star F) \in \overline{\mathcal{H}}\mathcal{S}^{\star}(b,\beta) \subset \overline{\mathcal{H}}\mathcal{S}^{\star}(b,\alpha)$ since the right hand side of the above inequality is bounded by $\beta|b|$ while $\beta|b| \leq \alpha|b|$.

Now, we determine the convex combination properties of the members of $\overline{\mathcal{H}}\mathcal{S}^{\star}(b,\beta)$.

Theorem 2.5 The class $\overline{\mathcal{H}}\mathcal{S}^*(b,\beta)$ is closed under convex combination.

Proof. For i = 1, 2, 3, ..., suppose that $f_i \in \overline{\mathcal{H}}\mathcal{S}^*(b, \beta)$ where f_i is given by

$$f_i(z) = z - \sum_{n=2}^{\infty} |a_{n,i}| z^n - \sum_{n=2}^{\infty} |b_{n,i}| \bar{z}^n.$$

For $\sum_{i=1}^{\infty} c_i = 1$, $0 \le c_i \le 1$, the convex combinations of f_i may be written as

$$\begin{split} \sum_{i=1}^{\infty} c_i f_i(z) &= c_1 z - \sum_{n=2}^{\infty} c_1 |a_{n,1}| z^n - \sum_{n=2}^{\infty} c_1 |b_{n,1}| \bar{z}^{\ n} - c_2 z - \sum_{n=2}^{\infty} c_2 |a_{n,2}| z^n - \sum_{n=2}^{\infty} c_2 |b_{n,2}| \bar{z}^{\ n} \dots \\ &= z \sum_{i=1}^{\infty} c_i - \sum_{n=2}^{\infty} \left(\sum_{i=1}^{\infty} c_i |a_{n,i}| \right) z^n - \sum_{n=2}^{\infty} \left(\sum_{i=1}^{\infty} c_i |b_{n,i}| \right) \bar{z}^{\ n} \\ &= z - \sum_{n=2}^{\infty} \left(\sum_{i=1}^{\infty} c_i |a_{n,i}| \right) z^n - \sum_{n=2}^{\infty} \left(\sum_{i=1}^{\infty} c_i |b_{n,i}| \right) \bar{z}^{\ n}. \end{split}$$

Next, consider

$$\begin{split} &\sum_{n=2}^{\infty} \left([n-1+\beta|b|] \left| \sum_{i=1}^{\infty} c_i |a_{n,i}| \right| \right) + \sum_{n=2}^{\infty} \left([n+1+\beta|b|] \left| \sum_{i=1}^{\infty} c_i |b_{n,i}| \right| \right) \\ &= c_1 \sum_{n=2}^{\infty} [n-1+\beta|b|] |a_{n,1}| + \ldots + c_m \sum_{n=2}^{\infty} [n-1+\beta|b|] |a_{n,m}| + \ldots \\ &+ c_1 \sum_{n=2}^{\infty} [n+1+\beta|b|] |b_{n,1}| + \ldots + c_m \sum_{n=2}^{\infty} [n+1+\beta|b|] |b_{n,m}| + \ldots \\ &= \sum_{i=1}^{\infty} c_i \left\{ \sum_{n=2}^{\infty} [n-1+\beta|b|] |a_{n,i}| + \sum_{n=2}^{\infty} [n+1+\beta|b|] |b_{n,i}| \right\}. \end{split}$$

Now, $f_i \in \overline{\mathcal{H}}\mathcal{S}^*(b,\beta)$, therefore from Theorem 2.1, we have

$$\sum_{n=2}^{\infty} [n-1+\beta|b|]|a_{n,i}| + \sum_{n=2}^{\infty} [n+1+\beta|b|]|b_{n,i}| \le \beta|b|.$$

Hence

$$\sum_{n=2}^{\infty} ([n-1+\beta|b|] |\sum_{i=1}^{\infty} c_i |a_{n,i}||) + \sum_{n=2}^{\infty} ([n+1+\beta|b|] |\sum_{i=1}^{\infty} c_i |b_{n,i}||)$$

$$\leq \beta|b| \sum_{i=1}^{\infty} c_i$$

$$= \beta|b|.$$

By using Theorem 2.1 again, we have $\sum_{i=1}^{\infty} c_i f_i \in \overline{\mathcal{H}} \mathcal{S}^*(b,\beta)$.

Acknowledgement

The author is partially supported by FRG0118-ST-1/2007 Grant, Malaysia.

References

- [1] Ahuja, O.P. and Jahangiri, J.M. (2001). A subclass of harmonic univalent functions. *J. of Natural Geometry*, **20**. 45-56
- [2] Clunie, J. and Sheil Small, T. (1984). Harmonic univalent functions. Ann. Acad. Aci. Fenn. Ser. A. I. Math., 9. 3-25
- [3] Jahangiri, J.M. (1998). Coefficient bounds and univalence criteria for harmonic functions with negative coefficients. *Ann. Univ. Marie Curie.* Sklodowska. Sec. A, **52**. 57-66
- [4] Jahangiri, J.M. (1999). Harmonic functions starlike in the unit disk. J. Math. Anal. Appl., 235. 470-477
- [5] Kim, Y.C., Jahangiri, J.M. and Choi, J.H. (2002). Certain convex harmonic functions. Int. J. Math. Math. Sci., 29(8). 459-465
- [6] Nasr, M.A. and Aouf, M.K. (1985). Starlike functions of complex order. J. Natural Sci. Math., 25. 1-12
- [7] Silverman, H. (1998). Harmonic univalent functions with negative coefficients. J. Math. Anal. Appl., 220. 283-289
- [8] Silverman, H. and Silvia, E.M. (1999). Subclasses of harmonic univalent functions. New Zeal. J. Math., 28. 275-284
- [9] Wiatrowski, P. (1971). The coefficients of a certain family of holomorphic functions. Zeszyty Nauk. Univ. Lódz Nauk. Math. Przyrod Ser. II, 39. 75-85

Received: July, 2008