Applied Mathematical Sciences, Vol. 3, 2009, no. 12, 557-564

Starlike Functions of Complex Order

Aini Janteng
School of Science and Technology
Universiti Malaysia Sabah, Locked Bag No. 2073
88999 Kota Kinabalu, Sabah, Malaysia
aini_jg@ums.edu.my

Abstract

Let \mathcal{H} denote the class of functions f which are harmonic and univalent in the open unit disc $D=\{z:|z|<1\}$. This paper defines and investigates a family of complex-valued harmonic functions that are orientation preserving and univalent in \mathcal{D} and are related to the functions starlike of complex order. The author obtain coefficient conditions, growth result, extreme points, convolution and convex combinations.

Mathematics Subject Classification: 30C45

Keywords: harmonic functions, starlike of complex order, coefficient estimates

1 Introduction

A continuous complex-valued function $f=u+i v$ defined in a simply connected complex domain E is said to be harmonic in E if both u and v are real harmonic in E. There is a close inter-relation between analytic functions and harmonic functions. For example, for real harmonic functions u and v there exist analytic functions U and V so that $u=\operatorname{Re}(U)$ and $v=\operatorname{Im}(V)$. Then

$$
f(z)=h(z)+\overline{g(z)}
$$

where h and g are, respectively, the analytic functions $(U+V) / 2$ and $(U-V) / 2$. In this case, the Jacobian of $f=h+\bar{g}$ is given by

$$
J_{f}=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}
$$

The mapping $z \mapsto f(z)$ is orientation preserving and locally one-to-one in E if and only if $J_{f}>0$ in E. The function $f=h+\bar{g}$ is said to be harmonic univalent in E if the mapping $z \mapsto f(z)$ is orientation preserving, harmonic
and one-to-one in E. We call h the analytic part and g the co-analytic part of $f=h+\bar{g}$.

Let \mathcal{H} denote the class of functions $f=h+\bar{g}$ which are harmonic and univalent in \mathcal{D} the unit disc with the normalization

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad g(z)=\sum_{n=2}^{\infty} b_{n} z^{n} . \tag{1}
\end{equation*}
$$

There have been rigorous works conducted on the class of complex harmonic functions \mathcal{H}. In [2], Sheil-Small and Clunie obtained properties for functions in this class. Since then, there have been other subclasses of \mathcal{H} that were developed. These include the class of harmonic functions starlike in the unit disc \mathcal{D} (see Jahangiri [4]) and convex harmonic functions in \mathcal{D} (see Kim et al. [5]). Other related works also appear in [1], [3] and [8]. Silverman in [7] formed the class $\overline{\mathcal{H}}$, a subclass of \mathcal{H} which consists harmonic functions with negative coefficients. The class $\overline{\mathcal{H}}$ is defined below.

Let $\overline{\mathcal{H}}$ be the subclass of \mathcal{H} consisting of functions $f=h+\bar{g}$ so that the functions h and g take the form

$$
\begin{equation*}
h(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}, \quad g(z)=-\sum_{n=2}^{\infty}\left|b_{n}\right| z^{n} . \tag{2}
\end{equation*}
$$

Another interesting class of functions is the class of functions starlike of order $b(b \in \mathcal{C} \backslash\{0\})$, first introduced by Nasr and Aouf in [6]. Wiatrowski [9] introduced the class of functions which are convex of order $b(b \in \mathcal{C} \backslash\{0\})$. The authors, by combining defined the new class of functions as follows :

Definition 1.1 Let $f \in \mathcal{H}$. Then $f \in \mathcal{H S}^{\star}(b, \beta)$ if and only if it satisfies

$$
\begin{equation*}
\left|\frac{1}{b}\left[\frac{z f^{\prime}(z)}{z^{\prime} f(z)}-1\right]\right|<\beta \tag{3}
\end{equation*}
$$

for $b \in \mathcal{C} \backslash\{0\}, 0<\beta \leq 1, z^{\prime}=\frac{\partial}{\partial \theta}\left(z=r e^{i \theta}\right), f^{\prime}(z)=\frac{\partial}{\partial \theta}\left(f(z)=f\left(r e^{i \theta}\right)\right), 0 \leq$ $r<1$ and $0 \leq \theta<2 \pi$,

Also, let $\overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)=\mathcal{H S}^{\star}(b, \beta) \cap \bar{H}$.
In this paper, the author is motivated to determine properties of this new class which include coefficients results, growth bounds, extreme points, convolution properties and convex combinations.

2 Results

The results begin with a necessary and sufficient condition for functions in $\mathcal{H} \mathcal{S}^{\star}(b, \beta)$.
Theorem 2.1 Let $f=h+\bar{g}$ with h and g of the form (2). Then $f \in \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[(n-1)+\beta|b|]\left|a_{n}\right|+\sum_{n=2}^{\infty}[(n+1)+\beta|b|]\left|b_{n}\right| \leq \beta|b| . \tag{4}
\end{equation*}
$$

Proof. Suppose that $f \in \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$. Let $w(z)$ be defined by

$$
w(z)=\frac{z f^{\prime}(z)}{z^{\prime} f(z)}-1=\frac{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}{h(z)+\overline{g(z)}}-1 .
$$

Then from (3), we obtain the following inequality:

$$
|w(z)|=\left|\frac{-\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right| z^{n}+\sum_{n=2}^{\infty}(n+1)\left|b_{n}\right| \bar{z}^{n}}{z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}-\sum_{n=2}^{\infty}\left|b_{n}\right| \bar{z}^{n}}\right|<\beta|b|, \quad(z \in \mathcal{D})
$$

Since $|z|=r(0 \leq r<1)$ and $f \in \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$, we obtain

$$
\begin{equation*}
\frac{\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right| r^{n-1}+\sum_{n=2}^{\infty}(n+1)\left|b_{n}\right| r^{n-1}}{1-\sum_{n=2}^{\infty}\left|a_{n}\right| r^{n-1}-\sum_{n=2}^{\infty}\left|b_{n}\right| r^{n-1}}<\beta|b| . \tag{5}
\end{equation*}
$$

Now letting $r \rightarrow 1^{-}$through real values in (5), we then have

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right|+\sum_{n=2}^{\infty}(n+1)\left|b_{n}\right| \leq \beta|b|\left(1-\sum_{n=2}^{\infty}\left|a_{n}\right|-\sum_{n=2}^{\infty}\left|b_{n}\right|\right) \tag{6}
\end{equation*}
$$

Thus, (6)leads us to the desired assertion (4) of Theorem 2.1.
Conversely, by applying the hypothesis (4) and letting $|z|=r(0 \leq r<1)$, we find from (3) that

$$
\begin{aligned}
&\left|\left(z h^{\prime}(z)-\overline{z g^{\prime}(z)}\right)-(h(z)+\overline{g(z)})\right|-\beta|b||h(z)+\overline{g(z)}| \\
&=\left|-\sum_{n=2}^{\infty}(n-1)\right| a_{n}\left|z^{n}+\sum_{n=2}^{\infty}(n+1)\right| b_{n}\left|\bar{z}^{n}\right| \\
&-\beta|b|\left|z-\sum_{n=2}^{\infty}\right| a_{n}\left|z^{n}-\sum_{n=2}^{\infty}\right| b_{n}\left|\bar{z}^{n}\right| \\
&< \sum_{n=2}^{\infty}[(n-1)+\beta|b|]\left|a_{n}\right|+\sum_{n=2}^{\infty}[(n+1)+\beta|b|]\left|b_{n}\right|-\beta|b| \\
& \leq 0, \quad b y \text { (4). } \square
\end{aligned}
$$

Hence, $f \in \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$ which completes the proof of Theorem 2.1.
The harmonic functions

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} \frac{\beta|b|}{n-1+\beta|b|} x_{n} z^{n}-\sum_{n=2}^{\infty} \frac{\beta|b|}{n+1+\beta|b|} \bar{y}_{n} \bar{z}^{n}, \tag{7}
\end{equation*}
$$

where $\sum_{n=2}^{\infty}\left|x_{n}\right|+\sum_{n=2}^{\infty}\left|y_{n}\right|=1$, show that the coefficient bound given in Theorem 2.1 is sharp.

The functions of the form (7) are in $\mathcal{H S}^{*}(b, \beta)$ since

$$
\sum_{n=2}^{\infty} \frac{n-1+\beta|b|}{\beta|b|}\left|a_{n}\right|+\sum_{n=2}^{\infty} \frac{n+1+\beta|b|}{\beta|b|}\left|b_{n}\right|=\sum_{n=2}^{\infty}\left|x_{n}\right|+\sum_{n=2}^{\infty}\left|y_{n}\right|=1
$$

The growth result for functions in $\overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$ is discussed in the following theorem.

Theorem 2.2 If $f \in \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$ then

$$
|f(z)| \leq r+\frac{\beta|b|}{1+\beta|b|} r^{2}, \quad|z|=r<1
$$

and

$$
|f(z)| \geq r-\frac{\beta|b|}{1+\beta|b|} r^{2}, \quad|z|=r<1
$$

Proof. Let $f \in \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$. Taking the absolute value of f we have

$$
\begin{aligned}
|f(z)| & \leq r+\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) r^{n} \\
& \leq r+\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) r^{2} \\
& =r+\frac{\beta|b|}{1+\beta|b|} \sum_{n=2}^{\infty}\left(\frac{1+\beta|b|}{\beta|b|}\left|a_{n}\right|+\frac{1+\beta|b|}{\beta|b|}\left|b_{n}\right|\right) r^{2} \\
& \leq r+\frac{\beta|b|}{1+\beta|b|} \sum_{n=2}^{\infty}\left(\frac{n-1+\beta|b|}{\beta|b|}\left|a_{n}\right|+\frac{n+1+\beta|b|}{\beta|b|}\left|b_{n}\right|\right) r^{2} \\
& \leq r+\frac{\beta|b|}{1+\beta|b|} r^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
|f(z)| & \geq r-\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) r^{n} \\
& \geq r-\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) r^{2} \\
& =r-\frac{\beta|b|}{1+\beta|b|} \sum_{n=2}^{\infty}\left(\frac{1+\beta|b|}{\beta|b|}\left|a_{n}\right|+\frac{1+\beta|b|}{\beta|b|}\left|b_{n}\right|\right) r^{2} \\
& \geq r-\frac{\beta|b|}{1+\beta|b|} \sum_{n=2}^{\infty}\left(\frac{n-1+\beta|b|}{\beta|b|}\left|a_{n}\right|+\frac{n+1+\beta|b|}{\beta|b|}\left|b_{n}\right|\right) r^{2} \\
& \geq r-\frac{\beta|b|}{1+\beta|b|} r^{2} .
\end{aligned}
$$

Next, we determine the extreme points of closed hulls of $\overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$ denoted by clco $\overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$.

Theorem $2.3 f \in \operatorname{clco} \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$ if and only if $f(z)=\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right)$ where

$$
\begin{gathered}
h_{1}(z)=z, h_{n}(z)=z-\frac{\beta|b|}{n-1+\beta|b|} z^{n}(n=2,3, \ldots), \\
g_{n}(z)=z-\frac{\beta|b|}{n+1+\beta|b|} \bar{z}^{n}(n=2,3, \ldots), \\
\sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right)=1, X_{n} \geq 0 \text { and } Y_{n} \geq 0 .
\end{gathered}
$$

Proof. For h_{n} and g_{n} as given above, we may write

$$
\begin{aligned}
f(z) & =\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right) \\
& =\sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right) z-\sum_{n=2}^{\infty} \frac{\beta|b|}{n-1+\beta|b|} X_{n} z^{n}-\sum_{n=2}^{\infty} \frac{\beta|b|}{n+1+\beta|b|} Y_{n} \bar{z}^{n} \\
& =z-\sum_{n=2}^{\infty} \frac{\beta|b|}{n-1+\beta|b|} X_{n} z^{n}-\sum_{n=2}^{\infty} \frac{\beta|b|}{n+1+\beta|b|} Y_{n} \bar{z}^{n} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{n-1+\beta|b|}{\beta|b|}\left|a_{n}\right|+\sum_{n=2}^{\infty} \frac{n+1+\beta|b|}{\beta|b|}\left|b_{n}\right| \\
& =\sum_{n=2}^{\infty} \frac{n-1+\beta|b|}{\beta|b|}\left(\frac{\beta|b|}{n-1+\beta|b|} X_{n}\right) \\
& \quad+\sum_{n=2}^{\infty} \frac{n+1+\beta|b|}{\beta|b|}\left(\frac{\beta|b|}{n+1+\beta|b|} Y_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=2}^{\infty} X_{n}+\sum_{n=2}^{\infty} Y_{n} \\
& =1-X_{1}-Y_{1} \\
& \leq 1
\end{aligned}
$$

Therefore $f \in \operatorname{clco} \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$.
Conversely, suppose that $f \in \operatorname{clco} \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$. Set

$$
X_{n}=\frac{n-1+\beta|b|}{\beta|b|}\left|a_{n}\right|,(n=2,3,4, \ldots)
$$

and

$$
Y_{n}=\frac{n+1+\beta|b|}{\beta|b|}\left|b_{n}\right|,(n=2,3,4, \ldots)
$$

where $\sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right)=1$. Then

$$
\begin{aligned}
f(z) & =h(z)+\overline{g(z)} \\
& =z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}-\sum_{n=2}^{\infty}\left|b_{n}\right| \bar{z}^{n} \\
& =z-\sum_{n=2}^{\infty} \frac{\beta|b|}{n-1+\beta|b|} X_{n} z^{n}-\sum_{n=2}^{\infty} \frac{\beta|b|}{n+1+\beta|b|} Y_{n} \bar{z}^{n} \\
& =z+\sum_{n=2}^{\infty}\left(h_{n}(z)-z\right) X_{n}+\sum_{n=2}^{\infty}\left(g_{n}(z)-z\right) Y_{n} \\
& =\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right) .
\end{aligned}
$$

For harmonic functions $f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}-\sum_{n=2}^{\infty}\left|b_{n}\right| \bar{z}^{n}$ and $F(z)=$ $z-\sum_{n=2}^{\infty}\left|A_{n}\right| z^{n}-\sum_{n=2}^{\infty}\left|B_{n}\right| \bar{z}^{n}$, we define the convolution of f and F as

$$
\begin{equation*}
(f \star F)(z)=z-\sum_{n=2}^{\infty}\left|a_{n} A_{n}\right| z^{n}-\sum_{n=2}^{\infty}\left|b_{n} B_{n}\right| \bar{z}^{n} \tag{8}
\end{equation*}
$$

In the next theorem, we examine the convolution properties of the class $\overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$.
Theorem 2.4 For $0<\alpha \leq \beta \leq 1$, let $f \in \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$ and $F \in \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \alpha)$. Then $(f \star F) \in \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta) \subset \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \alpha)$.
Proof. Write $f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}-\sum_{n=2}^{\infty}\left|b_{n}\right| \bar{z}^{n}$ and $F(z)=z-\sum_{n=2}^{\infty}\left|A_{n}\right| z^{n}-$ $\sum_{n=2}^{\infty}\left|B_{n}\right| \bar{z}^{n}$. Then the convolution of f and F is given by (8).

Note that $\left|A_{n}\right| \leq 1$ and $\left|B_{n}\right| \leq 1$ since $F \in \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \alpha)$. Then we have

$$
\sum_{n=2}^{\infty}[n-1+\beta|b|]\left|a_{n}\right|\left|A_{n}\right|+\sum_{n=2}^{\infty}[n+1+\beta|b|]\left|b_{n}\right|\left|B_{n}\right|
$$

$$
\leq \sum_{n=2}^{\infty}[n-1+\beta|b|]\left|a_{n}\right|+\sum_{n=2}^{\infty}[n+1+\beta|b|]\left|b_{n}\right| .
$$

Therefore, $(f \star F) \in \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta) \subset \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \alpha)$ since the right hand side of the above inequality is bounded by $\beta|b|$ while $\beta|b| \leq \alpha|b|$.

Now, we determine the convex combination properties of the members of $\overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$.

Theorem 2.5 The class $\overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$ is closed under convex combination.
Proof. For $i=1,2,3, \ldots$, suppose that $f_{i} \in \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$ where f_{i} is given by

$$
f_{i}(z)=z-\sum_{n=2}^{\infty}\left|a_{n, i}\right| z^{n}-\sum_{n=2}^{\infty}\left|b_{n, i}\right| \bar{z}^{n} .
$$

For $\sum_{i=1}^{\infty} c_{i}=1,0 \leq c_{i} \leq 1$, the convex combinations of f_{i} may be written as

$$
\begin{aligned}
\sum_{i=1}^{\infty} c_{i} f_{i}(z) & =c_{1} z-\sum_{n=2}^{\infty} c_{1}\left|a_{n, 1}\right| z^{n}-\sum_{n=2}^{\infty} c_{1}\left|b_{n, 1}\right| \bar{z}^{n}-c_{2} z-\sum_{n=2}^{\infty} c_{2}\left|a_{n, 2}\right| z^{n}-\sum_{n=2}^{\infty} c_{2}\left|b_{n, 2}\right| \bar{z}^{n} \ldots \\
& =z \sum_{i=1}^{\infty} c_{i}-\sum_{n=2}^{\infty}\left(\sum_{i=1}^{\infty} c_{i}\left|a_{n, i}\right|\right) z^{n}-\sum_{n=2}^{\infty}\left(\sum_{i=1}^{\infty} c_{i}\left|b_{n, i}\right|\right) \bar{z}^{n} \\
& =z-\sum_{n=2}^{\infty}\left(\sum_{i=1}^{\infty} c_{i}\left|a_{n, i}\right|\right) z^{n}-\sum_{n=2}^{\infty}\left(\sum_{i=1}^{\infty} c_{i}\left|b_{n, i}\right|\right) \bar{z}^{n}
\end{aligned}
$$

Next, consider

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left([n-1+\beta|b|]\left|\sum_{i=1}^{\infty} c_{i}\right| a_{n, i}| |\right)+\sum_{n=2}^{\infty}\left([n+1+\beta|b|]\left|\sum_{i=1}^{\infty} c_{i}\right| b_{n, i}| |\right) \\
& =c_{1} \sum_{n=2}^{\infty}[n-1+\beta|b|]\left|a_{n, 1}\right|+\ldots+c_{m} \sum_{n=2}^{\infty}[n-1+\beta|b|]\left|a_{n, m}\right|+\ldots \\
& \quad+c_{1} \sum_{n=2}^{\infty}[n+1+\beta|b|]\left|b_{n, 1}\right|+\ldots+c_{m} \sum_{n=2}^{\infty}[n+1+\beta|b|]\left|b_{n, m}\right|+\ldots \\
& = \\
& \sum_{i=1}^{\infty} c_{i}\left\{\sum_{n=2}^{\infty}[n-1+\beta|b|]\left|a_{n, i}\right|+\sum_{n=2}^{\infty}[n+1+\beta|b|]\left|b_{n, i}\right|\right\}
\end{aligned}
$$

Now, $f_{i} \in \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$, therefore from Theorem 2.1, we have

$$
\sum_{n=2}^{\infty}[n-1+\beta|b|]\left|a_{n, i}\right|+\sum_{n=2}^{\infty}[n+1+\beta|b|]\left|b_{n, i}\right| \leq \beta|b|
$$

Hence

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left([n-1+\beta|b|]\left|\sum_{i=1}^{\infty} c_{i}\right| a_{n, i}| |\right)+\sum_{n=2}^{\infty}\left([n+1+\beta|b|]\left|\sum_{i=1}^{\infty} c_{i}\right| b_{n, i}| |\right) \\
& \leq \beta|b| \sum_{i=1}^{\infty} c_{i} \\
& =\beta|b|
\end{aligned}
$$

By using Theorem 2.1 again, we have $\sum_{i=1}^{\infty} c_{i} f_{i} \in \overline{\mathcal{H}} \mathcal{S}^{\star}(b, \beta)$.
Acknowledgement
The author is partially supported by FRG0118-ST-1/2007 Grant, Malaysia.

References

[1] Ahuja, O.P. and Jahangiri, J.M. (2001). A subclass of harmonic univalent functions. J. of Natural Geometry, 20. 45-56
[2] Clunie, J. and Sheil Small, T. (1984). Harmonic univalent functions. Ann. Acad. Aci. Fenn. Ser. A. I. Math., 9. 3-25
[3] Jahangiri, J.M. (1998). Coefficient bounds and univalence criteria for harmonic functions with negative coefficients. Ann. Univ. Marie Curie. Sklodowska. Sec. A, 52. 57-66
[4] Jahangiri, J.M. (1999). Harmonic functions starlike in the unit disk. J. Math. Anal. Appl., 235. 470-477
[5] Kim, Y.C., Jahangiri, J.M. and Choi, J.H. (2002). Certain convex harmonic functions. Int. J. Math. Math. Sci., 29(8). 459-465
[6] Nasr, M.A. and Aouf, M.K. (1985). Starlike functions of complex order. J. Natural Sci. Math., 25. 1-12
[7] Silverman, H. (1998). Harmonic univalent functions with negative coefficients. J. Math. Anal. Appl., 220. 283-289
[8] Silverman, H. and Silvia, E.M. (1999). Subclasses of harmonic univalent functions. New Zeal. J. Math., 28. 275-284
[9] Wiatrowski, P. (1971). The coefficients of a certain family of holomorphic functions. Zeszyty Nauk. Univ. Lódz Nauk. Math. Przyrod Ser. II, 39. 75-85

Received: July, 2008

