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Abstract

In this paper we consider a fundamental control problem. Our aim
is not to determine the control which steers the system to a desired
final state at time T, but to investigate, under some hypothesis, the
input witch makes the trajectory of the system, along the interval of
time [0, T ], to be exactly equal to a desired given one. To resolve the
problem, we use a state space technique (see [1, 2, 3]), generally used
in the analysis and control of hereditary systems. We also study the
regional aspect of the problem.

Mathematical Subject Classification : 93C55, 93B05, 49J15

Keywords : Discrete systems, controllability, optimal control, trajectory

1 Introduction

Consider the linear system

{
ẋ(t) = Ax(t) + Bu(t) , t ∈ [0, T ]
x(0) = x0,

(1)

where A is the generator of a strongly continuous semi-group (R(t))t≥0 on the
Hilbert space X, B ∈ L(U, X), where U is a Hilbert space.
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Given a desired trajectory xd(.) ∈ L2(0, T ; X), we investigate 1 the control
law u, having a minimal norm, which allows the state x(t) to coincide with
xd(t) along the interval of time [0, T ], i.e.,

{
x(., x0, u) = xd(.) on L2(0, T ; X)
||u|| = min{||v|| : x(., x0, v) = xd} ,

where x(., x0, v) is the state of system 1 corresponding to the command v.

1.1 State space technique

We consider the strongly continuous semi-group (S(t))t≥0 defined on the Hilbert
space Y = L2(−T, 0; X) by

(S(t)y)(r) =

{
y(t + r) if r ∈ [−T,−t]
0 if r ∈] − t, 0]

, pour t ≤ T

and
(S(t)y)(r) = 0; ∀r ∈ [−T, 0] , ∀t > T.

The generator of (S(t))t≥0 is the operator D = d
ds

with domaine Dom(D) =
{y ∈ W 1,2(−T, 0; X) : y(0) = 0}. Let F ∈ L(X, Y ) be the operator defined by

(Fx)(r) = x , ∀x ∈ X , ∀r ∈ [−T, 0].

For every x0 ∈ X and all control u ∈ L2(0, T ; U), we define on Y , the following
evolution system

y(t, x0, u) = S(t)(Fx0) − D
∫ t

0
S(t − r)Fx(r, x0, u)dr , t ∈ [0, T ], (2)

where x(., x0, u) is the solution of equation (1) corresponding to the control u.

Remark 1.1 [4],[3]
i) For every t ≤ T

(y(t, x0, u))(r) =

{
x0 if r ∈ [−T,−t]
x(t + r, x0, u) if r ∈] − t, 0],

hence, (y(T, x0, u))(r) = x(T + r, x0, u) , ∀r ∈ [−T, 0].
ii) For every t ≤ T

(−D
∫ t

0
S(t − r)Fx(r, x0, u)dr)(s) =

{
x(t + s, x0, u) if s ∈] − t, 0]
0 if s ∈ [−T,−t]

1This work is sponsored by : The Hassan II Academy of Science and Technology.
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The introduction of the state y(., x0, u) allows us to transform the control tra-
jectory problem to a standard controllability problem on the space Y . Indeed,
to determine a control u such that x(., x0, u) = xd(.) is equivalent to find a
control u which satisfy y(T ) = yd, where yd ∈ Y is the desired state defined
by yd(.) = xd(. + T ).

The input u acts on the signal y(., x0, u) in a non standard form, this
suggest us to define an other evolution equation on the state Z = X × Y .
Precisely, we consider the system defined on the Hilbert space Z = X × Y , by

z(t) = U(t)z0 +
∫ t

0
U(t − r)Lu(r)dr , ∀t ∈ [0, T ]. (3)

where L = (B, 0)T , z0 = (x0, Fx0)
T and (U(t))t≥0 the strongly continuous

semi-group defined by

U(t) =

(
U0(t) 0
U1(t) U2(t)

)
; ∀t ≥ 0 (4)

where

U0(t) = R(t), U2(t) = S(t) and U1(t) = −D
∫ t

0
S(t − r)FR(r)dr.

Remark 1.2 We verify easily that for all x0 ∈ X and all control u ∈ L2(0, T ; U),
we have

z(., x0, u) = (x(., x0, u), y(., x0, u)), (5)

where z(., x0, u) is the solution of (3).

1.2 Fundamental results

Define the operator H by

H : L2(0, T ; U) → Y

u → p2

∫ T
0 U(T − r)Lu(r)dr

where p2 is the operator

p2 : Z → Y
(x, y) → y

and (U(t))t≥0 is the strongly continuous semi group defined by (4).

Remark 1.3 the operator H is bounded and have an adjoint operator given
by

H∗ : Y → L2(0, T ; U)
y → B∗ ∫ 0

−T R∗(T − . + r)y(r)dr.
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Let’s consider the Hilbert space

F0 = Im H = (Ker H∗)⊥ (6)

and the semi norm defined on Y by

||f ||F = ||H∗f ||L2(0,T ;U)

The corresponding scalar product to this semi norm is

<< f, g >>=< H∗f, H∗g > ∀f, g ∈ Y.

Remark 1.4 We easily establish that
i) ||.||F is a norm on F0.
ii) (HH∗)(Y ) ⊂ F0.

Define the operator Λ by

Λ : F0 → F0

f → HH∗f.

It follows from remark 1.4 that Λ is well defined and bounded. If F is the
completion space of F0 respectively to the norm ||.||F , then operator Λ has a
unique extension, denoted also Λ, which is an isomorfism from the space F to
its dual F

′
.

Let’s define the operator G by

G : L2(0, T ; X) → L2(−T, 0; X)
y → y(T + .)

Proposition 1.1 Let x0 ∈ X and yd ∈ L2(0, T ; X) a given desired trajectory.
If yd ∈ G−1(p2(U(T )z0)+F

′
), where z0 = (x0, Fx0)

T , then there exists a unique
control u∗ ∈ L2(0, T ; U) such that

{
x(., x0, u

∗) = yd(.) on L2(0, T ; X)
||u∗|| = min{||v|| : x(., x0, v) = yd}.

The input u∗ is given by
u∗ = H∗f, (7)

where f is the unique solution of the equation

Λf = Gyd − p2(U(T )z0). (8)

Proof. Since yd ∈ G−1(p2(U(T )z0) + F
′
, then

yd(T + .) ∈ p2(U(T )z0) + F
′
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but Λ is an isomorfism, hence there exists a unique f ∈ F such that

yd(T + .) = p2(U(T )z0) + Λf.

Consider the control u∗ = H∗f , we can write yd(T + .) as follows

yd(T + .) = p2(U(T )z0) + Hu∗

which implies that yd(T + .) = p2(z(T, x0, u
∗)), and from remark 1.2 we deduce

that yd(T + .) = y(T, x0, u
∗). Finally, from remark 1.1 we obtain

yd = x(., x0, u
∗).

On the other hand, to proof the optimality of u∗, we consider the set

C = {v ∈ L2(0, T ; U) : x(., x0, v) = yd}.
For every v ∈ C, we have x(., x0, v) = x(., x0, u

∗). Hence Hu∗ = Hv, conse-
quently
<< H(v − u∗), f >>= 0, i.e., < v − u∗, u∗ >= 0, thus ||u∗|| ≤ ||v||.

To complete the precedent result, we give a caracterization of the reachable
trajectory.

Proposition 1.2 Let W = {x(., x0, u) : u ∈ L2(0, T ; U)} be the set of all
reachable trajectories, from an initial state x0, on [0, T ], then

W = G−1(p2(U(T )z0) + F
′
).

Proof. It follows from proposition 1.1 that

W ⊃ G−1(p2(U(T )z0) + F
′
).

Inversely, given x(., x0, u) ∈ W , we consider the linear form

Ψ : F0 → IR
f → < Gx(., x0, u) − p2(U(T )z0), f > .

From the density of F0 on F , we deduce that

|Ψ(f )| ≤ ||u|| ||f || , ∀f ∈ F.

Finally, it follows from the Riesz theorem that Gx(., x0, u)− p2(U(T )z0) ∈ F
′
.

Remark 1.5 Similarly to what was done by Emirsajlow in [5] and [6], the
approach developped in this section can be used to resolve the following control
problem

min{
∫ T

0
< u(t), Ru(t) > dt : u ∈ Vα},

where

Vα = {u ∈ L2(0, T ; U) : ||x(., x0, u) − yd||L2(0,T ;X) ≤ α} , (α > 0)

and R a self-adjoint definite positif operator.
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1.3 A finite dimensional case

Consider the system{
ẋ(t) = Ax(t) + Bu(t) , t ∈ [0, T ]
x(0) = x0,

(9)

where A ∈ L(IRn), B ∈ L(IRn).

Proposition 1.3 If there exists a matrice K2 ∈ L(IRn) such that the matrice
BK2 is invertible, then the space F0 defined by (6) is given by

F0 = L2(−T, 0; IRn).

Proof. We take yd ∈ L2(−T, 0; IRn), ε > 0 and seek a control u such that

||Hu− yd|| ≤ ε.

Let K1 be an arbitrary matrix in L(IRn) and h ∈]0, T [. We easily deduce from
[7] that, under the invertibility hypothesis of the matrix BK2, the system

⎧⎪⎨
⎪⎩

q̇(t) = Aq(t) + BK1q(t − h) + BK2v(t) , t ∈ [0, T ]
q(0) = q0

q(r) = Φ1(r) , ∀r ∈ [−T, 0]
(10)

is approximately controllable on the space M2 = IRn×L2(−T, 0; IRn). In other
words, for every xd = (ad, bd) ∈ M2, there exists a control v in L2(0, T ; IRn)
such that

||(q(T, Φ, v), qT (., Φ, v)) − xd||M2 ≤ ε, (11)

where Φ = (q0, Φ1) ∈ M2 is the initial state, q(., Φ, v) is the state variable
corresponding to Φ and the input v, qT (., Φ, v) ∈ L2(−T, 0; IRn) is defined by

[qT (., Φ, v)](r) = q(T + r, Φ, v) , r ∈ [−T, 0].

It follows from equation (11) that given an initial state Φ = (x0, Φ1), where
x0 is the initial state of system 9 and Φ1 ∈ L2(−T, 0; IRn), given a desired
state cd = (xd, yd + p2(U(T )z0)), where xd is an arbitrary element of IRn and
z0 = (x0, Fx0), there exists a control v∗ ∈ L2(0, T ; IRn) such that

||(q(T, Φ, v∗), qT (., Φ, v∗)) − cd||M2 ≤ ε,

hence
||qT (., Φ, v∗) − yd − p2(U(T )z0)||L2(−T,0;IR) ≤ ε.

Then define the control variable

uv∗(t) = K1q(t − h, Φ, v∗) + K2v
∗(t).
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Since q(., Φ, v∗) is the solution of equation

q̇(t) = Aq(t) + BK1q(t − h) + BK2v
∗(t) , t ∈ [0, T ],

we deduce that{
q̇(t) = Aq(t, Φ, v∗) + Buv∗(t) , t ∈ [0, T ]
q(0, Φ, v∗) = x0,

(12)

thus
q(t, Φ, v∗) = x(t, x0, uv∗) , r ∈ [0, T ]

consequently,

q(T + r, Φ, v∗) = x(T + r, x0, uv∗) , t ∈ [−T, 0].

From remark 1.1, we have qT (., Φ, v∗) = y(T, x0, uv∗), hence

||y(T, x0, uv∗) − yd − p2(U(T )z0)||L2(−T,0;IR)
≤ ε.

Finally, from remark 1.2 we obtain that
y(T, x0, uv∗) = p2(z(T, x0, uv∗)), and then ||Huv∗ − yd|| ≤ ε.

2 A regional control trajectory problem

In this section we study the regional aspect of the control trajectory problem,
i.e., we suppose that the state space is X = L2(Ω), where Ω is an open bounded
subset of IRn, and we consider a region ω ⊂ Ω and a desired trajectory yd ∈
L2(0, T ; L2(ω)), then we investigate the control u solution of the problem

{
[x(., x0, u)] = yd

||u|| = min{||v|| : [x(., x0, v)]/ω = yd}.

2.1 Definition of the problem-caracterization

Given a region ω of Ω, we consider the bounded operators Mω, M and Hω

defined by
Mω : L2(−T, 0; X) → L2(−T, 0; L2(ω))

f → f/ω

M : Z = X × Y → L2(−T, 0; L2(ω))
(f, g) → Mω(g)

(13)

Hω : L2(0, T ; U) → L2(−T, 0; L2(ω))

u → M(
∫ T
0 U(T − r)Lu(r)dr).
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and the Hilbert space E0 = Im Hω = (Ker H∗
ω)⊥.

We define on L2(−T, 0; L2(ω)), the semi norm

||f ||E = ||H∗
ωf ||L2(0,T ;U)

and the corresponding inner product by

<< f, g >>E=< H∗
ωf, H∗

ωg > , ∀f, g ∈ L2(−T, 0; L2(ω)).

Remark 2.1 We have
(i) ||.||E is a norm on the space E0.
(ii) (HωH∗

ω)(L2(−T, 0; L2(ω))) ⊂ E0.

Define the operator Λω by

Λω : E0 → E0

f → HωH∗
ωf.

It follows from the precedent remark that Λω is well defined, we also verify
easily that it is bounded.

Let E be the completion space of E0 relatively to the norm ||.||E. The
operator Λω can be extended continuously, and uniquely, to an isomorfirm
defined from E to its dual E

′
. This extension is also denoted Λω.

To establish the fundamental result of this section we introduce the oper-
ator Gω defined by

Gω : L2(0, T ; L2(ω)) → L2(−T, 0; L2(ω))
y → y(T + .)

Gω is bijectif and has an inverse operator described by

G−1
ω : L2(−T, 0; L2(ω)) → L2(0, T ; L2(ω))

y → y(. − T )

Proposition 2.1 Let x0 ∈ X and yd ∈ L2(0, T ; L2(ω)) a desired given trajec-
tory,
if yd ∈ G−1

ω (M(U(T )z0)+E
′
), then there exists a unique control u∗ ∈ L2(0, T ; U)

such that {
[x(., x0, u

∗)]/ω = yd(.) in L2(0, T ; L2(ω))
||u∗|| = min{||v|| : [x(., x0, v)]/ω = yd}.

u∗ is given by
u∗ = H∗

ωf (14)

where f is the unique solution of equation

Λωf = Gωyd − M(U(T )z0). (15)

Moreover, the set Wω = {[x(., x0, u)]/ω : u ∈ L2(0, T ; U)} of all trajectories
ω − reachable on [0, T ] is given by

Wω = G−1
ω (M(U(T )z0) + E

′
).

Proof. The proof is similar to the ones of proposition 1.1 and 1.2.
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2.2 Application

Let ω and ω̄ be a given regions of Ω, yd ∈ L2(ω̄) a desired state and zd(.) ∈
L2(0, T ; L2(ω)) a desired trajectory. The regional control trajectory problem
consists of determining, under some hypothesis, the control u∗ solution of
following problem

||u∗|| = min ||v||
where v verify {

x(T, x0, v)/ω̄ = yd

x(., x0, v)/ω = zd(.) dans L2(0, T ; X)

To resolve this problem, we define the following operators

P : X × Y → L2(ω̄)
(f, g) → f/ω̄,

and Hω̄,ω : L2(0, T ; U) → L2(ω̄) × L2(−T, 0; L2(ω)), such that

Hω̄,ω(u) = (P (
∫ T

0
U(T − r)Lu(r)dr), M(

∫ T

0
U(T − r)Lu(r)dr))

where the operator M is defined by equation (13).
Consider the Hilbert space

N0 = Im Hω̄,ω = (Ker H∗
ω̄,ω)⊥

and define on the space L2(ω̄) × L2(−T, 0; L2(ω)) the semi norm

||f ||N = ||H∗
ω̄,ωf ||L2(0,T ;U).

Remark 2.2
i) ||.||N is a norm on the space N0.
ii) (Hω̄,ωH∗

ω̄,ω)(L2(ω̄) × L2(−T, 0; L2(ω))) ⊂ N0.

We deduce from the above that the operator Λω̄,ω defined by

Λω̄,ω : N0 → N0

f → (Hω̄,ωH∗
ω̄,ω)(f)

is bounded and well defined.
Let N be the completion space of N0 respectively to the norm ||.||N , The

operator Λω̄,ω can be extended continuously and uniquely to an isomorfism
defined from N to its dual space N

′
. This extension is also denoted by Λω̄,ω.

Define the operator Kω̄,ω by

Kω̄,ω : L2(ω̄) × L2(−T, 0; L2(ω)) → L2(ω̄) × L2(−T, 0; L2(ω))
(y, z(.)) → (y, z(. − T )).

Kω̄,ω is bijectif and its inverse operator is given by

K−1
ω̄,ω(y, z(.)) = (y, z(. − T )).
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Proposition 2.2 1) Let x0 ∈ X, yd ∈ L2(ω̄) and zd ∈ L2(0, T ; L2(ω)). If
(yd, zd) ∈ K−1

ω̄,ω((P (U(T )z0), M(U(T )z0))+N
′
), then there exists a unique

control u∗ ∈ L2(0, T ; U) solution of the problem, and u∗ is given by

u∗ = H∗
ω̄,ωf, (16)

where f is the unique solution of the equation

Λω̄,ωf = Kω̄,ω(yd, zd) − (P (U(T )z0), M(U(T )z0). (17)

2) The set

Q = {([x(., x0, u)]/ω̄, [x(., x0, u)]/ω) : u ∈ L2(0, T ; U)}
is equal to the set

K−1
ω̄,ω((P (U(T )z0), M(U(T )z0)) + N

′
).

Proof. The proof is similar to the ones of propositions 1.1, 1.2.
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