A Control Trajectory Problem:
 Continuous Systems

M. Rachik ${ }^{1}$, A. Abdelhak ${ }^{2}$ and E. Labriji ${ }^{1}$
${ }^{1}$ University Hassan II-Mohammedia, Faculty of Sciences
Ben M'sik, Dept. of Mathematics, Casablanca, Morroco
m_rachik@yahoo.fr
labriji@math.net
${ }^{2}$ University Ibn Tofail, Faculty of Sciences
Departement of Mathematics, Kénitra, Morroco
abdelhak.a@gmail.com

Abstract

In this paper we consider a fundamental control problem. Our aim is not to determine the control which steers the system to a desired final state at time T , but to investigate, under some hypothesis, the input witch makes the trajectory of the system, along the interval of time $[0, T]$, to be exactly equal to a desired given one. To resolve the problem, we use a state space technique (see $[1,2,3]$), generally used in the analysis and control of hereditary systems. We also study the regional aspect of the problem.

Mathematical Subject Classification : 93C55, 93B05, 49J15
Keywords: Discrete systems, controllability, optimal control, trajectory

1 Introduction

Consider the linear system

$$
\left\{\begin{align*}
\dot{x}(t) & =A x(t)+B u(t), t \in[0, T] \tag{1}\\
x(0) & =x_{0},
\end{align*}\right.
$$

where A is the generator of a strongly continuous semi-group $(R(t))_{t \geq 0}$ on the Hilbert space $X, B \in \mathcal{L}(U, X)$, where U is a Hilbert space.

Given a desired trajectory $x_{d}(.) \in L^{2}(0, T ; X)$, we investigate ${ }^{1}$ the control law u, having a minimal norm, which allows the state $x(t)$ to coincide with $x_{d}(t)$ along the interval of time $[0, T]$, i.e.,

$$
\begin{cases}x\left(., x_{0}, u\right) & =x_{d}(.) \text { on } L^{2}(0, T ; X) \\ \|u\| & =\min \left\{\|v\|: x\left(., x_{0}, v\right)=x_{d}\right\}\end{cases}
$$

where $x\left(., x_{0}, v\right)$ is the state of system 1 corresponding to the command v.

1.1 State space technique

We consider the strongly continuous semi-group $(S(t))_{t \geq 0}$ defined on the Hilbert space $Y=L^{2}(-T, 0 ; X)$ by

$$
(S(t) y)(r)=\left\{\begin{array}{lll}
y(t+r) & \text { if } \quad r \in[-T,-t] \\
0 & \text { if } \quad r \in]-t, 0]
\end{array} \quad, \quad \text { pour } t \leq T\right.
$$

and

$$
(S(t) y)(r)=0 ; \forall r \in[-T, 0], \forall t>T
$$

The generator of $(S(t))_{t \geq 0}$ is the operator $D=\frac{d}{d s}$ with domaine $\operatorname{Dom}(D)=$ $\left\{y \in W^{1,2}(-T, 0 ; X): y(0)=0\right\}$. Let $F \in \mathcal{L}(X, Y)$ be the operator defined by

$$
(F x)(r)=x, \forall x \in X, \forall r \in[-T, 0]
$$

For every $x_{0} \in X$ and all control $u \in L^{2}(0, T ; U)$, we define on Y, the following evolution system

$$
\begin{equation*}
y\left(t, x_{0}, u\right)=S(t)\left(F x_{0}\right)-D \int_{0}^{t} S(t-r) F x\left(r, x_{0}, u\right) d r, t \in[0, T] \tag{2}
\end{equation*}
$$

where $x\left(., x_{0}, u\right)$ is the solution of equation (1) corresponding to the control u.
Remark 1.1 [4], [3]
i) For every $t \leq T$

$$
\left(y\left(t, x_{0}, u\right)\right)(r)= \begin{cases}x_{0} & \text { if } r \in[-T,-t] \\ x\left(t+r, x_{0}, u\right) & \text { if } r \in]-t, 0]\end{cases}
$$

hence, $\left(y\left(T, x_{0}, u\right)\right)(r)=x\left(T+r, x_{0}, u\right), \forall r \in[-T, 0]$.
ii) For every $t \leq T$

$$
\left(-D \int_{0}^{t} S(t-r) F x\left(r, x_{0}, u\right) d r\right)(s)= \begin{cases}x\left(t+s, x_{0}, u\right) & \text { if } s \in]-t, 0] \\ 0 & \text { if } s \in[-T,-t]\end{cases}
$$

[^0]The introduction of the state $y\left(., x_{0}, u\right)$ allows us to transform the control trajectory problem to a standard controllability problem on the space Y. Indeed, to determine a control u such that $x\left(., x_{0}, u\right)=x_{d}($.$) is equivalent to find a$ control u which satisfy $y(T)=y_{d}$, where $y_{d} \in Y$ is the desired state defined by $y_{d}()=.x_{d}(.+T)$.

The input u acts on the signal $y\left(., x_{0}, u\right)$ in a non standard form, this suggest us to define an other evolution equation on the state $Z=X \times Y$. Precisely, we consider the system defined on the Hilbert space $Z=X \times Y$, by

$$
\begin{equation*}
z(t)=U(t) z_{0}+\int_{0}^{t} U(t-r) L u(r) d r, \forall t \in[0, T] \tag{3}
\end{equation*}
$$

where $L=(B, 0)^{T}, z_{0}=\left(x_{0}, F x_{0}\right)^{T}$ and $(U(t))_{t \geq 0}$ the strongly continuous semi-group defined by

$$
U(t)=\left(\begin{array}{cc}
U_{0}(t) & 0 \tag{4}\\
U_{1}(t) & U_{2}(t)
\end{array}\right) ; \forall t \geq 0
$$

where

$$
U_{0}(t)=R(t), U_{2}(t)=S(t) \text { and } U_{1}(t)=-D \int_{0}^{t} S(t-r) F R(r) d r
$$

Remark 1.2 We verify easily that for all $x_{0} \in X$ and all control $u \in L^{2}(0, T ; U)$, we have

$$
\begin{equation*}
z\left(., x_{0}, u\right)=\left(x\left(., x_{0}, u\right), y\left(., x_{0}, u\right)\right) \tag{5}
\end{equation*}
$$

where $z\left(., x_{0}, u\right)$ is the solution of (3).

1.2 Fundamental results

Define the operator H by

$$
\begin{aligned}
H: L^{2}(0, T ; U) & \rightarrow Y \\
u & \rightarrow p_{2} \int_{0}^{T} U(T-r) L u(r) d r
\end{aligned}
$$

where p_{2} is the operator

$$
\begin{aligned}
p_{2}: & Z
\end{aligned} \rightarrow Y
$$

and $(U(t))_{t \geq 0}$ is the strongly continuous semi group defined by (4).
Remark 1.3 the operator H is bounded and have an adjoint operator given by

$$
\begin{aligned}
& H^{*}: Y \rightarrow L^{2}(0, T ; U) \\
& y \rightarrow B^{*} \int_{-T}^{0} R^{*}(T-.+r) y(r) d r .
\end{aligned}
$$

Let's consider the Hilbert space

$$
\begin{equation*}
F_{0}=\overline{\operatorname{ImH}}=\left(\operatorname{Ker} H^{*}\right)^{\perp} \tag{6}
\end{equation*}
$$

and the semi norm defined on Y by

$$
\|f\|_{F}=\left\|H^{*} f\right\|_{L^{2}(0, T ; U)}
$$

The corresponding scalar product to this semi norm is

$$
\ll f, g \gg=<H^{*} f, H^{*} g>\forall f, g \in Y .
$$

Remark 1.4 We easily establish that
i) $\|.\|_{F}$ is a norm on F_{0}.
ii) $\left(H H^{*}\right)(Y) \subset F_{0}$.

Define the operator Λ by

$$
\begin{aligned}
\Lambda: \begin{aligned}
F_{0} & \rightarrow F_{0} \\
f & \rightarrow H H^{*} f .
\end{aligned} .=\frac{1}{} .
\end{aligned}
$$

It follows from remark 1.4 that Λ is well defined and bounded. If F is the completion space of F_{0} respectively to the norm $\|.\|_{F}$, then operator Λ has a unique extension, denoted also Λ, which is an isomorfism from the space F to its dual F^{\prime}.

Let's define the operator G by

$$
\begin{aligned}
G: L^{2}(0, T ; X) & \rightarrow L^{2}(-T, 0 ; X) \\
y & \rightarrow y(T+.)
\end{aligned}
$$

Proposition 1.1 Let $x_{0} \in X$ and $y_{d} \in L^{2}(0, T ; X)$ a given desired trajectory. If $y_{d} \in G^{-1}\left(p_{2}\left(U(T) z_{0}\right)+F^{\prime}\right)$, where $z_{0}=\left(x_{0}, F x_{0}\right)^{T}$, then there exists a unique control $u^{*} \in L^{2}(0, T ; U)$ such that

$$
\begin{cases}x\left(., x_{0}, u^{*}\right) & =y_{d}(.) \text { on } L^{2}(0, T ; X) \\ \left\|u^{*}\right\| & =\min \left\{\|v\|: x\left(., x_{0}, v\right)=y_{d}\right\}\end{cases}
$$

The input u^{*} is given by

$$
\begin{equation*}
u^{*}=H^{*} f \tag{7}
\end{equation*}
$$

where f is the unique solution of the equation

$$
\begin{equation*}
\Lambda f=G y_{d}-p_{2}\left(U(T) z_{0}\right) \tag{8}
\end{equation*}
$$

Proof. Since $y_{d} \in G^{-1}\left(p_{2}\left(U(T) z_{0}\right)+F^{\prime}\right.$, then

$$
y_{d}(T+.) \in p_{2}\left(U(T) z_{0}\right)+F^{\prime}
$$

but Λ is an isomorfism, hence there exists a unique $f \in F$ such that

$$
y_{d}(T+.)=p_{2}\left(U(T) z_{0}\right)+\Lambda f .
$$

Consider the control $u^{*}=H^{*} f$, we can write $y_{d}(T+$.$) as follows$

$$
y_{d}(T+.)=p_{2}\left(U(T) z_{0}\right)+H u^{*}
$$

which implies that $y_{d}(T+)=.p_{2}\left(z\left(T, x_{0}, u^{*}\right)\right)$, and from remark 1.2 we deduce that $y_{d}(T+)=.y\left(T, x_{0}, u^{*}\right)$. Finally, from remark 1.1 we obtain

$$
y_{d}=x\left(., x_{0}, u^{*}\right)
$$

On the other hand, to proof the optimality of u^{*}, we consider the set

$$
C=\left\{v \in L^{2}(0, T ; U): x\left(., x_{0}, v\right)=y_{d}\right\} .
$$

For every $v \in C$, we have $x\left(., x_{0}, v\right)=x\left(., x_{0}, u^{*}\right)$. Hence $H u^{*}=H v$, consequently
$\ll H\left(v-u^{*}\right), f \gg=0$, i.e., $<v-u^{*}, u^{*}>=0$, thus $\left\|u^{*}\right\| \leq\|v\|$.
To complete the precedent result, we give a caracterization of the reachable trajectory.
Proposition 1.2 Let $W=\left\{x\left(., x_{0}, u\right): u \in L^{2}(0, T ; U)\right\}$ be the set of all reachable trajectories, from an initial state x_{0}, on $[0, T]$, then

$$
W=G^{-1}\left(p_{2}\left(U(T) z_{0}\right)+F^{\prime}\right)
$$

Proof. It follows from proposition 1.1 that

$$
W \supset G^{-1}\left(p_{2}\left(U(T) z_{0}\right)+F^{\prime}\right)
$$

Inversely, given $x\left(., x_{0}, u\right) \in W$, we consider the linear form

$$
\begin{aligned}
\Psi: F_{0} & \rightarrow \mathbb{R} \\
f & \rightarrow<G x\left(., x_{0}, u\right)-p_{2}\left(U(T) z_{0}\right), f>
\end{aligned}
$$

From the density of F_{0} on F, we deduce that

$$
|\Psi(f)| \leq\|u\|\|f\|, \forall f \in F .
$$

Finally, it follows from the Riesz theorem that $G x\left(., x_{0}, u\right)-p_{2}\left(U(T) z_{0}\right) \in F^{\prime}$.

Remark 1.5 Similarly to what was done by Emirsajlow in [5] and [6], the approach developped in this section can be used to resolve the following control problem

$$
\min \left\{\int_{0}^{T}<u(t), R u(t)>d t: u \in V_{\alpha}\right\}
$$

where

$$
V_{\alpha}=\left\{u \in L^{2}(0, T ; U):\left\|x\left(., x_{0}, u\right)-y_{d}\right\|_{L^{2}(0, T ; X)} \leq \alpha\right\},(\alpha>0)
$$

and R a self-adjoint definite positif operator.

1.3 A finite dimensional case

Consider the system

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t), t \in[0, T] \tag{9}\\
x(0)=x_{0}
\end{array}\right.
$$

where $A \in \mathcal{L}\left(\mathbb{R}^{n}\right), B \in \mathcal{L}\left(\mathbb{R}^{n}\right)$.
Proposition 1.3 If there exists a matrice $K_{2} \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ such that the matrice $B K_{2}$ is invertible, then the space F_{0} defined by (6) is given by

$$
F_{0}=L^{2}\left(-T, 0 ; \mathbb{R}^{n}\right)
$$

Proof. We take $y_{d} \in L^{2}\left(-T, 0 ; \mathbb{R}^{n}\right), \epsilon>0$ and seek a control u such that

$$
\left\|H u-y_{d}\right\| \leq \epsilon
$$

Let K_{1} be an arbitrary matrix in $\mathcal{L}\left(\mathbb{R}^{n}\right)$ and $\left.h \in\right] 0, T[$. We easily deduce from [7] that, under the invertibility hypothesis of the matrix $B K_{2}$, the system

$$
\left\{\begin{array}{l}
\dot{q}(t)=A q(t)+B K_{1} q(t-h)+B K_{2} v(t), t \in[0, T] \tag{10}\\
q(0)=q_{0} \\
q(r)=\Phi_{1}(r), \forall r \in[-T, 0]
\end{array}\right.
$$

is approximately controllable on the space $M^{2}=\mathbb{R}^{n} \times L^{2}\left(-T, 0 ; \mathbb{R}^{n}\right)$. In other words, for every $x_{d}=\left(a_{d}, b_{d}\right) \in M^{2}$, there exists a control v in $L^{2}\left(0, T ; \mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
\left\|\left(q(T, \Phi, v), q_{T}(., \Phi, v)\right)-x_{d}\right\|_{M^{2}} \leq \epsilon \tag{11}
\end{equation*}
$$

where $\Phi=\left(q_{0}, \Phi_{1}\right) \in M^{2}$ is the initial state, $q(., \Phi, v)$ is the state variable corresponding to Φ and the input $v, q_{T}(., \Phi, v) \in L^{2}\left(-T, 0 ; \mathbb{R}^{n}\right)$ is defined by

$$
\left[q_{T}(., \Phi, v)\right](r)=q(T+r, \Phi, v), r \in[-T, 0] .
$$

It follows from equation (11) that given an initial state $\Phi=\left(x_{0}, \Phi_{1}\right)$, where x_{0} is the initial state of system 9 and $\Phi_{1} \in L^{2}\left(-T, 0 ; \mathbb{R}^{n}\right)$, given a desired state $c_{d}=\left(x_{d}, y_{d}+p_{2}\left(U(T) z_{0}\right)\right)$, where x_{d} is an arbitrary element of \mathbb{R}^{n} and $z_{0}=\left(x_{0}, F x_{0}\right)$, there exists a control $v^{*} \in L^{2}\left(0, T ; \mathbb{R}^{n}\right)$ such that

$$
\left\|\left(q\left(T, \Phi, v^{*}\right), q_{T}\left(., \Phi, v^{*}\right)\right)-c_{d}\right\|_{M^{2}} \leq \epsilon
$$

hence

$$
\left\|q_{T}\left(., \Phi, v^{*}\right)-y_{d}-p_{2}\left(U(T) z_{0}\right)\right\|_{L^{2}(-T, 0 ; I R)} \leq \epsilon
$$

Then define the control variable

$$
u_{v^{*}}(t)=K_{1} q\left(t-h, \Phi, v^{*}\right)+K_{2} v^{*}(t) .
$$

Since $q\left(., \Phi, v^{*}\right)$ is the solution of equation

$$
\dot{q}(t)=A q(t)+B K_{1} q(t-h)+B K_{2} v^{*}(t), t \in[0, T],
$$

we deduce that

$$
\begin{cases}\dot{q}(t) & =A q\left(t, \Phi, v^{*}\right)+B u_{v^{*}}(t), t \in[0, T] \tag{12}\\ q\left(0, \Phi, v^{*}\right) & =x_{0}\end{cases}
$$

thus

$$
q\left(t, \Phi, v^{*}\right)=x\left(t, x_{0}, u_{v^{*}}\right), r \in[0, T]
$$

consequently,

$$
q\left(T+r, \Phi, v^{*}\right)=x\left(T+r, x_{0}, u_{v^{*}}\right), t \in[-T, 0]
$$

From remark 1.1, we have $q_{T}\left(., \Phi, v^{*}\right)=y\left(T, x_{0}, u_{v^{*}}\right)$, hence

$$
\left\|y\left(T, x_{0}, u_{v^{*}}\right)-y_{d}-p_{2}\left(U(T) z_{0}\right)\right\|_{L^{2}(-T, 0 ; \mathbb{R})} \leq \epsilon
$$

Finally, from remark 1.2 we obtain that

$$
y\left(T, x_{0}, u_{v^{*}}\right)=p_{2}\left(z\left(T, x_{0}, u_{v^{*}}\right)\right), \text { and then }\left\|H u_{v^{*}}-y_{d}\right\| \leq \epsilon .
$$

2 A regional control trajectory problem

In this section we study the regional aspect of the control trajectory problem, i.e., we suppose that the state space is $X=L^{2}(\Omega)$, where Ω is an open bounded subset of \mathbb{R}^{n}, and we consider a region $\omega \subset \Omega$ and a desired trajectory $y_{d} \in$ $L^{2}\left(0, T ; L^{2}(\omega)\right)$, then we investigate the control u solution of the problem

$$
\begin{cases}{\left[x\left(., x_{0}, u\right)\right]} & =y_{d} \\ \|u\| & =\min \left\{\|v\|:\left[x\left(., x_{0}, v\right)\right] / \omega=y_{d}\right\}\end{cases}
$$

2.1 Definition of the problem-caracterization

Given a region ω of Ω, we consider the bounded operators M_{ω}, M and H_{ω} defined by

$$
\begin{align*}
M_{\omega}: L^{2}(-T, 0 ; X) & \rightarrow L^{2}\left(-T, 0 ; L^{2}(\omega)\right) \\
f & \rightarrow f / \omega \\
M: Z=X \times Y & \rightarrow L^{2}\left(-T, 0 ; L^{2}(\omega)\right) \tag{13}\\
(f, g) & \rightarrow M_{\omega}(g) \\
H_{\omega}: L^{2}(0, T ; U) & \rightarrow L^{2}\left(-T, 0 ; L^{2}(\omega)\right) \\
u & \rightarrow M\left(\int_{0}^{T} U(T-r) L u(r) d r\right) .
\end{align*}
$$

and the Hilbert space $E_{0}=\overline{\operatorname{Im} H_{\omega}}=\left(\operatorname{Ker} H_{\omega}^{*}\right)^{\perp}$.
We define on $L^{2}\left(-T, 0 ; L^{2}(\omega)\right)$, the semi norm

$$
\|f\|_{E}=\left\|H_{\omega}^{*} f\right\|_{L^{2}(0, T ; U)}
$$

and the corresponding inner product by

$$
\ll f, g \gg_{E}=<H_{\omega}^{*} f, H_{\omega}^{*} g>, \forall f, g \in L^{2}\left(-T, 0 ; L^{2}(\omega)\right)
$$

Remark 2.1 We have
(i) $\|.\|_{E}$ is a norm on the space E_{0}.
(ii) $\left(H_{\omega} H_{\omega}^{*}\right)\left(L^{2}\left(-T, 0 ; L^{2}(\omega)\right)\right) \subset E_{0}$.

Define the operator Λ_{ω} by

$$
\begin{aligned}
\Lambda_{\omega}: E_{0} & \rightarrow E_{0} \\
f & \rightarrow H_{\omega} H_{\omega}^{*} f .
\end{aligned}
$$

It follows from the precedent remark that Λ_{ω} is well defined, we also verify easily that it is bounded.

Let E be the completion space of E_{0} relatively to the norm $\|.\|_{E}$. The operator Λ_{ω} can be extended continuously, and uniquely, to an isomorfirm defined from E to its dual E^{\prime}. This extension is also denoted Λ_{ω}.

To establish the fundamental result of this section we introduce the operator G_{ω} defined by

$$
\begin{array}{cc}
G_{\omega}: L^{2}\left(0, T ; L^{2}(\omega)\right) & \rightarrow L^{2}\left(-T, 0 ; L^{2}(\omega)\right) \\
y & \rightarrow y(T+.)
\end{array}
$$

G_{ω} is bijectif and has an inverse operator described by

$$
\begin{aligned}
G_{\omega}^{-1}: L^{2}\left(-T, 0 ; L^{2}(\omega)\right) & \rightarrow L^{2}\left(0, T ; L^{2}(\omega)\right) \\
y & \rightarrow y(.-T)
\end{aligned}
$$

Proposition 2.1 Let $x_{0} \in X$ and $y_{d} \in L^{2}\left(0, T ; L^{2}(\omega)\right)$ a desired given trajectory,
if $y_{d} \in G_{\omega}^{-1}\left(M\left(U(T) z_{0}\right)+E^{\prime}\right)$, then there exists a unique control $u^{*} \in L^{2}(0, T ; U)$ such that

$$
\begin{cases}{\left[x\left(., x_{0}, u^{*}\right)\right] / \omega} & =y_{d}(.) \text { in } L^{2}\left(0, T ; L^{2}(\omega)\right) \\ \left\|u^{*}\right\| & =\min \left\{\|v\|:\left[x\left(., x_{0}, v\right)\right] / \omega=y_{d}\right\} .\end{cases}
$$

u^{*} is given by

$$
\begin{equation*}
u^{*}=H_{\omega}^{*} f \tag{14}
\end{equation*}
$$

where f is the unique solution of equation

$$
\begin{equation*}
\Lambda_{\omega} f=G_{\omega} y_{d}-M\left(U(T) z_{0}\right) \tag{15}
\end{equation*}
$$

Moreover, the set $W_{\omega}=\left\{\left[x\left(., x_{0}, u\right)\right] / \omega: u \in L^{2}(0, T ; U)\right\}$ of all trajectories ω - reachable on $[0, T]$ is given by

$$
W_{\omega}=G_{\omega}^{-1}\left(M\left(U(T) z_{0}\right)+E^{\prime}\right)
$$

Proof. The proof is similar to the ones of proposition 1.1 and 1.2.

2.2 Application

Let ω and $\bar{\omega}$ be a given regions of $\Omega, y_{d} \in L^{2}(\bar{\omega})$ a desired state and $z_{d}(.) \in$ $L^{2}\left(0, T ; L^{2}(\omega)\right)$ a desired trajectory. The regional control trajectory problem consists of determining, under some hypothesis, the control u^{*} solution of following problem

$$
\left\|u^{*}\right\|=\min \|v\|
$$

where v verify

$$
\left\{\begin{array}{l}
x\left(T, x_{0}, v\right) / \bar{\omega}=y_{d} \\
x\left(., x_{0}, v\right) / \omega=z_{d}(.) \text { dans } L^{2}(0, T ; X)
\end{array}\right.
$$

To resolve this problem, we define the following operators

$$
\begin{aligned}
P: X \times Y & \rightarrow L^{2}(\bar{\omega}) \\
(f, g) & \rightarrow f / \bar{\omega},
\end{aligned}
$$

and $H_{\bar{\omega}, \omega}: L^{2}(0, T ; U) \rightarrow L^{2}(\bar{\omega}) \times L^{2}\left(-T, 0 ; L^{2}(\omega)\right)$, such that

$$
H_{\bar{\omega}, \omega}(u)=\left(P\left(\int_{0}^{T} U(T-r) L u(r) d r\right), M\left(\int_{0}^{T} U(T-r) L u(r) d r\right)\right)
$$

where the operator M is defined by equation (13).
Consider the Hilbert space

$$
N_{0}=\overline{\operatorname{Im} H_{\bar{\omega}, \omega}}=\left(\operatorname{Ker} H_{\bar{\omega}, \omega}^{*}\right)^{\perp}
$$

and define on the space $L^{2}(\bar{\omega}) \times L^{2}\left(-T, 0 ; L^{2}(\omega)\right)$ the semi norm

$$
\|f\|_{N}=\left\|H_{\bar{\omega}, \omega}^{*} f\right\|_{L^{2}(0, T ; U)} .
$$

Remark 2.2

i) $\|\cdot\|_{N}$ is a norm on the space N_{0}.
ii) $\left(H_{\bar{\omega}, \omega} H_{\bar{\omega}, \omega}^{*}\right)\left(L^{2}(\bar{\omega}) \times L^{2}\left(-T, 0 ; L^{2}(\omega)\right)\right) \subset N_{0}$.

We deduce from the above that the operator $\Lambda_{\bar{\omega}, \omega}$ defined by

$$
\begin{aligned}
\Lambda_{\bar{\omega}, \omega}: & N_{0} \rightarrow N_{0} \\
f & \rightarrow\left(H_{\bar{\omega}, \omega} H_{\bar{\omega}, \omega}^{*}\right)(f)
\end{aligned}
$$

is bounded and well defined.
Let N be the completion space of N_{0} respectively to the norm $\|.\|_{N}$, The operator $\Lambda_{\bar{\omega}, \omega}$ can be extended continuously and uniquely to an isomorfism defined from N to its dual space N^{\prime}. This extension is also denoted by $\Lambda_{\bar{\omega}, \omega}$.

Define the operator $K_{\bar{\omega}, \omega}$ by

$$
\begin{aligned}
K_{\bar{\omega}, \omega}: \quad L^{2}(\bar{\omega}) \times L^{2}\left(-T, 0 ; L^{2}(\omega)\right) & \rightarrow L^{2}(\bar{\omega}) \times L^{2}\left(-T, 0 ; L^{2}(\omega)\right) \\
(y, z(.)) & \rightarrow(y, z(.-T)) .
\end{aligned}
$$

$K_{\bar{\omega}, \omega}$ is bijectif and its inverse operator is given by

$$
K_{\bar{\omega}, \omega}^{-1}(y, z(.))=(y, z(.-T)) .
$$

Proposition $2.2 \quad$ 1) Let $x_{0} \in X, y_{d} \in L^{2}(\bar{\omega})$ and $z_{d} \in L^{2}\left(0, T ; L^{2}(\omega)\right)$. If $\left(y_{d}, z_{d}\right) \in K_{\bar{\omega}, \omega}^{-1}\left(\left(P\left(U(T) z_{0}\right), M\left(U(T) z_{0}\right)\right)+N^{\prime}\right)$, then there exists a unique control $u^{*} \in L^{2}(0, T ; U)$ solution of the problem, and u^{*} is given by

$$
\begin{equation*}
u^{*}=H_{\bar{\omega}, \omega}^{*} f \tag{16}
\end{equation*}
$$

where f is the unique solution of the equation

$$
\begin{equation*}
\Lambda_{\bar{\omega}, \omega} f=K_{\bar{\omega}, \omega}\left(y_{d}, z_{d}\right)-\left(P\left(U(T) z_{0}\right), M\left(U(T) z_{0}\right)\right. \tag{17}
\end{equation*}
$$

2) The set

$$
Q=\left\{\left(\left[x\left(., x_{0}, u\right)\right] / \bar{\omega},\left[x\left(., x_{0}, u\right)\right] / \omega\right): u \in L^{2}(0, T ; U)\right\}
$$

is equal to the set

$$
K_{\bar{\omega}, \omega}^{-1}\left(\left(P\left(U(T) z_{0}\right), M\left(U(T) z_{0}\right)\right)+N^{\prime}\right)
$$

Proof. The proof is similar to the ones of propositions 1.1, 1.2.

References

[1] R.B. Vinter and R.H. Kwong, The infinite time quadratic control problem for linear sustems with state and control delays. An evolution equation approach, SIAM J. Cont. and opt., 19, 1, (1981).
[2] M.C. Delfour, 'The linear-quadratic optimal control problem with delays in state and control variables: A state space approach'. SIAM. J. Cont. and Optim., 24 (1986), 835-883.
[3] A. Ichikawa, Quadratic control of evolution equations with delays in control, SIAM Journal of Cont., 20, 5, (1982).
[4] A. Ichikawa, Generation of a semi-group on some product space with application to evolution equations with delays, Control theory center, report 52 (1977), University of Warwick, Coventry, .
[5] Z. Emirsajlow, A feedback in LQCP with terminal inequality constraint, J. Optimization theory and application, 62, a, (1989).
[6] Z. Emirsajlow, A feedback for an infinite dimensional linear quadratic control problem with a fixed terminal state, IMA, J. Math. and Inf., 6, b, (1989).
[7] A. Manitius, Necessary and sufficient conditions of approximate controllability for general linear retarded systems, SIAM, J. of Cont. and opt., 19, 4, (1981).

Received: July, 2008

[^0]: ${ }^{1}$ This work is sponsored by : The Hassan II Academy of Science and Technology.

