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Abstract

In this paper we consider a fundamental control problem. Our aim
is not to determine the control which steers the system to a desired
final state at time T, but to investigate, under some hypothesis, the
input witch makes the trajectory of the system, along the interval of
time [0, 7], to be exactly equal to a desired given one. To resolve the
problem, we use a state space technique (see [1, 2, 3]), generally used
in the analysis and control of hereditary systems. We also study the
regional aspect of the problem.
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1 Introduction

Consider the linear system

{igg)) - foyf(t)—i—Bu(t) ,t€[0,T] )

where A is the generator of a strongly continuous semi-group (R(t));>o on the
Hilbert space X, B € L(U, X), where U is a Hilbert space.
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Given a desired trajectory x4(.) € L?(0,T; X), we investigate ! the control
law w, having a minimal norm, which allows the state z(¢) to coincide with
x4(t) along the interval of time [0, 7], i.e

{ z(.,xp,u) = wq(.) on L*(0,T; X)
[Jull = min{|[v]| : 2(., x0, v) = xa}

where z(., xg,v) is the state of system 1 corresponding to the command wv.

1.1 State space technique

We consider the strongly continuous semi-group (S(t));>o defined on the Hilbert
space Y = L?(=T,0; X) by

o ={ 40 LTSN w7

and
(S(t)y)(r) =0;Vr € [-T,0] , Vt > T.

The generator of (S(t))o is the operator D = 4L with domaine Dom(D) =
{y e WH3(=T,0; X) : y(0) = 0}. Let F € L(X,Y) be the operator defined by

(Fx)(r)=2, Ve e X, Vrel|-T,0].

For every xy € X and all control u € L?(0,T;U), we define on Y, the following
evolution system

y(t, 0, u) = S(t)(Fio) D/ (t — 1) Fa(r, mo,u)dr , t € [0,T], (2)

where x(., xg, u) is the solution of equation (1) corresponding to the control w.

Remark 1.1 [4/,[3]
i) For everyt <T

To if rel-T, —t]
(y(t7$07u))<r> = { ZL‘(t—f‘T, xo,u) if E] — t,O],

hence, (y(T, xo,w))(r) = (T +r,xo,u) , Vr € [=T,0].
ii) For everyt <T

_D/OtS(t_T)Fx(r7x0,u)dr)(8):{ g:(t+s,xo,u) Z zi][:;ﬂt]

! This work is sponsored by : The Hassan II Academy of Science and Technology.
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The introduction of the state y(., zo, u) allows us to transform the control tra-
jectory problem to a standard controllability problem on the space Y. Indeed,
to determine a control u such that x(.,xg,u) = z4(.) is equivalent to find a
control u which satisfy y(T') = yq, where y; € Y is the desired state defined

by ya(.) = za(. +T).

The input u acts on the signal y(.,x¢,u) in a non standard form, this
suggest us to define an other evolution equation on the state Z = X x Y.
Precisely, we consider the system defined on the Hilbert space Z = X x Y, by

zuy:U@pw+Aﬂut—mmem,Vtemgm (3)

where L = (B,0)T, 2y = (xo, Fzo)T and (U(t))s>0 the strongly continuous
semi-group defined by

_ (Ut 0
00 =5 vy ) > W

where
%@:R@Juw:awwdm@:—qfapwﬁﬂmm.

Remark 1.2 We verify easily that for all o € X and all controlu € L*(0,T;U),
we have

Z(.,ZL‘O,U) = (I(.,Io,u>,y(.,l‘0,U>>, (5>

where z(.,xo,u) is the solution of (3).

1.2 Fundamental results

Define the operator H by

H: L*(0,T;U) — Y
u — po T U(T — 7)) Lu(r)dr

where ps is the operator

Do : Z — Y
(z,y) — y

and (U(t));>o is the strongly continuous semi group defined by (4).

Remark 1.3 the operator H is bounded and have an adjoint operator given

by
H*:'Y — L*0,T;U)
y — B*[°LRY(T — . +7r)y(r)dr.
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Let’s consider the Hilbert space
Fo=TmH = (Ker H*)* (6)
and the semi norm defined on Y by

I[f1lF = [[H" |l 220,750

The corresponding scalar product to this semi norm is
<< f,g>>=< H"f,H'g> Vf,geY.

Remark 1.4 We easily establish that
i) ||.||F is @ norm on Fy.
i) (HH*)(Y) C Fy.

Define the operator A by

A FO — FO
f — HH*f.

It follows from remark 1.4 that A is well defined and bounded. If F' is the
completion space of Fy respectively to the norm ||.||r, then operator A has a

unique extension, denoted also A, which is an isomorfism from the space F' to
its dual F.

Let’s define the operator G' by

G: L*0,T;X) — L*(-T,0;X)
y - y(T+.)

Proposition 1.1 Let g € X and yq € L*(0,T; X) a given desired trajectory.
Ifyg € G Y pa(U(T)20)+F"), where 2o = (¢, Fo)T, then there exists a unique
control u* € L*(0,T;U) such that

{ z(., o, u*) = ya(.) on L*(0,T; X)

[Ju| = min{][v]| : z(., x0,v) = ya}.

The input u* s given by
u* = H"f, (7)

where f is the unique solution of the equation
Af = Gya — pa(U(T)2). (8)

Proof. Since y4 € G~ (po(U(T)20) + F', then

/

yd(T + ) € pQ(U(T)Z()) + F
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but A is an isomorfism, hence there exists a unique f € F' such that

ya(T +.) = p2(U(T)z0) + Af.
Consider the control u* = H*f, we can write yq(T + .) as follows

ya(T +.) = p2(U(T)z0) + Hu*
which implies that yu(T'+.) = pa(2(T, 2o, u*)), and from remark 1.2 we deduce
that y4(T + .) = y(T, xp, u*). Finally, from remark 1.1 we obtain

Ya = (., g, u").
On the other hand, to proof the optimality of u*, we consider the set
C={vel?0,T;U): x(.,20,v) = ya}.

For every v € C, we have (., zq,v) = x(., o, u*). Hence Hu* = Hv, conse-

quently

<< Hw—u*), f>>=0,1e, <v—u*u* >=0, thus |[u*]| < ||| n
To complete the precedent result, we give a caracterization of the reachable

trajectory.

Proposition 1.2 Let W = {z(.,zo,u) : u € L*(0,T;U)} be the set of all
reachable trajectories, from an initial state xo, on [0,T], then

W =G Y (po(U(T) ) + F').
Proof. It follows from proposition 1.1 that

W D G (pa(U(T)z) + F).
Inversely, given z(., zg,u) € W, we consider the linear form

v: Fy, — IR
f — <Gz(,xo,u) —p(U(T)20), f > .

From the density of F on F', we deduce that

WAl < [lull [I£]], VF € F.

Finally, it follows from the Riesz theorem that Gz (., zo,u) — p2(U(T)2) € F'.
]

Remark 1.5 Similarly to what was done by Emirsajlow in [5] and [6], the
approach developped in this section can be used to resolve the following control
problem

7mM/T<MmRMﬂ>dt:ue%L
where ’
Vo={ue L*0,T;U) : ||z(.,z0,u) — yallz2001:x) < @} , (a > 0)
and R a self-adjoint definite positif operator.
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1.3 A finite dimensional case
Consider the system
{ i(t) = Az(t)+ Bu(t), t €[0,T] ()
z(0) = o,
where A € L(IR"), B € L(IR").

Proposition 1.3 If there exists a matrice Ky € L(IR™) such that the matrice
BK, is invertible, then the space Fy defined by (6) is given by

Fy = L*(—T,0; R™).
Proof. We take yq € L?*(=T,0; IR"), € > 0 and seek a control u such that
[Hu — yal| < €.

Let K; be an arbitrary matrix in £(IR") and h €]0,T[. We easily deduce from
[7] that, under the invertibility hypothesis of the matrix BK,, the system

q(t) = Aq(t)+ BKyq(t — h) + BKy(t), t € [0,T]
q(0) = qo (10)
q(r) = ®(r), Vr e [-T,0]

is approximately controllable on the space M? = IR" x L?(—T,0; IR"). In other
words, for every x4 = (aq,bq) € M?, there exists a control v in L*(0,T; IR")
such that

||(q(T7q)7v)7QT(‘7CI)aU)) _‘rdHM2 S €, (11>

where ® = (qo, ®;) € M? is the initial state, ¢(.,®,v) is the state variable

corresponding to ® and the input v, ¢7(., ®,v) € L*(=T,0; IR") is defined by
[QT(-, CI)> U)](T’) = Q(T + 7, CI), U) , T € [_Ta O]

It follows from equation (11) that given an initial state ® = (zo, ®1), where
7o is the initial state of system 9 and ®; € L*(—T,0; IR"), given a desired
state cq = (24, yq + p2(U(T)zp)), where x4 is an arbitrary element of IR" and
20 = (wg, F'xg), there exists a control v* € L?(0,T; IR") such that

H(q(T7 (I),’U*),QT(., CD>U*>> - CdHM2 S €,

hence
HQT(-a CD,U*) — Yd _p2(U(T>ZO)HL2(7T,O;R) <€

Then define the control variable

s (t) = Kqq(t — h, ®,0") + Kyv*(t).
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Since ¢(., ®,v*) is the solution of equation
4(t) = Aq(t) + BKyq(t — h) + BKov*(t) , t € [0,T),

we deduce that

q(t) = Aq(t,®,v*) + Buy(t) , t €[0,T] (12)
q(07 ®7 U*) = Xy,
thus
q(t, ®,v*) = x(t, 20, up) , 7 € [0,T]
consequently,
q(T+r,®,0") = x(T + r,xo,up) , t € [=T,0].
From remark 1.1, we have gr(., ®,v*) = y(T, zo, u,~ ), hence
||y(T7 Zo, uv*) —Ya — pQ(U(T)ZO)HLZ(fT,o;R) <e
Finally, from remark 1.2 we obtain that
y(T, zo, up ) = p2(2(T, 2o, uyp)), and then ||Hu, — yg|| < €. [ |

2 A regional control trajectory problem

In this section we study the regional aspect of the control trajectory problem,
i.e., we suppose that the state space is X = L?(2), where Q is an open bounded
subset of IR", and we consider a region w C () and a desired trajectory y, €
L*(0,T; L*(w)), then we investigate the control u solution of the problem

{[x(-,fvo,U)] = Y

|l = min{|[v[| : [z(., 20, v)]/w = ya}.

2.1 Definition of the problem-caracterization

Given a region w of 2, we consider the bounded operators M,, M and H,
defined by
M, : L*-T,0;X) — L*-T,0;L*w))
f — flw
M: Z=XxY — L*-T,0;L*w))
(f,9)  — Mui(g)
H,: L[*0,T;U) — L*(-T,0;L*w))
u — M(J§U(T —r)Lu(r)dr).

(13)
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and the Hilbert space Ey = Im H,, = (Ker H})*.
We define on L?*(—T,0; L*(w)), the semi norm

A 1e = 1HEf | 2o

and the corresponding inner product by
<< f7g >>p=< H:fv H::g >, vfug S L2(_T7 0; L2(w))

Remark 2.1 We have

(i) ||.||g is a norm on the space Ej.

(ii) (Ho,H)(L*(=T,0; L*(w))) C Eo.
Define the operator A, by

AW . E() — E()
f — H,Hf.

It follows from the precedent remark that A, is well defined, we also verify
easily that it is bounded.

Let E be the completion space of Ej relatively to the norm ||.||g. The
operator A, can be extended continuously, and uniquely, to an isomorfirm
defined from F to its dual E'. This extension is also denoted A,,.

To establish the fundamental result of this section we introduce the oper-
ator G, defined by

Go: L0,T51%w) — LA(=T,0:[*(w))

Y — y(T + )

G, is bijectif and has an inverse operator described by

Gol LA=T,0; L2 (w)) — L2(0,T; L*(w))

y — y(.—T)
Proposition 2.1 Let zg € X and yg € L*(0,T; L*(w)) a desired given trajec-
tory,
ifyg € GSHM(U(T)z)+E'), then there exists a unique controlu* € L*(0,T;U)
such that
{ [z(., o, u")]/w = wa(.) in L*(0,T; L*(w))
||| = min{||v]| : [z(., 20, v)]/w = ya}.

u* s giwen by

ut = Hf (14)
where f is the unique solution of equation
Auf = Guya— M(U(T)z). (15)

Moreover, the set W, = {[z(.,zo,u)]/w : uw € L*(0,T;U)} of all trajectories
w — reachable on [0,T] is given by

W, = G;Y(M(U(T)z) + E).

Proof. The proof is similar to the ones of proposition 1.1 and 1.2. [ ]
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2.2 Application

Let w and @ be a given regions of Q, y; € L?(w) a desired state and z4(.) €
L?(0,T; L*(w)) a desired trajectory. The regional control trajectory problem
consists of determining, under some hypothesis, the control u* solution of
following problem

[lu™]| = min|v]]

where v verify

z(.,mp,v)/w = 2z4(.) dans L*(0,T; X)
To resolve this problem, we define the following operators
P: XxY — L*®)
(fr9) — flo,
and Hy,, : L*(0,T;U) — L*(w) x L*(—T,0; L*(w)), such that

{x(T,xo,v)/@ = g

Hoo(u) = (P( /0 U = ) Lu(r)dr), M( /0 LU = 1) Lu(r)dr))

where the operator M is defined by equation (13).
Consider the Hilbert space
Ny =ImHg, = (Ker H; )"
and define on the space L?(w) x L*(—T,0; L*(w)) the semi norm

1l = 1HE o fll20.m0)-

Remark 2.2
i) ||.|ly is a norm on the space Ny.
ii) (HL—WH;M)(LQ(J)) x L*(=T,0; L*(w))) C Ny.
We deduce from the above that the operator Ay, defined by
AQ,’W . N() — N()
foo—= (HewH; )(f)
is bounded and well defined.

Let N be the completion space of Ny respectively to the norm ||.||5, The
operator Ag,, can be extended continuously and uniquely to an isomorfism
defined from N to its dual space N'. This extension is also denoted by Ag .

Define the operator K, by

Koo L*(@) x L*(-T,0; L*(w)) — L*(w) x L*(=T,0; L*(w))
(y,Z()) - (y,Z(. _T))

K, is bijectif and its inverse operator is given by
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Proposition 2.2 1) Let xy € X, yq € L*(©) and zg € L*(0,T; L*(w)). If

(Ya, za) € K5 L((P(U(T)20), M(U(T)z))+N'), then there exists a unique
control u* € L*(0,T;U) solution of the problem, and u* is given by

ut = Hg,f, (16)
where f is the unique solution of the equation
Nowf = Kow(Ya, 2a) — (P(U(T)z0), M(U(T)2). (17)

2) The set

Q = {([z(., 20, u)]/@, [2(., 20, )] /w) : w € L*(0,T; U)}

18 equal to the set

K (P(U(T)z0), M(U(T)z0)) + N).

Proof. The proof is similar to the ones of propositions 1.1, 1.2. ]
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