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Abstract. Let T be a linear opeartor and D be a matrix. So by its diagonal
matrix, we get a lot of informations about T , namely we can almost answer
any question about T . In this paper we introduce an efficient algorithm that
characterizes whether a given matrix is diagonalizable in the field F or not
(where F is the real field R or the complex field C).
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1. Introduction

For analysis of the linear operator T , we must know the annihilator polyno-
mials class of T . That is, suppose V is a vector space over the field F and T
is a linear operator on V . If p is a polynomial over F then p(T ) is an operator
on V and if q is similar to p, then

(p + q)(T ) = p(T ) + q(T ),

(pq)(T ) = p(T )q(T ).

Therefore the annihilator polynomials class of T , i.e., p(T ) = 0 is an ideal
in the polynomial algebra F [x].
Note that if the field is of finite dimension then the ideal is nonzero. Since
F [x] is a PID, hence each polynomials ideal, consists of all coefficients, is a
constant monic polynomial whose generating is an ideal. Accordingly the linear
operator T with the monic polynomial p satisfies the following proposition.

Proposition 1.1. If f is a polynomial over F then f(T ) = 0 if and only if
f = pq where q is a polynomial over F .
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Proof. This is clear (see [3]).

Definition 1.2. Suppose T : V → V is a linear operator on the vector space
V of finite dimension over the field F . The minimal polynomial of T is the
monic generating of the polynomials ideal over F that annihilate T .

Thus the minimal polynomial pT has the following properties

1. pT is a monic polynomial over the field F .
2. pT (T ) = 0.
3. Among all polynomials over F that annihilate T , pT has the least degree.

Theorem 1.3. Suppose that T ∈ L(V ), and (V, F ) is a vector space of finite
dimension over the field F . Hence

1. There exists the minimal polynomial pT such that it is unique and its
degree is at most n = dim(V ).

2. If q ∈ F [x] such that q(T ) = 0 then there exists an another polynomial as
r ∈ F [x] such that q = rpT .

Now we present a straightforward way to the computation of minimal poly-
nomial.
Suppose v ∈ V and d is the least nonnegative integer such that the set
{v, T (v), T2(v), . . . , Td(v)} of vectors is linear dependent (obviously d ≤ n).
Note that d = 0 if and only if v is a zero vector and also d = 1 if and only if v
is an eigenvector of T .
Accordingly there are the scalars a0, . . . , ad−1 ∈ F such that T d(v)+ad−1T

d−1(v)+
. . . + a1T (v) + a0v = 0. Now according to the property of d, we can assume
that the coefficient T d(v) is 1. Accordingly

pT,v(x) = xd + ad−1x
d−1 + . . . + a1x + a0 ∈ F [x].

Thus by Definition 1.2, v ∈ ker pT,v(T ). In other words, pT,v is a monic poly-
nomial with the least degree such that v ∈ ker pT,v(T ).

Remark 1.4. if q ∈ F [x] is a common divisor of pT,v1 and pT,v2 then v1 and v2

are in ker q(T ).

We generalize the above method, if the set B = {v1, v2, . . . , vn} is a basis of
V and q is a common divisor of pT,v1 , pT,v2, . . . , pT,vn, then B ⊂ ker q(T ), and
therefore q(T ) = 0. Hence we have the following theorem.

Theorem 1.5. Suppose T ∈ L(V ), and (V, F ) is a vector space of finite di-
mension over the field F . If the set B = {v1, v2, . . . , vn} is a basis of V , then
pT is the least common divisor of pT,v1 , pT,v2, . . . , pT,vn.

Proof. According to the above obtained results, p(T ) = 0 and by Theorem 1.3,
pT | p. On the other hand

pT = qjpT,vj
+ rj such that deg rj < deg pT,vj

(j = 1, 2, . . . , n).
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Thus

0 = pT (T )(vj) = qj(T )(pT,vj
(T )vj) + rj(T )vj = rj(T )vj.

We know that pT,vj
has the least degree, hence rj = 0, and since pT,vj

| pT then
pT = p.

We conclude that to the computation of the polynomials pT,v1, pT,v2 , . . . , pT,vn,
we must find their least common divisor where {v1, v2, . . . , vn} is a basis of the
space (note that deg pT ≤ n).

Example 1.6. We want to find the minimal polynomials for the following ma-
trices

A =

⎛
⎝

−1 −1 2
−1 0 1
0 −1 1

⎞
⎠ and B =

⎛
⎝

−1 −1 2
−1 0 1
0 −1 −1

⎞
⎠.

Consider the standard basis {e1, e2, e3} of R3. Thus

Ae1 = Be1 =

⎛
⎝

−1
−1
0

⎞
⎠ , A2e1 = B2e1 =

⎛
⎝

2
1
1

⎞
⎠, A3e1 =

⎛
⎝

−1
−1
0

⎞
⎠ = Ae1,

B3e1 =

⎛
⎝

−1
−1
−2

⎞
⎠ = −2B2e1 − Be1 + 2e1.

So we have

pA,e1(x) = x3 − x and pB,e1(x) = x3 + 2x2 + x − 2.

Since deg pA,e1 = 3 and the minimal polynomial of A is a monic coefficient of
pA,e1 with at most degree 3, thus pA = pA,e1 (without computation of pA,e2 and
pA,e3) and similarly pB = pB,e1.

Theorem 1.7. Suppose T ∈ L(V ) and (V, F ) is a vector space of finite di-
mension over the field F . Then T is diagonalizable if and only if

pT (x) = (x − λ1)(x − λ2) . . . (x − λk),

where λ1, λ2, . . . , λk ∈ F are distinct eigenvalues.

Proof. Follows from Theorem 1.5.

2. Characterization of Diagonalizable Matrices: A Criterion

Our goal in this section is finding a subtle answer to the question, when can
we write the polynomial p ∈ F [x] in the form pT (x) = (x−λ1)(x−λ2) . . . (x−
λk)?
First we must know two points, whether all roots of p have multiplicity 1, and
whether these roots are belong to the field F .

We can answer the first question easily by the next theorem.
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Theorem 2.1. Suppose that p ∈ F [x] is a nonconstant polynomial and p′ is
its derivation, then the following properties are equivalent

1. p has a root in F with the multiplicity greater than 1.
2. p and p′ have a common root in F .
3. The greatest common divisor of p and p′, i.e., gcd(p, p′) has a root in F .

Theorem 2.2. Suppose T ∈ L(V ), and (V, F ) is a vector space of finite di-
mension over the field F . Then

1. If F is an algebraically closed field (say F = C), then T is diagonalizable
if and only if gcd(p, p′) = 1.

2. If F is not an algebraically closed field (say F = R), then T is diagonal-
izable if and only if gcd(p, p′) = 1 and all roots of pT are in F .

Proof. Follows from Theorem 1.7.

Assume the finite sequence of real numbers c = (c0, . . . , cs) ∈ R
s+1. If

(c0, . . . , cs) are nonzero then the number of variations in sign of c (Vc) is equal
to the number of the indices 1 ≤ j ≤ s such that cj−1cj < 0. If some elements
of c are zero, then the number of variations in sign of c (Vc) is equal to the
number of variations in sign of the sequence consisting of nonzero elements of
c.

Now suppose p ∈ R[x] is a nonconstant polynomial. The standard sequence
corresponding to p is a sequence like p0, p1, . . . , ps ∈ R[x] such that
p0 = p ; p1 = p′

p0 = q1p1 − p2 ; deg p2 < deg p1
...
pj−1 = qjpj − pj+1 ; deg pj+1 < deg pj
...
ps−1 = qsps ; ps+1 ≡ 0.

Now we are ready to see Sturm’s Theorem.

Theorem 2.3 (Sturm’s Theorem). Suppose p ∈ R[x] is a polynomial such
that gcd(p, p′) = 1 and a, b ∈ R, a < b and p(a)p(b) �= 0. Consider the
standard sequence p0, p1, . . . , ps ∈ R[x] corresponding to p. Then the number
of the roots of p in [a, b] is Vα − Vβ where α = (p0(a), p1(a), . . . , ps(a)) and
β = (p0(b), p1(b), . . . , ps(b)).

Proof. See [4, §24, pp. 112-116] and [8].

Conclusion 2.4. Suppose p ∈ R[x] is a nonconstant sequence such that gcd(p, p′) =
1 and the standard sequence corresponding to p is p0, p1, . . . , ps ∈ R[x] and
dj = deg pj and cj is leading coefficient of pj (j = 0, 1, . . . , s), then the num-
ber of the roots of p is V−−V+ where V− is the number of variations in sign of
the sequence ((−1)d0c0, (−1)d1c1, . . . , (−1)dscs) and V+ is the number of vari-
ations in sign of the sequence (c0, c1, . . . , cs).
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3. Our Algorithm

If T ∈ L(V ) and (V, F ) is a vector space of finite dimension over the field F
where F = R or F = C, then

step1. Compute the minimal polynomial pT .
step2. Compute the standard sequence p0, p1, . . . , ps corresponding to p.

– If ps is not constant then T is not diagonalizable.
– If ps is constant and F = C then T is diagonalizable.
– If ps is constant anf F = R then go to step3.

step3. Compute V− and V+ corresponding to pT . Hence T is diagonalizable if
and only if

V− − V+ = deg pT .

Example 3.1. In Example 1.6, the minimal polynomial of the matrix B was
pB(x) = x3 + 2x2 + x − 2. The standard sequence corresponding to this
polynomial is
p0(x) = x3 + 2x2 + x − 2
p1(x) = x2 + 4x + 1
p2(x) = 2

9
x + 20

9
p3(x) = −261

p3 is constant, therefore B is diagonalizable. Now if F = R, compute V−−V+,
namely compute the number of variations in sign of the following sequences

(−1, 3,−2

9
,−261) and (1, 3,

2

9
,−261).

Hence
V− − V+ = 2 − 1 = 1 < 3 = deg(pB).

Therefore, B is not diagonalizable over R. On the other hand, the standard
sequence corresponding to pA is
p0(x) = x3 − x
p1(x) = 3x2 − 1
p2(x) = 2

3
x

p3(x) = 1.
Now clearly V+ = 0 and V− = 3. Therefore A is diagonalizable over R.
Furthermore, the matrices A and B are diagonalizable over C, because their
minimal polynomial is of degree 3, thus their eigenvalues are distinct.
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