Characterization of Diagonalizable Matrices: An Algorithm

Arman Shokrollahi

Ramanujan Institute for Advanced Study in Mathematics University of Madras, Chepauk, Chennai 600 005, India
shokrollahi.a@gmail.com

Abstract

Let T be a linear opeartor and D be a matrix. So by its diagonal matrix, we get a lot of informations about T, namely we can almost answer any question about T. In this paper we introduce an efficient algorithm that characterizes whether a given matrix is diagonalizable in the field F or not (where F is the real field \mathbb{R} or the complex field \mathbb{C}).

Mathematics Subject Classification: 11C08, 65F30, 15A03, 15A06, 15A99

Keywords: Annihilator polynomial, diagonal matrix, linear operator, vector space

1. Introduction

For analysis of the linear operator T, we must know the annihilator polynomials class of T. That is, suppose V is a vector space over the field F and T is a linear operator on V. If p is a polynomial over F then $p(T)$ is an operator on V and if q is similar to p, then

$$
\begin{aligned}
(p+q)(T) & =p(T)+q(T), \\
(p q)(T) & =p(T) q(T) .
\end{aligned}
$$

Therefore the annihilator polynomials class of T, i.e., $p(T)=0$ is an ideal in the polynomial algebra $F[x]$.
Note that if the field is of finite dimension then the ideal is nonzero. Since $F[x]$ is a PID, hence each polynomials ideal, consists of all coefficients, is a constant monic polynomial whose generating is an ideal. Accordingly the linear operator T with the monic polynomial p satisfies the following proposition.

Proposition 1.1. If f is a polynomial over F then $f(T)=0$ if and only if $f=p q$ where q is a polynomial over F.

Proof. This is clear (see [3]).
Definition 1.2. Suppose $T: V \rightarrow V$ is a linear operator on the vector space V of finite dimension over the field F. The minimal polynomial of T is the monic generating of the polynomials ideal over F that annihilate T.

Thus the minimal polynomial p_{T} has the following properties

1. p_{T} is a monic polynomial over the field F.
2. $p_{T}(T)=0$.
3. Among all polynomials over F that annihilate T, p_{T} has the least degree.

Theorem 1.3. Suppose that $T \in L(V)$, and (V, F) is a vector space of finite dimension over the field F. Hence

1. There exists the minimal polynomial p_{T} such that it is unique and its degree is at most $n=\operatorname{dim}(V)$.
2. If $q \in F[x]$ such that $q(T)=0$ then there exists an another polynomial as $r \in F[x]$ such that $q=r p_{T}$.

Now we present a straightforward way to the computation of minimal polynomial.
Suppose $v \in V$ and d is the least nonnegative integer such that the set $\left\{v, T(v), T_{2}(v), \ldots, T_{d}(v)\right\}$ of vectors is linear dependent (obviously $d \leq n$).
Note that $d=0$ if and only if v is a zero vector and also $d=1$ if and only if v is an eigenvector of T.
Accordingly there are the scalars $a_{0}, \ldots, a_{d-1} \in F$ such that $T^{d}(v)+a_{d-1} T^{d-1}(v)+$ $\ldots+a_{1} T(v)+a_{0} v=0$. Now according to the property of d, we can assume that the coefficient $T^{d}(v)$ is 1 . Accordingly

$$
p_{T, v}(x)=x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x+a_{0} \in F[x] .
$$

Thus by Definition 1.2, $v \in \operatorname{ker} p_{T, v}(T)$. In other words, $p_{T, v}$ is a monic polynomial with the least degree such that $v \in \operatorname{ker} p_{T, v}(T)$.

Remark 1.4. if $q \in F[x]$ is a common divisor of $p_{T, v_{1}}$ and $p_{T, v_{2}}$ then v_{1} and v_{2} are in $\operatorname{ker} q(T)$.

We generalize the above method, if the set $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of V and q is a common divisor of $p_{T, v_{1}}, p_{T, v_{2}}, \ldots, p_{T, v_{n}}$, then $B \subset \operatorname{ker} q(T)$, and therefore $q(T)=0$. Hence we have the following theorem.

Theorem 1.5. Suppose $T \in L(V)$, and (V, F) is a vector space of finite dimension over the field F. If the set $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of V, then p_{T} is the least common divisor of $p_{T, v_{1}}, p_{T, v_{2}}, \ldots, p_{T, v_{n}}$.

Proof. According to the above obtained results, $p(T)=0$ and by Theorem 1.3, $p_{T} \mid p$. On the other hand

$$
p_{T}=q_{j} p_{T, v_{j}}+r_{j} \text { such that } \operatorname{deg} r_{j}<\operatorname{deg} p_{T, v_{j}} \quad(j=1,2, \ldots, n)
$$

Thus

$$
0=p_{T}(T)\left(v_{j}\right)=q_{j}(T)\left(p_{T, v_{j}}(T) v_{j}\right)+r_{j}(T) v_{j}=r_{j}(T) v_{j} .
$$

We know that $p_{T, v_{j}}$ has the least degree, hence $r_{j}=0$, and since $p_{T, v_{j}} \mid p_{T}$ then $p_{T}=p$.

We conclude that to the computation of the polynomials $p_{T, v_{1}}, p_{T, v_{2}}, \ldots, p_{T, v_{n}}$, we must find their least common divisor where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of the space (note that $\operatorname{deg} p_{T} \leq n$).

Example 1.6. We want to find the minimal polynomials for the following matrices

$$
A=\left(\begin{array}{ccc}
-1 & -1 & 2 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
-1 & -1 & 2 \\
-1 & 0 & 1 \\
0 & -1 & -1
\end{array}\right)
$$

Consider the standard basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of \mathbb{R}^{3}. Thus

$$
\begin{gathered}
A e_{1}=B e_{1}=\left(\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right), A^{2} e_{1}=B^{2} e_{1}=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right), A^{3} e_{1}=\left(\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right)=A e_{1} \\
B^{3} e_{1}=\left(\begin{array}{c}
-1 \\
-1 \\
-2
\end{array}\right)=-2 B^{2} e_{1}-B e_{1}+2 e_{1} .
\end{gathered}
$$

So we have

$$
p_{A, e_{1}}(x)=x^{3}-x \quad \text { and } \quad p_{B, e_{1}}(x)=x^{3}+2 x^{2}+x-2 .
$$

Since $\operatorname{deg} p_{A, e_{1}}=3$ and the minimal polynomial of A is a monic coefficient of $p_{A, e_{1}}$ with at most degree 3 , thus $p_{A}=p_{A, e_{1}}$ (without computation of $p_{A, e_{2}}$ and $\left.p_{A, e_{3}}\right)$ and similarly $p_{B}=p_{B, e_{1}}$.

Theorem 1.7. Suppose $T \in L(V)$ and (V, F) is a vector space of finite dimension over the field F. Then T is diagonalizable if and only if

$$
p_{T}(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{k}\right),
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \in F$ are distinct eigenvalues.
Proof. Follows from Theorem 1.5.

2. Characterization of Diagonalizable Matrices: A Criterion

Our goal in this section is finding a subtle answer to the question, when can we write the polynomial $p \in F[x]$ in the form $p_{T}(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots(x-$ $\left.\lambda_{k}\right)$?
First we must know two points, whether all roots of p have multiplicity 1 , and whether these roots are belong to the field F.

We can answer the first question easily by the next theorem.

Theorem 2.1. Suppose that $p \in F[x]$ is a nonconstant polynomial and p^{\prime} is its derivation, then the following properties are equivalent

1. p has a root in F with the multiplicity greater than 1 .
2. p and p^{\prime} have a common root in F.
3. The greatest common divisor of p and p^{\prime}, i.e., $\operatorname{gcd}\left(p, p^{\prime}\right)$ has a root in F.

Theorem 2.2. Suppose $T \in L(V)$, and (V, F) is a vector space of finite dimension over the field F. Then

1. If F is an algebraically closed field (say $F=\mathbb{C}$), then T is diagonalizable if and only if $\operatorname{gcd}\left(p, p^{\prime}\right)=1$.
2. If F is not an algebraically closed field (say $F=\mathbb{R}$), then T is diagonalizable if and only if $\operatorname{gcd}\left(p, p^{\prime}\right)=1$ and all roots of p_{T} are in F.
Proof. Follows from Theorem 1.7.
Assume the finite sequence of real numbers $c=\left(c_{0}, \ldots, c_{s}\right) \in \mathbb{R}^{s+1}$. If $\left(c_{0}, \ldots, c_{s}\right)$ are nonzero then the number of variations in sign of $c\left(V_{c}\right)$ is equal to the number of the indices $1 \leq j \leq s$ such that $c_{j-1} c_{j}<0$. If some elements of c are zero, then the number of variations in sign of $c\left(V_{c}\right)$ is equal to the number of variations in sign of the sequence consisting of nonzero elements of c.

Now suppose $p \in \mathbb{R}[x]$ is a nonconstant polynomial. The standard sequence corresponding to p is a sequence like $p_{0}, p_{1}, \ldots, p_{s} \in \mathbb{R}[x]$ such that

$$
\begin{aligned}
& p_{0}=p \quad ; \quad p_{1}=p^{\prime} \\
& p_{0}=q_{1} p_{1}-p_{2} \quad ; \quad \operatorname{deg} p_{2}<\operatorname{deg} p_{1} \\
& \vdots \\
& p_{j-1}=q_{j} p_{j}-p_{j+1} \quad ; \quad \operatorname{deg} p_{j+1}<\operatorname{deg} p_{j} \\
& \vdots \\
& p_{s-1}=q_{s} p_{s} \quad ; \quad p_{s+1} \equiv 0 .
\end{aligned}
$$

Now we are ready to see Sturm's Theorem.
Theorem 2.3 (Sturm's Theorem). Suppose $p \in \mathbb{R}[x]$ is a polynomial such that $\operatorname{gcd}\left(p, p^{\prime}\right)=1$ and $a, b \in \mathbb{R}, a<b$ and $p(a) p(b) \neq 0$. Consider the standard sequence $p_{0}, p_{1}, \ldots, p_{s} \in \mathbb{R}[x]$ corresponding to p. Then the number of the roots of p in $[a, b]$ is $V_{\alpha}-V_{\beta}$ where $\alpha=\left(p_{0}(a), p_{1}(a), \ldots, p_{s}(a)\right)$ and $\beta=\left(p_{0}(b), p_{1}(b), \ldots, p_{s}(b)\right)$.
Proof. See [4, §24, pp. 112-116] and [8].
Conclusion 2.4. Suppose $p \in \mathbb{R}[x]$ is a nonconstant sequence such that $\operatorname{gcd}\left(p, p^{\prime}\right)=$ 1 and the standard sequence corresponding to p is $p_{0}, p_{1}, \ldots, p_{s} \in \mathbb{R}[x]$ and $d_{j}=\operatorname{deg} p_{j}$ and c_{j} is leading coefficient of $p_{j}(j=0,1, \ldots, s)$, then the number of the roots of p is $V_{-}-V_{+}$where V_{-}is the number of variations in sign of the sequence $\left((-1)^{d_{0}} c_{0},(-1)^{d_{1}} c_{1}, \ldots,(-1)^{d_{s}} c_{s}\right)$ and V_{+}is the number of variations in sign of the sequence $\left(c_{0}, c_{1}, \ldots, c_{s}\right)$.

3. Our Algorithm

If $T \in L(V)$ and (V, F) is a vector space of finite dimension over the field F where $F=\mathbb{R}$ or $F=\mathbb{C}$, then
step1. Compute the minimal polynomial p_{T}.
step2. Compute the standard sequence $p_{0}, p_{1}, \ldots, p_{s}$ corresponding to p.

- If p_{s} is not constant then T is not diagonalizable.
- If p_{s} is constant and $F=\mathbb{C}$ then T is diagonalizable.
- If p_{s} is constant anf $F=\mathbb{R}$ then go to step3.
step3. Compute V_{-}and V_{+}corresponding to p_{T}. Hence T is diagonalizable if and only if

$$
V_{-}-V_{+}=\operatorname{deg} p_{T}
$$

Example 3.1. In Example 1.6, the minimal polynomial of the matrix B was $p_{B}(x)=x^{3}+2 x^{2}+x-2$. The standard sequence corresponding to this polynomial is
$p_{0}(x)=x^{3}+2 x^{2}+x-2$
$p_{1}(x)=x^{2}+4 x+1$
$p_{2}(x)=\frac{2}{9} x+\frac{20}{9}$
$p_{3}(x)=-261$
p_{3} is constant, therefore B is diagonalizable. Now if $F=\mathbb{R}$, compute $V_{-}-V_{+}$, namely compute the number of variations in sign of the following sequences

$$
\left(-1,3,-\frac{2}{9},-261\right) \quad \text { and } \quad\left(1,3, \frac{2}{9},-261\right) .
$$

Hence

$$
V_{-}-V_{+}=2-1=1<3=\operatorname{deg}\left(p_{B}\right)
$$

Therefore, B is not diagonalizable over \mathbb{R}. On the other hand, the standard sequence corresponding to p_{A} is
$p_{0}(x)=x^{3}-x$
$p_{1}(x)=3 x^{2}-1$
$p_{2}(x)=\frac{2}{3} x$
$p_{3}(x)=1$.
Now clearly $V_{+}=0$ and $V_{-}=3$. Therefore A is diagonalizable over \mathbb{R}. Furthermore, the matrices A and B are diagonalizable over \mathbb{C}, because their minimal polynomial is of degree 3 , thus their eigenvalues are distinct.

References

[1] G. S. Cheon, C. R. Johnson, S. G. Lee and E. J. Pribble, The possible numbers of zeros in an orthogonal matrix, The Electronic Journal of Linear Algebra 5 (1999), 19-23.
[2] R. Courant and H. Robbins, What is Mathematics?, Oxford Univ. Press, New York, 1941.
[3] C. W. Curtis, Linear Algebra, An Introductory Approach, Springer-Verlag, 1984.
[4] H. Dörrie, 100 Great Problems of Elementary Mathematics, New York: Dover, 1965.
[5] P. R. Halmos, Finite Dimensional Vector Spaces, 2nd edn., Van Nostrand, Princeton, 1958.
[6] R. Horn and C. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, xiii +561 pp., 1985.
[7] B. Noble, Applied Linear Algebra, Prentice-Hall, Englewood Cliffs, N.J., 1969.
[8] J. M. Thomas, Sturm's theorem for multiple roots, National Mathematics Magazine 15 (1941), 391-394.

Received: April 30, 2008

