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Abstract. Let T be a linear opeartor and D be a matrix. So by its diagonal
matrix, we get a lot of informations about 7', namely we can almost answer
any question about 7. In this paper we introduce an efficient algorithm that
characterizes whether a given matrix is diagonalizable in the field F' or not
(where F' is the real field R or the complex field C).
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1. INTRODUCTION

For analysis of the linear operator T', we must know the annihilator polyno-
mials class of T'. That is, suppose V is a vector space over the field F' and T
is a linear operator on V. If p is a polynomial over F' then p(7T) is an operator
on V and if ¢ is similar to p, then

(p+q)(T) =p(T) +q(T),

(pg)(T") = p(T)q(T).
Therefore the annihilator polynomials class of T, i.e., p(T) = 0 is an ideal
in the polynomial algebra F'[x].
Note that if the field is of finite dimension then the ideal is nonzero. Since
F[z] is a PID, hence each polynomials ideal, consists of all coefficients, is a
constant monic polynomial whose generating is an ideal. Accordingly the linear
operator 1" with the monic polynomial p satisfies the following proposition.

Proposition 1.1. If f is a polynomial over F then f(T) = 0 if and only if
f = pq where q 1s a polynomial over F.



576 A. Shokrollahi
Proof. This is clear (see [3]). O

Definition 1.2. Suppose T': V' — V is a linear operator on the vector space
V' of finite dimension over the field F'. The minimal polynomial of T is the
monic generating of the polynomials ideal over F' that annihilate T

Thus the minimal polynomial py has the following properties

1. pr is a monic polynomial over the field F'.
3. Among all polynomials over F' that annihilate T, pr has the least degree.

Theorem 1.3. Suppose that T € L(V'), and (V, F') is a vector space of finite
dimension over the field F'. Hence

1. There exists the minimal polynomial pr such that it is unique and its
degree is at most n = dim(V).

2. If q € Flz] such that q(T) = 0 then there exists an another polynomial as
r € Flz] such that ¢ = rpr.

Now we present a straightforward way to the computation of minimal poly-
nomial.
Suppose v € V and d is the least nonnegative integer such that the set
{v,T(v), Ty(v),...,Ty(v)} of vectors is linear dependent (obviously d < n).
Note that d = 0 if and only if v is a zero vector and also d = 1 if and only if v
is an eigenvector of T'.
Accordingly there are the scalars ag, . .. ,aq_; € F such that T%(v)+aq_ 7% (v)+
...+ a1 T(v) + apv = 0. Now according to the property of d, we can assume
that the coefficient T%(v) is 1. Accordingly

pro(x) = 2+ ag 2"+ a4 ag € Flal.

Thus by Definition 1.2, v € ker pz, (7). In other words, pr, is a monic poly-
nomial with the least degree such that v € ker pr,(T).

Remark 1.4. if ¢ € F|x] is a common divisor of pr,, and pr,, then v; and vy
are in ker ¢(T").

We generalize the above method, if the set B = {vy,vs,... ,v,} is a basis of
V and ¢ is a common divisor of pr.,, D1, - - - s PTw,, then B C ker ¢(7T'), and
therefore ¢(T") = 0. Hence we have the following theorem.

Theorem 1.5. Suppose T € L(V'), and (V, F) is a vector space of finite di-
mension over the field F. If the set B = {vy,vy,... ,v,} is a basis of V', then
pr 15 the least common divisor of pry,, PTwss- -+ » PTovn-

Proof. According to the above obtained results, p(7') = 0 and by Theorem 1.3,
pr | p. On the other hand

Pr = ¢;pry, + 7 such that degr; < degpr,, (j=1,2,...,n).



Diagonalizable matrices: an algorithm a7
Thus
0 = pr(T)(v;) = ¢;(T)(prw,(T)v;) + r(T)v; = r5(T)v;.

We know that pr,,; has the least degree, hence 7; = 0, and since pr,,; | pr then

pr = p- O
We conclude that to the computation of the polynomials pr.,, Prvs, - - - s PTwns
we must find their least common divisor where {vy, vo, ... ,v,} is a basis of the

space (note that degpr < n).

Example 1.6. We want to find the minimal polynomials for the following ma-
trices

-1 -1 2 -1 -1 2
A= -1 0 1 and B=| -1 0 1
0 —-11 0 -1 -1

Consider the standard basis {e1, ez, €3} of R®. Thus

—1 2 —1
A€1 = B€1 = —1 s A2€1 = B2€1 = 1 s A361 = —1 = Ael,
0 1 0
—1
B3€1 = -1 = —2B261 — B@l + 261.
—2

So we have
Pae(r) =2 —x and ppe,(z) = 2" + 22> + 2 —2.

Since degpa., = 3 and the minimal polynomial of A is a monic coefficient of
DA, With at most degree 3, thus ps = pa., (without computation of py ., and
Paes) and similarly pp = pp, -

Theorem 1.7. Suppose T € L(V) and (V, F) is a vector space of finite di-
mension over the field F'. Then T is diagonalizable if and only if

pr(z) = (x — )@ — A2) ... (x — A\g),
where A1, Aa, ..., \p € F' are distinct eigenvalues.

Proof. Follows from Theorem 1.5. O

2. CHARACTERIZATION OF DIAGONALIZABLE MATRICES: A CRITERION

Our goal in this section is finding a subtle answer to the question, when can
we write the polynomial p € F[x] in the form pr(x) = (x — A\y)(z—Ag) ... (z —
Ak)?

First we must know two points, whether all roots of p have multiplicity 1, and
whether these roots are belong to the field F'.
We can answer the first question easily by the next theorem.
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Theorem 2.1. Suppose that p € F[x] is a nonconstant polynomial and p' is
its derwwation, then the following properties are equivalent

1. p has a root in F' with the multiplicity greater than 1.

2. p and p’ have a common root in F.

3. The greatest common divisor of p and p/, i.e., gcd(p, p') has a root in F.

Theorem 2.2. Suppose T' € L(V'), and (V, F) is a vector space of finite di-
mension over the field F'. Then

1. If F is an algebraically closed field (say F'= C), then T is diagonalizable

if and only if ged(p,p’) = 1.
2. If F is not an algebraically closed field (say F' =R), then T is diagonal-
izable if and only if ged(p,p’) = 1 and all roots of pr are in F.

Proof. Follows from Theorem 1.7. O
Assume the finite sequence of real numbers ¢ = (cg,...,c) € RS If
(co, ... ,¢s) are nonzero then the number of variations in sign of ¢ (V) is equal

to the number of the indices 1 < j < s such that ¢;_i¢; < 0. If some elements
of ¢ are zero, then the number of variations in sign of ¢ (V) is equal to the
number of variations in sign of the sequence consisting of nonzero elements of
c.

Now suppose p € R|z] is a nonconstant polynomial. The standard sequence
corresponding to p is a sequence like pg, p1, ..., ps € R[x] such that
po=p ; p=7r
po=qp1 —p2 5 degps <degp

Pi-1=q;p; —Pjy1 5 degpji1 < degp;

Ps—1 = Q4sPs ; Ps+1 = 0.

Now we are ready to see Sturm’s Theorem.

Theorem 2.3 (Sturm’s Theorem). Suppose p € Rlx] is a polynomial such
that ged(p,p’) = 1 and a,b € R, a < b and p(a)p(b) # 0. Consider the
standard sequence po,p1, ... ,ps € Rlz]| corresponding to p. Then the number
of the roots of p in [a,b] is Vi, — V3 where o = (po(a),pi(a),... ,ps(a)) and
8= (po(0), (D), ., (D).

Proof. See [4, §24, pp. 112-116] and [8]. O

Conclusion 2.4. Suppose p € Rlz| is a nonconstant sequence such that ged(p,p’) =
1 and the standard sequence corresponding to p is po,p1,--.,ps € Rlz| and

d; = degp; and c; is leading coefficient of p; (j =0,1,...,s), then the num-

ber of the roots of p is V_ — V. where V_ is the number of variations in sign of

the sequence ((—1)%cy, (—=1)%ecy, ..., (=1)%c,) and V. is the number of vari-
ations in sign of the sequence (cqy,c1,. .. ,Cs).
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3. OUR ALGORITHM

If T'e L(V) and (V, F) is a vector space of finite dimension over the field F’
where F' =R or F' = C, then

stepl. Compute the minimal polynomial pr.
step2. Compute the standard sequence pg, p1, ... , ps corresponding to p.

— If p, is not constant then 7' is not diagonalizable.

— If p, is constant and F' = C then T is diagonalizable.

— If p, is constant anf F' = R then go to step3.
step3. Compute V_ and V, corresponding to pr. Hence T is diagonalizable if

and only if
Vo =V, =degpr.

Example 3.1. In Example 1.6, the minimal polynomial of the matrix B was
pp(r) = 2® + 22> + v — 2. The standard sequence corresponding to this
polynomial is

po(x) =a® + 22 + o — 2

pi(x) =2 +4r+1
pa(z) = %x + %
p3(z) = —261

ps is constant, therefore B is diagonalizable. Now if ' = R, compute V_ -V,
namely compute the number of variations in sign of the following sequences

2 2
(-1,3,-5,-261) and (1,35, -261).

Hence
Vo—-Vi=2-1=1<3=deg(pn).
Therefore, B is not diagonalizable over R. On the other hand, the standard

sequence corresponding to py is

po(x) =2° —x

pi(x) =322 -1
pa(z) = %x
p3(z) =1
Now clearly V., = 0 and V_ = 3. Therefore A is diagonalizable over R.
Furthermore, the matrices A and B are diagonalizable over C, because their
minimal polynomial is of degree 3, thus their eigenvalues are distinct.
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