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Abstract

This paper studies the chaos and control of a continuous time food
chain model which contains one prey, one predator and super-predator.
We show that this system can be asymptotically stabilized using a non-
linear feedback control inputs. The necessary feedback control law for
asymptotic stability of this system is obtained. The system appears to
exhibit a chaotic behavior for a range of parametric values. The range
of the system parameters for which the subsystems converge to limit
cycles is determined. Numerical examples and analysis of the results
are presented.
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1 Introduction

Food chains and webs in the environment are very important systems in many
different fields such ecological science, applied mathematics, economic and
engineering science. Food chains and webs can be modeled by systems of
differential equations which approximate species or functional feeding group
behavior with different functional responses.

The subjects of chaos and chaos control are growing rapidly in many dif-
ferent fields such biological systems, structural engineering, ecological models,
aerospace science, and economics [5, 6, 10, 11]. Food chain modeling provides
challenges in the fields of both theoretical ecology and applied mathematics.
The simple food chain model describes by a nonlinear mathematical model

1This research was supported by the College of Science Research Center at King Saud
University under project No. Stat/2008/75.
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that includes varying numbers of stability of equilibrium states and limit cy-
cles. Determining the equilibrium states and bifurcations of equilibria in a
nonlinear system is an important problem in many different areas such ecol-
ogy model, applied mathematical model and others.

The dynamic relationship between predators and their preys has long been
and will continue to be one of the dominant themes in both ecology and mathe-
matical ecology due to its universal existence and importance. Recently, many
authors have explored the dynamics of a class of the so-called semi ratio-
dependent predator-prey systems with functional responses see for example
[6, 7].

In the recent years, interest in adaptive control systems has increased
rapidly along with interest and progress in control topics. The adaptive control
has a variety of specific meanings, but it often implies that the system is ca-
pable of accommodating unpredictable environmental changes, whether these
changes arise within the system or external to it. Adaptation is a fundamen-
tal characteristic of living organisms such as prey-predator systems and many
other biological models since these systems attempt to maintain physiological
equilibrium in the midst changing environmental conditions [18].

Prey-predator phenomena have many important applications in many dif-
ferent field, such as biology, economic, ecology and others sciences. The study
of prey-predator phenomena is now a dominant problem in many ecological
sciences see for example Refs [14, 17, 18].

The mathematical ecology has emerged and developed rapidly. A variety
of mathematical methods can be used in ecological science. One of the main
problems of ecosystems is to study the stability and instability of these systems
[1, 2, 3, 5, 9]. A model was introduced by Volterra for community in which
organisms of one population provided food for those of the other is very impor-
tant. Similar phenomena can be observed in communities with one population
parasitizing on the organisms of another species. The communities of such type
are usually termed prey-predator or host-parasite models [10, 11, 12, 13, 14].

A stochastic analysis of the Lotka-Volterra model for the prey-predator
when the birth rate of the prey and death rate of the predator are perturbed
by independent white noises and others related models are presented in [20].

The evolution of this model is also investigated for a large length of the
time interval. One of the first successes of mathematical ecology was the
demonstration of population periodic oscillations in a stationary medium. The
biological literature abounds in works where systems are either observed in
nature or simulated on models populations in laboratory conditions [18, 19]

This paper is organized as follows. We start in section 2 defining the three
species population that consists one prey, one predator and super-predator.
The nonlinear system of differential equations that govern this system is in-
troduced. In section 3 we discuss the linear stability analysis and the chaotic



Chaos and control of food chain model 593

behavior of this system. In this section the equilibrium states are classified
according to their stability. Further, the convergence of the subsystems of this
system to limit cycles is studied. The ranges of the system parameters for
which the system converges to limit cycles are determined. In section 4 the
adaptive control and Liapunov asymptotic stability of the food chain model are
discussed¿ In this section the necessary control inputs for this asymptotic sta-
bility is obtained as nonlinear feedback of the population densities. Extensive
Numerical examples and simulation are introduced in section 5.

2 Food Chain Mathematical Model

In this section, we will describe the three-species prey-predator system which
consists of two competing predator and one prey. Such system can be describe
by the following set of nonlinear differential equations:

ẋ1 = x1

[
r(1 − k−1x1) − a2x2

b2 + x1

]
,

ẋ2 = x2

[ e2a2x1

b2 + x1

− a2x3

b3 + x2

− d2

]
,

ẋ3 = x3

[ e3a3x2

b3 + x2

− d3

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

where x1, x2 and x3 are prey, predator and super predator biomass respec-
tively, r and k are prey growth rate and carrying capacity, and ai, bi, ei and
di, i = 2, 3 are maximum predation rate, half saturation constant, efficiency,
and death rate of predator and super predator. As the super predator is ex-
ploited, its mortality d3 is the sum of basic mortality and harvesting effort, so
that food yield is proportional to super predator biomass.

The model (1) appears to have received only limited study (Turchin, 2003;
Yodzis, 1989)[21, 22] as Type III functional response is generally only applica-
ble to generalist, not specialist, predators, and is perhaps less widely applicable
in typical natural environments than other models.

3 Chaos and Stability Analysis

In this section the chaotic behavior of the food chain model will be investigated.
Also, we will discuss the linear stability analysis this model. Further, we
examine the behavior of the trajectories of the subsystems of the food chain
model near the equilibrium points.

For a biological food web model to be logically credible, it must satisfy the
following conditions:



594 A. Al-Khedhairi

1. The equations should be invariant under identification of identical species.

2. The system of equations for a food web must be separate into indepen-
dent subsystems if the community splits into disconnected sub-webs.

The interaction of two competing predators and one prey given by (1) satisfy
the above conditions. So the system (1) can be separated into two independent
subsystems. The first subsystem is obtained by assuming the absence of the
predator prey x2 and the second is obtained by assuming the absence of the
super predator prey x3.

The first subsystem of (1) is obtained by setting the super predator is
absent:

ẋ1 = x1

[
r(1 − k−1x1) − a2x2

b2 + x1

]
,

ẋ2 = x2

[ e2a2x1

b2 + x1

− d2

]
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2)

The second subsystem of (1) is obtained by setting the predator is absent:

ẋ1 = rx1(1 − k−1x1),

ẋ3 = −d3x3,

⎫⎪⎬
⎪⎭ (3)

It is easy to show that all solutions of (2) and (3) are bounded in the future
and remain in the regions {(x1, x2) : x1 > 0 and x2 > 0} for (2) and in the
regions {(x1, x3) : x1 > 0 and x3 > 0} for (3).

In what follows we examine the behavior of the trajectories of the subsys-
tems (2) and (3) near the equilibrium points. The first subsystem (2) has thee
equilibrium points which are given by

E11 = (0, 0), E12 = (k, 0), E13 = (x̄1, x̄3), x̄1 = b2d2/(e2a2−d2), x̄2 = r(k−x̄1)(b2+x̄1)/r
(4)

where
x̄1 = b2d2/(e2a2 − d2), x̄2 = r(k − x̄1)(b2 + x̄1)/a2k (5)

The characteristic equation of the first equilibrium point has the eigenvalues
λ11 = r and λ12 = −d2 < 0 which are real and λ12 lies in the left-half plane
and λ11 lies in the right-half plane. Therefore, the first equilibrium point of
the subsystem (2) is unstable saddle point. The necessary condition for linear
stability of E12 is

d2 >
ka2 e2

b2 + k
(6)

and the necessary condition for linear stability of E13 is

d2 >
e2a2(k − b2)

k + b2

(7)
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Therefore E13 is the only stable equilibrium point of the subsystem (2) if the
system parameters satisfy the condition:

e2a2(k − b2)

k + b2
< d2 <

ka2 e2

b2 + k
(8)

The steady-states of the food chain dynamical system (1) are given by:

E1 = (0, 0, 0), E2 = (k, 0, 0), E3 = (ν1, ν2, 0), E4 = (x̄1, x̄2, x̄3), (9)

where

ν1 = b2d2/(e2a2 − d2), ν2 = r(k − x̄1)(b2 + x̄1)/a2k (10)

and

x̄1 =
[
(k − b2)r +

√
(k − b2)2 r2 − 4r(a2kx̄2 − rkb2)

]
/2r,

x̄2 = b3d3/(a3e3 − d3), x̄3 = (b3 + x̄2)[a2e2x̄1 − d2(b2 + x̄1)]/a2(b2 + x̄1)

⎫⎪⎪⎬
⎪⎪⎭

(11)
The linear stability analysis of the food chain dynamical system (1) indicates
that this system has the following equilibrium states. The first steady-state
E1 is absolutely unstable, while the second steady-state E2 is linear stable if
the condition (6) is satisfied. The other steady-states need further stability
analysis.

The following figures display the numerical solution of the uncontrolled
food chain dynamical system with different values of the initial densities of
prey, predator and supper-predator and system parameters.

Fig.1a-prey density 
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Fig.1b-Predator density
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Figure 1. Densities of prey, predator and supper-predator for a set values of
the system parameters and initial densities r = 0.32, k = 1.5, a2 = 1.6, b2 =
0.65, e2 = 2.1, a3 = 0.5, b3 = 0.39, d2 = 0.84, e3 = 0.5, d3 = 0.02 and x1(0) =
0.25, x2(0) = 0.95, x3(0) = 0.85..

Fig.–2a Food chain converge to a limit cycle
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Fig–2b Food chain converge to a limit cycle
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Fig–2c Food chain converge to a limit cycle
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Figure 2. Three high frequency limit cycles correspond to the values of the
system parameters r = 6.3, k = 2.6, a2 = 1.5, b2 = 1.4, e2 = 1.5, d2 = 2.9, a3 =
2.1, b3 = 2.3, e3 = 0.2, d3 = 3.9 respectively, and initial densities x1(0) =
0.3, x2(0) = 1.5, x3(0) = 0.5.

Fig.–3a Attractor of the food chain model 
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Fig.–3b Attractor of the food chain model 
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Fig.–3c Attractor of the food chain model 
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Figure 3. Three attractors and quasi-attractors of the food chain model cor-
respond to the values of the system parameters r = 6.3, k = 2.6, a2 = 1.5, b2 =
1.4, e2 = 1.5, d2 = 2.9, a3 = 2.1, b3 = 2.3, e3 = 0.2, d3 = 3.9 respectively, and
initial densities x1(0) = 0.3, x2(0) = 1.5, x3(0) = 0.5.

The numerical solution of the food chain model indicates that the system
has have a distinct geometric configuration limit cycles and attractors occur
for some values of the system parameters. Such that limit cycles represent
a steady-state oscillation, from which all trajectories nearby will converge or
diverge. A limit cycle in a nonlinear system describes the amplitude and period
of a self-sustained oscillation.

In the next section, we discuss the problem of adaptive control of the food
chain model using nonlinear feedback approach.

4 Adaptive Control Problem

This section devoted to study the problem of a adaptive control of the food
chain model. To discuss the adaptive control of the food chain model using
nonlinear feedback control approach, we start by assuming that the system (1)
can be written in the following suitable form

ẋ1 = x1

[
r(1 − k−1x1) − a2x2

b2 + x1

+ u1

]
,

ẋ2 = x2

[ e2a2x1

b2 + x1

− a2x3

b3 + x2

− d2 + u2

]
,

ẋ3 = x3

[ e3a3x2

b3 + x2

− d3 + u3

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)
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where u1, u2 and u3 are control inputs that will be suitably choice to make
the trajectory of the whole system (1) that specified by the equilibrium states
E1(0, 0, 0), E2(k, 0, 0) E3(ν1, ν2, 0) and E4(x̄1, x̄2, x̄3) to be asymptotically sta-
ble about these equilibrium states of the uncontrolled system. Note the form
(12) is more suitable for study the adaptive control of the system (1).

If ui = 0, (i = 1, 2, 3) then the system (1) and (12) have absolutely an
unstable special solution

x1 = x2 = x3 = 0 (13)

where xi = 0, (i = 1, 2, 3) is the trivial equilibrium point of the uncontrolled
system (1). The eigenvalues of the characteristic equation for the trivial equi-
librium point (12) has the following real values

λ1 = r > 0, , λ2 = −d2 < 0 , λ3 = −d3 < 0 (14)

Hence this trivial equilibrium point is absolutely unstable. In this study we
will asymptotically stabilized this point using the control inputs u1, u2 and u3.

Adaptive control is one of those research topics that have received much
attention from the systems and control theory and engineering societies, but
even so it has always been a controversial. A possible definition of adaptive
control is a system that adapts itself to change in the process. Adaptation is
a fundamental characteristic of living organisms such as food chain systems
and host parasite model and many other biological systems since they attempt
to maintain physiological equilibrium in the midst of changing environmental
conditions. An approach to the design of adaptive systems is then to consider
the adaptive aspects of human or animal behavior and to develop systems
which behave somewhat analogously.

The following theorem provides us the adaptive control inputs u1, u2 and u3

that asymptotically stabilized the food chain system (12) trivial its equilibrium
state.

Theorem 4.1 Using the nonlinear feedback controllers

u1 = a2x2 − r(1 − x1/k)(b2 + x1) − α1,

u2 = a2x3(b2 + x1) + (b3 + x2)[d2(b2 + x1) − a2e2x1] − α2,

u3 = d3(b3 + x2) − a3e3x2 − α3,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(15)

the system (12) will be asymptotically stable in the Liapunov sense about its
equilibrium state (13).

Proof. The proof of this theorem can be reached by using Liapunov stability
theorem which gives sufficient conditions for asymptotic stability. Substitut-
ing (15) into (12) one can get the following nonlinear system of differential
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equations:

ẋ1 = − α1x1

b2 + x1
,

ẋ2 = − α2x2

(b2 + x1)(b3 + x2)
,

ẋ3 = − α3x3

b3 + x2
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)

where α1, α2 and α3 positive control gains constants.
Let us consider the Liapunov function for the (16) in the form

2V (x1, x2, x3) = x2
1 + x2

2 + x2
3 (17)

Obviously, the functions (17) is a positive definite form with respect to the
variables x1, x2 and x3 and its time derivative along the trajectory of the
system (16) is given by

V̇ = −
[
α1(b3 + x2)x

2
1 + α2x

2
2 + α3(b2 + x1)x

2
3

]
(b2 + x1)(b3 + x2)

, (18)

Since the densities x1(t), x2(t) and x3(t) are usually positive and the parameters
α1, α2, α3, b2 and b3 are also take only positive values then

b2 + x1(t) > 0, b3 + x2(t) > 0, ∀x1(t), x2(t), x3(t) > 0 (19)

Using the variable gradient method we find that

∇V �̇x = −
(

α1

b3 + x2

)
x2

1 −
(

α2

(b2 + x1)(b3 + x2)

)
x2

2 −
(

α3

b3 + x2

)
x2

3 (20)

Using the inequalities (19) we can verify that the function in (20) and
so (18) are negative definite forms which proves the asymptotic stability of
the system (16) in the Liapunov sense. Therefore the coupled system (12)
is asymptotically stable with the nonlinear feedback controllers (15), which
completes the proof [15].

Now we can easily conclude that the food chain model populations can be
asymptotically stabilized using nonlinear feedback controllers about its trivial
equilibrium point.

5 Analysis and Numerical Simulation

The main objective of the numerical simulation is to obtain the numerical solu-
tion of the non-linear system (16). Some numerical examples for the controlled
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food chain model were carried out for various parameters values and different
initial densities.

Fig.4a-controlled prey density 
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Figure 4. Densities of the controlled prey, predator and supper-predator
for the set values of the system parameters and initial densities r = 0.32, k =
1.5, a2 = 1.6, b2 = 0.65, e2 = 2.1, a3 = 0.5, b3 = 0.39, d2 = 0.84, e3 = 0.5, d3 =
0.02 and x1(0) = 0.25, x2(0) = 0.95, x3(0) = 0.85. Note that there is an
exponentially convergence rate of the food chain densities.
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Fig.5a-controlled prey density 
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Figure 5. Densities of the controlled prey, predator and supper-predator
for the set values of the system parameters and initial densities r = 5.5, k =
9.5, a2 = 8.6, b2 = 15.65, e2 = 2.1, a3 = 6.5, b3 = 9.9, d2 = 8.4, e3 = 3.5, d3 =
5.2 and x1(0) = 1.95, x2(0) = 2.25, x3(0) = 1. Note that there is an exponen-
tially convergence rate of the food chain densities.

From the numerical study, we can conclude that the controlled food chain
has exponential damping with damping rates depends upon the parameters
value. Therefore, the food chain system that consists of one prey, one predator
and super-predator can be asymptotically stabilized using nonlinear feedback
control law.
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6 Conclusion

The chaotic behavior of continuous time food chain system is investigated. The
ranges of the system parameters for which subsystems converge to limit cycles
are determined. The problem of adaptive control of the food chain model is
studied. The asymptotic stability of the controlled system is proved using the
Liapunov function. The necessary control inputs for this asymptotic stability
is obtained as nonlinear feedback. Finally, extensive numerical examples and
simulation are introduced.
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