On a Truncated Erlangian Queueing System with

State - Dependent Service Rate, Balking and Reneging

M. S. EI - Paoumy
Department of Statistics, Faculty of Commerce, Dkhlia, Egypt
Al-Azhar University, Girl's Branch
drmahdy_elpaoumy@yahoo.com

Abstract

The aim of this paper is to derive the analytical solution of the truncated Erlangian service queue with state-dependent rate, balking and reneging (M/ER/I/N (α, β)). We obtain $P_{n, s}$, the probabilities that there are " n " units in the system and the unit in the service occupces stage "s" ($s=1,2, \ldots, r$) . We treat this queue for general values of r, k and N .

Keywords: truncated Erlangian service queue, balking, reneging.

1 INTRODUCTION

This paper considers the queueing system $\mathrm{M} / \mathrm{Er} / 1 / \mathrm{N}$ with state - dependent service rate, balking and reneging concepts .The Erlang distrbution, denoted by Er is a special case of the gamma distribution, is named after A.K. Erlang who pioneered queueing system theory for its application to congestion in telphone networks.The nontruncated queue: $\mathrm{M} / \mathrm{Er} / 1$ was solved by Morse [3] at $\mathrm{r}=2$ and white et al. [4] Who obtained the solution in the form of a generating function and the probabilities could be obtained by a power series expansion. Al Seedy [1] gave an analytical solution of the queue:
$\mathrm{M} / \mathrm{Er} / 1 / \mathrm{N}$ with balking only. This work had been followed by Kotb [2] who studied the analytical solution of the state - dependent Erlangian queue: $\mathrm{M} / \mathrm{Er} / 1 / \mathrm{N}$ with balking by using a very useful lemma. In this paper we treat the analytical solution of the queue: $\mathrm{M} / \mathrm{Er} / 1 / \mathrm{N} \quad(\alpha, \beta)$ for finite capacity considering by using a recurrence relations .We obtain $P_{n, s}$, the probabilities that there are " n " units in the system and the unit in serive occupies stage "s" ($1 \leq s \leq r$ in terms of P_{0}.

The probability of an empty system P_{0} is also obtained .The discipline considered is first in first out (FIFO).

2 THE PROBLEM ANALYSIS

Consider the single - channel service time Erlangian queue having r - service stages each with rate μ_{n}, with the state - dependent and reneging in the form:

$$
\mu_{K}=\left\{\begin{array}{cc}
r \mu_{1} & n=1, \\
r \mu_{1}+(n+1) \alpha, & 2 \leq n \leq k, \mu_{1}<\mu_{2}, \\
r \mu_{2}+(n-1) \alpha, & k+1 \leq n \leq N,
\end{array}\right.
$$

where α is the rate of time t, having the (P.d.f) given by :

$$
f(t)=\alpha e^{-\alpha t}, \quad t \geq o, \alpha>0
$$

This means that the units are served with two different rates $r \mu_{1}$ or $r \mu_{2}$ depending on the number of units in the system whether $1 \leq n \leq k$ or $k+1 \leq n \leq N$ respectively.

Also, consider an exponential interarrival pattern with rate λ_{n}. Assume $(1-\beta)$ be the probability that a unit balks (does not enter the queue).
where: $\beta=\mathrm{p}$ (a unit joins the queue), $0 \leq \beta<1,1 \leq n \leq N$;
For $\beta=1, n=0$, it is clear that:

$$
\lambda_{n}=\left\{\begin{array}{cc}
\lambda & n=0 \\
\beta \lambda & 1 \leq n \leq N
\end{array}\right.
$$

Assume the probabilities:
$\mathrm{P}_{n, s}=\mathrm{p}$ (n units in the system and the unit in service being in stage s),
where: $1 \leq n \leq N, \quad 1 \leq s \leq r$
$\mathrm{P}_{o}=$ probability of an empty system, i.e. the dally probability. The steady - state difference equations are:

$$
\begin{align*}
& \lambda \mathrm{P}_{o}-r \mu_{1} \mathrm{P}_{1,1}=0, \quad n=0 \tag{1}\\
& \left.\begin{array}{cc}
\left(r \mu_{1}+\beta \lambda\right) \mathrm{P}_{1, s}-r \mu_{1} \mathrm{P}_{1, s+1}=0, & 1 \leq s \leq r-1 \\
\left(r \mu_{1}+\beta \lambda\right) \mathrm{P}_{1, r}-\lambda \mathrm{P}_{o}-\left(r \mu_{1}+\alpha\right) \mathrm{P}_{2,1}=0, & s=r
\end{array}\right\} \mathrm{n}=1 \tag{2}\\
& \left.\begin{array}{l}
\left(r \mu_{1}+(n-1) \alpha+\beta \lambda\right) \mathrm{P}_{n, s}-\left(r \mu_{1}+(n-1) \alpha\right) \mathrm{P}_{n, s+1}=0, \quad 1 \leq s \leq r-1 \\
\left(r \mu_{1}+(n-1) \alpha+\beta \lambda\right) \mathrm{P}_{n, r}-\beta \lambda \mathrm{P}_{n-1, r}-\left(r \mu_{1}+(n-1) \alpha\right) \mathrm{P}_{n+1,1}=0, \quad s=r
\end{array}\right\}, 2 \leq n \leq k-1 \tag{3}\\
& \left.\begin{array}{l}
\left(r \mu_{2}+(n-1) \alpha+\beta\right) \mathrm{P}_{n, s}-\beta \lambda \mathrm{P}_{n-1, s}-\left(r \mu_{2}+(n-1) \alpha\right) \mathrm{P}_{n, s+1}=0,1 \leq s \leq r-1 \\
\left(r \mu_{2}+(n-1) \alpha+\beta\right) \mathrm{P}_{n, r}-\beta \lambda \mathrm{P}_{n-1, r}-\left(r \mu_{2}+n \alpha\right) \mathrm{P}_{n, 1+1}=0, \quad s=r
\end{array}\right\}, k+1 \leq n \leq N-1 \\
& \left.\begin{array}{l}
\left(r \mu_{2}+(n-1) \alpha+\beta\right) \mathrm{P}_{n, s}-\beta \lambda \mathrm{P}_{n-1, s}-\left(r \mu_{2}+(n-1) \alpha\right) \mathrm{P}_{n, s+1}=0,1 \leq s \leq r-1 \\
\left(r \mu_{2}+(n-1) \alpha+\beta\right) \mathrm{P}_{n, r}-\beta \lambda \mathrm{P}_{n-1, r}-\left(r \mu_{2}+n \alpha\right) \mathrm{P}_{n, 1+1}=0, \quad s=r
\end{array}\right\}, k+1 \leq n \leq N-1 \\
& \left.\left(r \mu_{2}+(N-1) \alpha\right) \mathrm{P}_{n, s}-\beta \lambda \mathrm{P}_{n-1, s}-\left(r \mu_{2}+(N-1) \alpha\right) \mathrm{P}_{n, s+1}=0 \quad, 1 \leq s \leq r-1\right\} \\
& \left(r \mu_{2}+(N-1) \alpha\right) \mathrm{P}_{n, r}-\beta \lambda \mathrm{P}_{n-1, r}=0, \tag{6}\\
& s=r \quad\}, n=N \\
& \left.\begin{array}{l}
\left(r \mu_{1}+(k-1) \alpha+\beta \lambda\right) \mathrm{P}_{k, s}-\beta \lambda \mathrm{P}_{k-1, s}-\left(r \mu_{1}+(k-1) \alpha\right) \mathrm{P}_{k, s+1}=0,1 \leq s \leq r-1 \\
\left(r \mu_{1}+(k-1) \alpha+\beta \lambda\right) \mathrm{P}_{k, r}-\beta \lambda \mathrm{P}_{k-1, r}-\left(r \mu_{2}+k \alpha\right) \mathrm{P}_{k, 1+1}=0, \quad s=r
\end{array}\right\}, n=k \tag{4}
\end{align*}
$$

Summing (2) over s and using (1), gives

$$
\begin{equation*}
\mathrm{P}_{2,1}=\frac{\beta \lambda}{\left(r \mu_{1}+\alpha\right)} \sum_{s=1}^{r} \mathrm{P}_{1, s}, \quad n=2 \tag{7}
\end{equation*}
$$

Summing (3) over s, using (7) and adding the results obtaining for $2 \leq n \leq k-1$, leads to:

$$
\begin{equation*}
\mathrm{P}_{n, 1}=\frac{\beta \lambda}{r \mu_{1}+(n-1) \alpha} \sum_{s=1}^{r} \mathrm{P}_{n-1, s}, \quad 3 \leq n \leq k \tag{8}
\end{equation*}
$$

Similarly, summing (4) over s, and using (8) at $n=k$, yields

$$
\begin{equation*}
\mathrm{P}_{k+1,1}=\frac{\beta \lambda}{\left(r \mu_{2}+k \alpha\right)} \sum_{s=1}^{r} \mathrm{P}_{k, s}, \quad n=k+1 \tag{9}
\end{equation*}
$$

Summing (5) over s, and using (9):

$$
\begin{equation*}
\mathrm{P}_{n, 1}=\frac{\beta \lambda}{\left(r \mu_{2}+(n-1) \alpha\right)} \sum_{s=1}^{r} \mathrm{P}_{n-1, s}, \quad k+2 \leq n \leq N \tag{10}
\end{equation*}
$$

From equation one can easily show that

$$
\mathrm{P}_{1,1}=\phi_{1} \mathrm{P}_{0}
$$

Making use of equation (2), yields

$$
\begin{equation*}
\mathrm{P}_{1, s}=\phi_{1}\left(1+\beta \phi_{1}\right)^{s-1} \mathrm{P}_{0}, \quad 1 \leq s \leq r \tag{11}
\end{equation*}
$$

Upon using the first equation of (3) and (8) we get the recurrence relation.

$$
\begin{equation*}
\mathrm{P}_{n, s}=\beta \phi_{n}\left(1+\beta \phi_{n}\right)^{s-1}\left\{\sum_{i=1}^{r} \mathrm{P}_{n-1, i}-\sum_{i=1}^{s-1}\left(\frac{1}{1+\beta \phi_{n}}\right)^{i} \mathrm{P}_{n-1, i}\right\}, \quad 2 \leq n \leq k \tag{12}
\end{equation*}
$$

Also, from the first Equation of (5) and (10), we obtain

$$
\begin{equation*}
\mathrm{P}_{n, s}=\beta \phi_{n}\left(1+\beta \phi_{n}\right)^{s-1}\left\{\sum_{i=1}^{r} \mathrm{P}_{n-1, i}-\sum_{i=1}^{s-1}\left(\frac{1}{1+\beta \phi_{n}}\right)^{i} \mathrm{P}_{n-1, i}\right\}, \quad k+1 \leq n \leq N-1 \tag{13}
\end{equation*}
$$

Finally, using equation (6) and equation (10) at $\mathrm{n}=\mathrm{N}$, gives:

$$
\begin{equation*}
\mathrm{P}_{N, s}=\beta \phi_{N} \sum_{i=s}^{r} \mathrm{P}_{N-1, i}, \quad 1 \leq s \leq r, \tag{14}
\end{equation*}
$$

where:

$$
\phi_{n}=\left\{\begin{array}{cc}
\frac{\lambda}{r \mu_{1}+(n-1) \alpha}, & 1 \leq n \leq k \\
\frac{\lambda}{r \mu_{2}+(n-1) \alpha}, & k+1 \leq n \leq N
\end{array}\right.
$$

Equations (11) - (14) are the required recurrence relations, that give all probabilities in terms of P_{0} which it-self may now be determined by using the normalizing condition:

$$
\begin{equation*}
\mathrm{P}_{0}+\sum_{n=1}^{n} \sum_{s=1}^{r} \mathrm{P}_{n, s}=1 \tag{15}
\end{equation*}
$$

Hence all the probabilities are completely known in terms of the queue parameters.

3 EXAMPLE:

The following example illustrates the theoretical results. In the system: $\mathrm{M} / \mathrm{E}_{\mathrm{r}} / 1 / \mathrm{N}$ with state-dependent, balking and reneging, let $k=2, r=3$ and $N=4$, (i.e, the queue $\mathrm{M} / \mathrm{E}_{3} / 1 / 4(\alpha, \beta)$) , in the equations $(11)-(15)$, the results are :

$$
\begin{array}{lll}
\mathrm{P}_{1,1}=a_{1} \mathrm{P}_{0}, & \mathrm{P}_{1,2}=a_{2} \mathrm{P}_{0}, & \mathrm{P}_{1,3}=a_{3} \mathrm{P}_{0 .,} \\
\mathrm{P}_{2,1}=b_{1} \mathrm{P}_{0}, & \mathrm{P}_{2,2}=b_{2} \mathrm{P}_{0}, & \mathrm{P}_{2,3}=b_{3} \mathrm{P}_{0 .,} \\
\mathrm{P}_{3,1}=c_{1} \mathrm{P}_{0}, & \mathrm{P}_{3,2}=c_{2} \mathrm{P}_{0}, & \mathrm{P}_{0 .,}, \\
\mathrm{P}_{4,1}=d_{1} \mathrm{P}_{0}, & \mathrm{P}_{4,2}=d_{2} \mathrm{P}_{0}, & \mathrm{P}_{4,3}=d_{3} \mathrm{P}_{0,,},
\end{array}
$$

where:

$$
\begin{aligned}
& a_{1}=\phi_{1}, a_{2}=\phi_{1}\left(1+\beta{ }_{1} \phi\right), a_{3}=\phi_{1}\left(1+\beta \phi_{1}\right)^{2} \\
& b_{1}=\beta \phi_{2}\left(a_{1}+a_{2}+a_{3}\right), \\
& b_{2}=\beta \phi_{2}\left(1+\beta \phi_{2}\right)\left\{a_{1}+a_{2}+a_{3}-\left(\frac{1}{1+\beta \phi_{2}}\right) a_{1}\right\}, \\
& b_{3}=\beta \phi_{2}\left(1+\beta \phi_{2}\right)^{2}\left\{a_{1}+a_{2}+a_{3}-\left(\frac{1}{1+\beta \phi_{2}}\right) a_{1}-\left(\frac{1}{1+\beta \phi_{2}}\right)^{2} a_{2}\right\}, \\
& c_{1}=\beta \phi_{3}\left(b_{1}+b_{2}+b_{3}\right), \\
& c_{2}=\beta \phi_{3}\left(1+\beta \phi_{3}\right)\left\{b_{1}+b_{2}+b_{3}-\left(\frac{1}{1+\beta \phi_{3}}\right) b_{1}\right\}, \\
& c_{3}=\beta \phi_{3}\left(1+\beta \phi_{3}\right)^{2}\left\{b_{1}+b_{2}+b_{3}-\left(\frac{1}{1+\beta \phi_{3}}\right) b_{1}-\left(\frac{1}{1+\beta \phi_{3}}\right)^{2} b_{2}\right\}, \\
& d_{1}=\beta \phi_{4}\left(c_{1}+c_{2}+c_{3}\right), \\
& d_{2}=\beta \phi_{4}\left(c_{2}+c_{3}\right), \\
& d_{3}=\beta \phi_{4} c_{3}, \\
& \phi_{1}=\frac{\lambda}{3 \mu_{1}}, \\
& \phi_{3}=\frac{\lambda}{3 \mu_{2}+2 \alpha}, \quad \phi_{2}=\frac{\lambda}{3 \mu_{1}+\alpha}, \\
& 3 \mu_{2}+3 \alpha
\end{aligned}
$$

From the normalizing condition:

$$
\mathrm{P}_{0}+\sum_{s=1}^{3} \mathrm{P}_{1, s}+\sum_{s=1}^{3} \mathrm{P}_{2, s}+\sum_{s=1}^{3} \mathrm{P}_{3, s}+\sum_{s=1}^{3} \mathrm{P}_{4, s}=1,
$$

we have
$\mathrm{P}_{0}=\left\{1+a_{1}+a_{2}+a_{3}+b_{1}+b_{2}+b_{3}+c_{1}+c_{2}+c_{3}+d_{1}+d_{2}+d_{3}\right\}^{-1}$.
Therefore, the expected numbers in the system and in the queue are, respectively.

$$
\begin{aligned}
L & =\sum_{n=1}^{4} \sum_{s=1}^{3} n \mathrm{P}_{n, s} \\
& =\left\{a_{1}+a_{2}+a_{3}+2\left(b_{1}+b_{2}+b_{3}\right)+3\left(c_{1}+c_{2}+c_{3}\right)+4\left(d_{1}+d_{2}+d_{3}\right)\right\} \mathrm{P}_{0} \\
L & =\sum_{n=1}^{4} \sum_{s=1}^{3}(n-1) \mathrm{P}_{n, s} \\
& =\left\{\left(b_{1}+b_{2}+b_{3}\right)+2\left(c_{1}+c_{2}+c_{3}\right)+3\left(d_{1}+d_{2}+d_{3}\right)\right\} \mathrm{P}_{0} .
\end{aligned}
$$

Also the expected waiting time in Kotb the system and the queue are obtained as follows:

$$
W=\frac{L}{\lambda^{\prime}}, \quad W q=\frac{l q}{\lambda^{\prime}}, \lambda^{\prime}\left(L-L_{q}\right) \mu, \quad \mu=\frac{1}{2}\left(\mu_{1}+\mu_{2}\right) .,
$$

where λ^{\prime} is the mean rate of units actually entering the system .

4 SPECIAL CASES:

CASE 1: Let $\alpha=0$ and $k \rightarrow \infty\left(\mu_{1}=\mu_{2}=\mu, k=N\right)$.
Our results agree with the results of Al-Seedy [1].
CASE 2: Results of both (2), has been obtained by letting $\alpha=o$ in the equations (11) - (14) in our results.

CASE 3: Results of (4), can be obtained by letting $\mathrm{K}, \mathrm{N} \rightarrow \infty, \alpha=o$ and $\beta=1$ in our results.

5 CONCLUSION:

In this paper, the truncated Erlangian service queue is studied with state dependent, balking and reneging. The recurrence relations that gave all the probabilities in terms of P_{0} are derived. We illustrate the method by an example is give to obtain some measures of effectiveness such as $L, L q, \mathrm{w}, \mathrm{w}_{\mathrm{q}}$.

References

[1] AL- Seedy R.O. " The General Solutions of the Truncated Non Markovian Queues", Ph.D. Thesis, Faculty of Science, Tanta university 1988.
[2] Kotb K.A.M. : " State - Dependent Queues ", Ph.D. Thesis, Facalty of Science, Tanta university, 1999.
[3] Morse P.M. " Queues , Inventories and Maintenance ", John Wiley , New York 1958.
[4] White J. A.; Schmidt J. W. and Bennett G. K.", Analysis of Queueing System" Academic Press, N.y 1975.

Received: May 16, 2007

