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Abstract

In this paper it is shown that a new refinement on Hilbert’s integral
inequality can be established by introducing a weight function of the
form 1

2

(
cos 2

√
x − α − e−2

√
x−α

)
(with x−α ≥ 0). As application, some

sharp results of Widder’s inequality and Hardy-Littlewood’s inequality
are obtained.
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1 Introduction and Lemmas

Let f (x) , g (x) ∈ L2 (0, + ∞). It is all known that the inequality of the
form

∞∫
0

∞∫
0

f (x) g (y)

x + y
dxdy ≤ π

⎧⎨
⎩

∞∫
0

f 2 (x) dx

⎫⎬
⎭

1/2 ⎧⎨
⎩

∞∫
0

g2 (x) dx

⎫⎬
⎭

1/2

. (1.1)

Is called Hilbert’s integral inequality, where the coefficient π is the best
possible.
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Inequality (1.1) has the following extension of the form

∞∫
α

∞∫
α

f (x) g (y)

x + y − 2α
dxdy ≤ π

⎧⎨
⎩

∞∫
α

f 2 (x) dx

⎫⎬
⎭

1/2 ⎧⎨
⎩

∞∫
α

g2 (x) dx

⎫⎬
⎭

1/2

. (1.2)

where x − α ≥ 0 and y − α ≥ 0.

Recently, various improvements and extensions of (1.1) and (1.2) appear in
a great deal of papers (see [1]). In this paper we will give some new improve-
ments of (1.1) and (1.2), and the method adopted by us has trait itself, it is
different from those listed in the paper [1]. Explicitly, the idea and the results
obtained possess new meanings.

In order to prove our assertion, we need the following lemmas.

Lemma 1.1. Let c (x) be an integrable function in the interval (0, + ∞),

J1 =

∞∫
α

∞∫
α

f 2 (x)

x + y − 2α

(
x − α

y − α

) 1
2

(1 − c (x − α) + c (y − α)) dxdy

and J2 =

∞∫
α

∞∫
α

f 2 (y)

x + y − 2α

(
y − α

x − α

) 1
2

(1 − c (x − α) + c (y − α)) dxdy

(1.3)

where x − α ≥ 0 and y − α ≥ 0. Then

J1J2 = π2

⎧⎨
⎩

⎛
⎝ ∞∫

α

f 2 (x) dx

⎞
⎠

2

−
⎛
⎝ ∞∫

α

k (x) f 2 (x) dx

⎞
⎠

2⎫⎬
⎭ (1.4)

where k (x) =
2

π

∞∫
0

c((x − α)t2)

1 + t2
dt − c (x − α) (1.5)
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proof. J1 =

∞∫
α

∞∫
α

f2 (x)

(x − α)
(
1 − y−α

x−α

) (
x − α

y − α

) 1
2

(1 − c (x − α) + c (y − α))dxdy.

=

∞∫
α

⎧⎨
⎩

∞∫
α

1
(x − α) (1 − y−α

x−α)

(
x − α

y − α

) 1
2

(1 − c (x − α) + c (y − α))dy

⎫⎬
⎭ f2 (x) dx

=

∞∫
α

⎧⎨
⎩π +

∞∫
0

c ((x − α)u)
1 + u

(
1
u

) 1
2

du − πc (x − α)

⎫⎬
⎭ f2 (x) dx

=

∞∫
α

⎧⎨
⎩π + 2

∞∫
0

c
(
(x − α) t2

)
1 + t2

dt − πc (x − α)

⎫⎬
⎭ f2 (x) dx

= π

⎛
⎝ ∞∫

α

f2 (x) dx +

∞∫
α

k (x) f2 (x) dx

⎞
⎠

where k (x) is a function defined by (1.5).
Similarly, we have

J2 = π

⎛
⎝ ∞∫

α

f 2 (x) dx −
∞∫

α

k (x) f 2 (x) dx

⎞
⎠

It follows that the relation (1.4) holds.
Lemma 1.2. If c (x) = sin2 √x, x ∈ (0, + ∞), then

∞∫
0

c (xt2)

1 + t2
dt =

π

4

(
1 − e−2

√
x
)

. (1.6)

This result has been given in the works [2] and [3].

2 Main Results

Theorem 2.1. Let f (x) and g (x) be two real functions, and the real function
c(x) satisfy Condition 1 − c (x − α) + c (y − α) ≥ 0, where x − α ≥ 0 and

y − α ≥ 0. If 0 <
∞∫
α

f 2 (x) dx < + ∞ and 0 <
∞∫
α

g2 (x) dx < + ∞, then

⎛
⎝ ∞∫

α

∞∫
α

f (x) g (y)

x + y − 2α
dxdy

⎞
⎠

4

< π4

⎧⎨
⎩

⎛
⎝ ∞∫

α

f 2 (x) dx

⎞
⎠

2

−
⎛
⎝ ∞∫

α

ω (x) f 2 (x) dx

⎞
⎠

2⎫⎬
⎭

×
⎧⎨
⎩

⎛
⎝ ∞∫

α

g2 (x) dx

⎞
⎠

2

−
⎛
⎝ ∞∫

α

ω (x) g2 (x) dx

⎞
⎠

2⎫⎬
⎭ (2.1)
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where the weight function ω (x) is defined by

ω (x) =
1

2

(
cos 2

√
x − α − e−2

√
x−α

)
(2.2)

Proof. We firstly suppose that f = g. By Schwarz’s inequality and then
by using (1.3) and (1.4), we have⎛
⎝ ∞∫

α

∞∫
α

f (x) f (y)

x + y − 2α
dxdy

⎞
⎠

2

=

⎛
⎝ ∞∫

α

∞∫
α

f (x) f (y)

x + y − 2α
(1 − c (x − α) + c (y − α)) dxdy

⎞
⎠

2

=

⎛
⎝ ∞∫

α

∞∫
α

{
f (x)

(x + y − 2α)1/2

(
x − α

y − α

) 1
4

(1 − c (x − α) + c (y − α))
1
2

}

×
{

f (y)

(x + y − 2α)1/2

(
y − α

x − α

) 1
4

(1 − c (x − α) + c (y − α))
1
2

}
dxdy

)2

≤ J1J2

= π2

⎧⎨
⎩

⎛
⎝ ∞∫

α

f 2 (x) dx

⎞
⎠

2

−
⎛
⎝ ∞∫

α

k (x) f 2 (x) dx

⎞
⎠

2⎫⎬
⎭

where k (x) is defined by (1.5).
Let’s assume that c (x) = sin2 √x. It is obvious that we have 1 − c (x) +

c (y) ≥ 0.
By Lemma 1.2, it is easy to deduce that

k (x) =
2

π

∞∫
0

c ((x − α) t2)

1 + t2
dt − c (x − α) =

2

π

∞∫
0

sin2
√

x − α t

1 + t2
dt − sin2

√
x − α

=
1

2

(
cos 2

√
x − α − e−2

√
x−α

)
= ω (x) .

It follows that the inequality (2.1) is valid for case f = g.
If f �= g. By Schwarz’s inequality we have⎛

⎝ ∞∫
α

∞∫
α

f (x) g (y)

x + y − 2α
dxdy

⎞
⎠

4

=

⎧⎪⎨
⎪⎩

⎛
⎝ 1∫

0

⎛
⎝ ∞∫

α

tx−α− 1
2 f (x) dx

∞∫
α

ty−α− 1
2 g (y)dy

⎞
⎠ dt

⎞
⎠

2
⎫⎪⎬
⎪⎭

2

≤
⎧⎨
⎩

1∫
0

⎛
⎝ ∞∫

α

tx−α− 1
2 f (x) dx

⎞
⎠

2

dt

⎫⎬
⎭

2 ⎧⎨
⎩

1∫
0

⎛
⎝ ∞∫

α

ty−α− 1
2 g (y) dy

⎞
⎠

2

dt

⎫⎬
⎭

2

=

⎧⎨
⎩

∞∫
α

∞∫
α

f (x) f (y)

x + y − 2α
dxdy

⎫⎬
⎭

2 ⎧⎨
⎩

∞∫
α

∞∫
α

g (x) g (y)

x + y − 2α
dxdy

⎫⎬
⎭

2

(2.3)
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Using Theorem 2.1 for case f = g, it follows from (2.3) that the inequality
(2.1) is obtained at once.

Since f (x) g (x) �= 0, it is impossible to take equality in (2.3). Theorem is
proved.

In particular, when c(x) =constant, we have 1 − c (x) + c (y) = 1, whence
k (x) = 0. As a result, the inequality (2.1) is reduced to the inequality (1.2).

When α = 0, we obtain a refinement of (1.1):

Corollary 2.2. Let f (x) and g (x) be two real functions. If 0 <
∞∫
0

f 2 (x) dx <

+ ∞ and 0 <
∞∫
0

g2 (x) dx < + ∞, then

⎛
⎝ ∞∫

0

∞∫
0

f (x) g (y)

x + y
dxdy

⎞
⎠

4

< π4

⎧⎨
⎩

⎛
⎝ ∞∫

0

f 2 (x) dx

⎞
⎠

2

−
⎛
⎝ ∞∫

0

ω0 (x) f 2 (x) dx

⎞
⎠

2⎫⎬
⎭

×
⎧⎨
⎩

⎛
⎝ ∞∫

0

g2 (x) dx

⎞
⎠

2

−
⎛
⎝ ∞∫

0

ω0 (x) g2 (x) dx

⎞
⎠

2⎫⎬
⎭ (2.4)

where the weight function ω0 (x) is defined by

ω0 (x) =
1

2

(
cos 2

√
x − e−2

√
x
)

(2.5)

In particular, when f = g, the following result is obtained.

Corollary 2.3. Let f (x) be a real function. If 0 <
∞∫
0

f 2 (x) dx < + ∞,

then⎛
⎝ ∞∫

0

∞∫
0

f (x) f (y)

x + y
dxdy

⎞
⎠

2

< π2

⎧⎨
⎩

⎛
⎝ ∞∫

0

f 2 (x) dx

⎞
⎠

2

−
⎛
⎝ ∞∫

0

ω0 (x) f 2 (x) dx

⎞
⎠

2⎫⎬
⎭

(2.6)

where the weight function ω0 (x) is defined by (2.5).

3 Applications
In this section we will give some refinements of Widder’s theorem and

Hardy-Littlewood’s theorem with the help of Theorem 2.1 and Corollary 2.3.

Let an ≥ 0(n =0, 1, 2, . . . . ), A(x) =
∞∑

n=0

anxnA∗(x) =
∞∑

n=0

anxn

n!
.

If A (x) �= 0, then

1∫
0

A2(x)dx < π

∞∫
0

f 2(x)dx (3.1)
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where f (x) = e−xA∗ (x). This is Widder’s theorem (see [4]).
We shall give a refinement of (3.1), below.
Theorem 3.1. With the assumptions as the above-mentioned , then⎛

⎝ 1∫
0

A2 (x) dx

⎞
⎠

2

< π2

⎧⎨
⎩

⎛
⎝ ∞∫

0

f 2 (x) dx

⎞
⎠

2

−
⎛
⎝ ∞∫

0

ω0 (x) f 2 (x) dx

⎞
⎠

2⎫⎬
⎭ (3.2)

where ω0 (x) is defined by (2.5).
Proof. At first we have the following relation:

∞∫
0

e−tA∗(x)dt =

∞∫
0

e−t

∞∑
n=0

an (xt)n

n!
dt =

∞∑
n=0

anxn

n!

∞∫
0

tne−tdt =

∞∑
n=0

anxn = A(x).

Let tx = s. Then we have

1∫
0

A2(x)dx =

1∫
0

⎛
⎝ ∞∫

0

e−s/xA∗(s)ds

⎞
⎠

2

1

x2
dx =

∞∫
1

⎛
⎝ ∞∫

0

e−syA∗(s)ds

⎞
⎠

2

dy.

Let u = y − 1. Then

1∫
0

A2(x)dx =

∞∫
0

⎛
⎝ ∞∫

0

e−suf(s)ds

⎞
⎠

2

du =

∞∫
0

∞∫
0

f (s) f (t)

s + t
dsdt (3.3)

where f (x) = e−xA∗ (x).
Using Corollary 2.3, the inequality (3.2) follows from (3.3) at once.
Let f (x) ∈ L2 (0, 1) and f (x) �= 0. If

an =

1∫
0

xnf (x) dx, n = 0, 1, 2, · · ·

then we have the Hardy-Littlewood’s inequality (see [5])of the form

∞∑
n=0

a2
n < π

1∫
0

f 2 (x) dx (3.4)

where π is the best constant that keeps (3.4) valid. In our previous paper [6],
the inequality (3.4) was extended and established the following inequality:

∞∫
0

f 2 (x) dx < π

1∫
0

h2 (x) dx (3.5)
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where f (x) =
1∫
0

txh (x) dx, x ∈ [0, +∞)

The inequality (3.5) is called the Hardy-Littlewood integral inequality.

Afterwards the inequality (3.5) was refined into the following form (see [7]):

∞∫
0

f 2 (x) dx ≤ π

1∫
0

t h2 (t) dt. (3.6)

We will further refine the inequality (3.6) here.

Theorem 3.2. Let h (t) ∈ L2 (0, 1), h (t) �= 0. Define a function by

f (x) =

1∫
0

tx−α |h (t)| dt(x − α ≥ 0)

If 0 <
+∞∫
α

f 2 (x) dx < +∞, then

⎛
⎝ ∞∫

α

f 2 (x) dx

⎞
⎠

2

< π2

⎧⎨
⎩

⎛
⎝ ∞∫

α

f 2 (x) dx

⎞
⎠

2

−
⎛
⎝ ∞∫

α

ω (x) f 2 (x) dx

⎞
⎠

2⎫⎬
⎭

1∫
0

t h2 (t) dt.

(3.7)

where the weight function ω (x) is defined by (2.2).

Proof. Let us write f 2 (x) in form:

f 2 (x) =

1∫
0

f (x) tx−α |h (t)| dt.

Applying in turn Schwarz’s inequality and Theorem 2.1, we have
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⎛
⎝ +∞∫

α

f 2 (x) dx

⎞
⎠

2

=

⎧⎨
⎩

∞∫
α

⎛
⎝ 1∫

0

f (x) tx−α |h (t)| dt

⎞
⎠ dx

⎫⎬
⎭

2

=

⎧⎨
⎩

1∫
0

⎛
⎝ +∞∫

α

f (x) tx−α−1/2dx

⎞
⎠ t1/2 |h (t)| dt

⎫⎬
⎭

2

≤
1∫

0

⎛
⎝ +∞∫

α

f (x) tx−α−1/2dx

⎞
⎠

2

dt

1∫
0

t h2 (t) dt

=

1∫
0

⎛
⎝ +∞∫

α

f (x) tx−α−1/2dx

⎞
⎠

⎛
⎝ +∞∫

α

f (y) ty−α−1/2dy

⎞
⎠ dt

1∫
0

t h2 (t) dt

=

1∫
0

⎛
⎝ +∞∫

α

+∞∫
α

f (x) f (y) tx+y−2α−1dxdy

⎞
⎠ dt

1∫
0

t h2 (t) dt

=

⎛
⎝ +∞∫

α

+∞∫
α

f(x)f(y)

x + y − 2α
dxdy

⎞
⎠ 1∫

0

t h2 (t) dt

≤ π2

⎧⎨
⎩

⎛
⎝ ∞∫

α

f 2 (x) dx

⎞
⎠

2

−
⎛
⎝ ∞∫

α

ω (x) f 2 (x) dx

⎞
⎠

2⎫⎬
⎭

1∫
0

t h2 (t) dt.

(3.8)

where the weight function ω (x) is defined by (2.2).

Since h (t) �= 0, f 2 (x) �= 0. It follows that it is impossible to take equality
in (3.8). We therefore complete the proof of the theorem.

Foundation item: A Project Supported by scientific Research Fund of
Hunan Provincial Education Department (06C657).

References

[1] Gao Mingzhe and Hsu L. C., A Survey of Various Refinements And
Generalizations of Hilbert’s Inequalities, Vol. 25, 2(2005), 327-343.

[2] Daniel Zwillinger et al. CRC Standard Mathematical Tables and Formu-
lae, CRC Press, 1988.



On Hilbert’s integral inequality and applications 459

[3] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products,
Academic Press, 2000.

[4] . O. V. Widder, An inequality related to Hilbert’s inequalities, J. London
Math. Soc., 1924, (4): 194-198.

[5] Hardy, G. H., Littlewood, J. E., and G.Polya: Inequalities. Cambridge:
Cambridge Univ. Press, 1952.

[6] Gao Mingzhe: On Hilbert’s inequality and its applications. J. Math. Anal.
Appl., 212(1997), 316-323.

[7] Gao Mingzhe, Tan Li and L. Debnath, Some improvements on Hilbert’s
integral inequality. J. Math. Anal. Appl., Vol. 229, 2(1999),682-689.

Received: August, 2008


