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Abstract

A generalization of geometric Pakes generalized Linnik laws and re-
lated processes are discussed here. This class of distributions possesses a
different kind of closure under geometric compounding and consequently
a different kind of p-thinning of renewal processes. Domain of geomet-
ric attraction of these laws are discussed. The convolution semi-group
generator of their non-negative analogue is derived. A generalization of
gamma is a closely related distribution in this discussion.
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1 Introduction

Pillai (1990) had introduced geometric exponential laws with Laplace trans-

form (LT)
1

1 + log(1 + λ)
and this was studied in some more detail in Jose and

Seethalekshmi (1999). Of late various generalizations of this distribution are
being studied and their roles in AR(1) models are investigated.
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See eg. Seethalekshmi and Jose (2006) discussing geometric Pakes general-

ized Linnik (α, ν) law with CF
1

1 + ν log(1 + |u|α) and the references therein.

The purpose of this paper is to discuss a further generalization of the above
distribution which we call geometric generalized gamma with CFs of the form

1

1 + β log(1 + h(u))
, β > 0, where e−h(u) is a CF that is ID, and processes

related to it.
Possible applications of the models considered here are in the area where ge-

ometric compounding models are being considered, viz. deriving non-Gaussian
time series models for stock market price and in modeling finance data (Mit-
tnick and Rachev, 1993), regenerating processes with rare events in reliability
(Gertsbakh, 1984) and renewal data with missing observations (thinning) Yan-
naros (1987).

In section 2, we will discuss geometric generalized gamma laws and some
of its divisibility properties. Restricting the discussion to the support [0,∞)
we derive the convolution semi-group generator of these distributions. Us-
ing divisibility properties we discuss various processes corresponding to it in
section 3.

2 Geometric generalized gamma laws

We need the following notions in our discussion. Infinitely divisible (ID) laws
are well known in the literature. Klebanov, et al. (1984) had introduced the
notion of geometrically ID (GID) laws and proved that a CF φ(u) is GID iff

e−{ 1
φ(u)

−1} is ID. It is also known that GID laws are ID, Pillai (1990), Sandhya
(1991a).

Thus corresponding to a CF e−h(u) that is ID we have distributions with CF
1

1 + h(u)
that are GID and hence ID. Hence it follows from the property of CFs

which are ID that
1

(1 + h(u))β
, β > 0 is a CF which is ID. When h(u) = −iu,

the above CF is that of gamma(β). Now writing this as e−β log(1+h(u)) and

considering the GID law corresponding to it we get the CF
1

1 + β log(1 + h(u))
,

β > 0. Thus we have;

Definition 2.1 For a CF e−h(u) that is ID the CF
1

(1 + h(u))β
, β > 0

describes a generalized gamma(β) (GG) distribution.

Definition 2.2 For a CF e−h(u) that is ID the CF
1

1 + β log(1 + h(u))
,

β > 0 describes a geometric generalized gamma(β) (GGG) distribution.
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Theorem 2.3 GGG laws are GID and hence ID.

Proof. We know that a CF φ(u) is GID iff e−( 1
φ(u)

−1) is ID.
From our construction we have; e−β log(1+h(u)), β > 0 is a CF that is ID.

Now setting 1
φ(u)

− 1 = β log{1 + h(u)} we have;
1

1 + β log(1 + h(u))
= φ(u) is GID. Since all GID laws are ID, GGG laws are

also ID.

Theorem 2.4 A CF φ(u) =
1

1 + log(1 + h(u))β
, β > 0 is GGG iff 1

(1+h(u))β
,

β > 0 is the CF of an ID distribution. Also GG(β) distributions are ID. This
is clear from above.

Theorem 2.5 Every GGG(β) distribution is the limit distribution of geo-
metric ( 1

n
)-sum of i.i.d GG (β

n
) variables.

Proof. Let φn(u) denote the CF of a geometric ( 1
n
)-sum of i.i.d GG (β

n
) vari-

ables. Thus,

φn(u) =
1
n
(1 + h(u))−

β
n

1 − n−1
n

(1 + h(u))−
β
n

=
1

n(1 + h(u))
β
n − (n− 1)

=
1

1 + n{(1 + h(u))
β
n − 1}

.

Hence,

lim
n→∞

φn(u) =
1

1 + log(1 + h(u))β
=

1

1 + β log(1 + h(u))

which proves the assertion.

Theorem 2.6 The weak limit of n-fold convolution of GGG (β
n
) laws is

GG(β).

Proof. Since

lim
n→∞

{ 1

1 + β
n

log(1 + h(u))

}n
= e−β log(1+h(u)) =

1

(1 + h(u))β
,

the claim is proved.

Theorem 2.7 Np-sum of i.i.d GGG (β) variables is GGG (β
p
) for any

p ∈ (0, 1) where Np is a geometric(p) r.v with E(Np) = 1
p

independent of
the summands.
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Proof. The CF of geometric(p)-sum of i.i.d GGG (β) variables is given by;

p/{1 + β log(1 + h(u))}
1 − (1 − p)/{1 + β log(1 + h(u))}

=
p

p+ β log(1 + h(u))
=

1

1 + β
p

log(1 + h(u))
,

which is the CF of a GGG (β
p
) law.

Remark 2.8 The invariance property of geometric(p)-sum described above
is different from the invariance under geometric summation up to a scale
change characterizing semi-α-Laplace distributions (Sandhya, 1991a). Here
note that the shape parameter changes.

We now discuss the domain of attraction (DA) of the GG law and the
domain of geometric attraction (DGA) of the GGG law under a regularity
condition. In the classical summation scheme a CF g(u) belongs to the DA of
the CF f(u) if there exists sequences of real constants {an > 0} and {bn} such
that

as n→ ∞, {g(u/an) exp(−iubn)}n → f(u) for all u ∈ R.

Setting gn(u) = g(u/an) exp(−iubn) this is equivalent to {gn(u)}n → f(u)
as n → ∞. When convergence is possible only if n runs through a sub-
sequence {nk} of positive integers we say that the CF g(u) belongs to the
domain of partial attraction (DPA) of the CF f(u). The notion of DGA has
been developed by Sandhya (1991a) and Sandhya and Pillai (1999) and is
described as follows. We have a sequence of i.i.d r.vs with CF g(u) and set
gp(u) = g(u/ap) exp(−iubp), where {ap > 0} and {bp} are real constants. Then

the geometric(p)-sum of gp(u) is given by ωp(u) = pgp(u)

1−(1−p)gp(u)
. If ωp(u) → ω(u)

as p ↓ 0 through { 1
n
} then we say that the CF g(u) belongs to the DGA of ω(u)

and if the convergence is possible only as p ↓ 0 through { 1
nk
} where {nk} is a

subsequence of positive integers {n} we say that g(u) belongs to the domain of
partial geometric attraction (DPGA) of ω(u). We need the following condition
on the d.f G (Gnedenko and Korolev, 1996, p.108);∫ ∞

0

ωt1dG(t) =

∫ ∞

0

ωt2dG(t) implies ω1 ≡ ω2 for any ID CFs ω1 and ω2. (1)

Theorem 2.9 Let X1, X2, X3, . . . , be i.i.d r.vs with CF g(u) and Np a
geometric(p) r.v with mean 1

p
and independent of X1. Let (1) be satisfied by

the d.f of the unit exponential r.v E. Then g(u) is in the DA (DPA) of GG(β)
iff g(u) is in the DGA (DPGA) of GGG(β).
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Proof. Since pNp
d→ E as p ↓ 0, by Gnedenko’s transfer theorem (see, Gne-

denko and Korolev, 1996) it follows that if g(u) is in the DA (DPA) of GG(β)

law with CF
1

(1 + h(u))β
, β > 0 then g(u) is in the DGA (DPGA) of GGG(β)

law with CF 1
1+β log(1+h(u))

, β > 0. Further since Np
P→ ∞ as p ↓ 0 and (1) is

satisfied by the d.f of E, by invoking Szasz’s (1972) converse to Gnedenko’s
transfer theorem, if g(u) is in the DGA (DPGA) of GGG(β) law then g(u) is
in the DA (DPA) of GG(β) law.

Now we consider analogous distributions on [0,∞). LTs of the form e−ψ(λ),
λ > 0 where ψ(λ) has complete monotone derivative (CMD), ψ(0) = 0, Feller
(1971, p.450), characterize ID laws on [0,∞). The LTs of GID laws on [0,∞)
have the form 1

1+ψ(λ)
, λ > 0 where ψ(λ) has CMD with ψ(0) = 0, Sandhya

(1991b). Now we describe GGG laws and generalized geometric exponential
(GGE) laws on [0,∞).

Definition 2.10 A distribution with LT φ(λ) =
1

1 + β log(1 + ψ(λ))
, β > 0

and ψ(λ) has CMD with ψ(0) = 0 is called a (non-negative) GGG(ψ, β) laws.

Definition 2.11 A distribution with LT φ(λ) =
1

1 + log(1 + ψ(λ))
, where

ψ(λ) has CMD with ψ(0) = 0 is called a Generalized Geometric Exponential
(GGE(ψ)) laws.

Remark 2.12 When ψ(λ) = λ, we get the geometric exponential distri-
bution. When ψ(λ) = λα, 0 < α ≤ 1, we get a geometric Mittag-Leffler
distribution.

The function ψ(λ) in the LT of an ID law can be represented as

ψ(λ) =
∞∫
0

1 − e−λx

x
P{dx}, where P is a measure such that

∞∫
1

P{dx}
x

<∞,

(Feller, 1971, p.450). This measure is also known as the generator of the
convolution semi-group corresponding to the ID law, (see Feller, 1971, exam-
ple (a) on p.457, 458). Next we derive the convolution semi-group generator
of GGG(ψ, β).

Theorem 2.13 Let X be a GG(ψ, β) and Y be GGG(ψ, β). Let P1 be the
convolution semi-group generator of X and P0 that of Y . Let F be the d.f of
X and G that of Y . Then P0 = G ∗ P1

Proof. Setting (1 + ψ(λ))−β = exp{−β log(1 + ψ(λ))} = exp{−ψ1(λ)}, we
have;

ψ1(λ) =

∫ ∞

0

1 − e−λx

x
P1{dx} and hence ψ′

1(λ) =

∫ ∞

0

e−λxP1{dx}.
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Now setting {1 + β log(1 + ψ(λ))}−1 = exp{− log{1 + β log(1 + ψ(λ))}} =
exp(−ψ0(λ))

we have;
∫ ∞

0
e−λxP0{dx} = ψ′

0(λ) =
1

1 + β log(1 + ψ(λ))
ψ′

1(λ).

This implies that P0 = G ∗ P1.

When β = 1, we have; ψ′
0(λ) =

1

1 + log(1 + ψ(λ))

1

{1 + ψ(λ)}ψ
′(λ) and so;

Corollary 2.14 Let X be a GG(ψ, 1) and Y be GGE(ψ). Let P be the
convolution semi-group generator of the ID distribution with LT e−ψ(λ), P1

that of X and P0 that of Y . Let F be the d.f of X and G that of Y . Then
P0 = G ∗ F ∗ P .

This extends theorem 2.1 in Pillai and Sandhya (2001).

Remark 2.15 It is quite interesting to note that for a non-negative function
ψ(λ) having CMD with ψ(0) = 0, log(1+ψ(λ)) also has CMD. Further starting
from a ψ(λ) having CMD we can recursively take log(1+ψ(λ)) to have functions
with CMD. Eg. If ψ(λ) has CMD then log{1 + log[1 + log(1 + ψ(λ))]} also
has CMD. CFs can also be derived recursively as above. Thus various LTs of
probability distributions can be derived.

3 Processes related to GGG and GG laws

3.1 Subordination of Levy processes

From Feller (1971, p.573) we have: Let {Y (t), t ≥ 0} be a Levy process with
CF exp{−th(u)} and {T (t), t ≥ 0} a positive Levy process independent of
{Y (t)} with LT φt . Then the process {X(t), t ≥ 0} is said to be subordinated

to {Y (t)} by {T (t)}, the directing process, if {X(t)} d
= {Y (T (t))} and the CF

of {X(t)} is given by f(u) = {φ(h(u))}t. Here we are randomizing the time
parameter t of {Y (t)} by {T (t)}. Since GGG laws and GG laws are ID they
can describe Levy processes and we have the following two results.

Theorem 3.1 A GGG (β) process is subordinated to a GG(β) process by
the unit exponential process.

Proof. If {Y (t)} is a GG(β) process and {T (t)} is unit exponential with d.f G
then:

1

1 + β log(1 + h(u))
=

∫ ∞

0

e−tβ log(1+h(u))dG(t), which proves the assertion.
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Theorem 3.2 Let X(t) be a Levy process with e−h(u) as the CF of X(1).
Then the GGG (β) process is subordinated to X(t) by the GG(β) process.

Proof. We know that the LT of a GG(β) law is
1

1 + log(1 + λ)β
. If G denotes

its d.f then we have;

1

1 + β log(1 + h(u))
=

∫ ∞

0

e−th(u)dG(t), proving the assertion.

This generalizes theorem 2.1 in Seethalekshmi and Jose (2001).

3.2 p-thinning of renewal processes

Let the i.i.d sequence of non-negative r.vs {Xi} describe the inter-arrival times
of a renewal process. Suppose that every renewal point of this process is
retained with a constant probability p and deleted with probability (1 − p)
independent of all other points and the process itself. The resulting process
is called the p-thinned process of {Xi}. See, Renyi (1956), Yannaros (1987)
or Sandhya (1991b). If an i.i.d sequence of non-negative r.vs {Yi} describe
the inter-arrival times of the p-thinned process, then the LTs of Xi and Yi are
related by

φY (λ) =
pφX(λ)

1 − (1 − p)φX(λ)
for some 0 < p < 1.

Now invoking theorem 2.7 we get;

Theorem 3.3 A GGG (ψ, β) renewal process is invariant under p-thinning
for any p ∈ (0, 1). Here the p-thinned process is described by the GGG (ψ, β

p
)

variable.

3.3 An Auto-regressive model

Now consider the first order autoregressive (AR(1)) model (2.2) of Lawrance
and Lewis (1981). Here a sequence of r.vs {Xn, n > 0 integer} defines the
AR(1) scheme if for some 0 < p < 1 there exists an innovation sequence {εn}
of i.i.d r.vs such that;

Xn =

{
εn, with probability p

Xn−1 + εn, with probability (1-p).
(2)

Assuming stationarity in terms of CFs this is equivalent to;

φX(u) = pφε(u) + (1 − p)φX(u)φε(u).
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That is;

φX(u) =
pφε(u)

1 − (1 − p)φε(u)
.

Hence {Xn} is a geometric sum of the innovation sequence {εn}. Once again
invoking theorem 2.7 we have proved;

Theorem 3.4 In the AR(1) structure (2) the sequence {Xn} and the in-
novation sequence {εn} are related as follows for any p ∈ (0, 1). {Xn} is
GGG(ψ, β) iff {εn} is GGG (ψ, β

p
).

Equivalently,

Theorem 3.5 A necessary and sufficient condition for an AR(1) process
{Xn} with the structure in (2) is stationary for any p ∈ (0, 1) with GGG (ψ, β)
distributed marginals is that the innovation’s are distributed as GGG(ψ, β

p
).
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