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Abstract

The derivation of Green’s functions is revisited in a trivial case
of standard boundary value problems for the two-dimensional Laplace
equation. Regions of a regular shape are considered, with Dirichlet
and/or Neumann boundary conditions imposed. Classical closed ana-
lytic form of Green’s functions are reviewed and the method of images is
used for obtaining their alternative representations in terms of infinite
products. The latter are obviously less attractive compared to the closed
form of Green’s functions. But the point, however, is that a surprising
aspect was discovered when the two forms are compared. This brings
some new ‘summation’ formulae for infinite products leading, in turn,
to unlooked-for results in the approximation of elementary functions.
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1 Introduction

The method of images [2,4,6] represents one of the classical approaches to
the construction of Green’s functions for Laplace equation. Procedure of this
method is unpretentious. The idea behind is to find, for any location of a
unit source inside the region, a location and intensity of point sources outside
the region in such a way that homogeneous boundary conditions imposed on
the regions’s boundary are satisfied. The number of problems, for which the
method of images turned out productive, is limited to a few. It works only for
several particular problems posed on regions of standard configuration, with
either Dirichlet of Neumann boundary conditions imposed.
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It is, for instance, evident that the classical [4] Green’s function

G(x, y; ξ, η) =
1

2π
ln

√√√√(x− ξ)2 + (y + η)2

(x− ξ)2 + (y − η)2
(1)

of the Dirichlet problem for the half-plane y > 0 represents the sum of two
components

− 1

2π
ln
√

(x− ξ)2 + (y − η)2

and
1

2π
ln
√

(x− ξ)2 + (y + η)2

the first of which is the fundamental solution of the Laplace equation in two
dimensions and represents the response at an arbitrary field point (x, y) to a
unit source located at (ξ, η), while the second component is the response to a
unit sink located at the point (ξ,−η). The latter is the image of (ξ, η) about
the boundary line of the half-plane.

As another example of successful application of the method of images, we
consider the function

G(x, y; ξ, η) =
1

2π
ln
(√

(x− ξ)2 + (y − η)2

×
√

(x− ξ)2 + (y + η)2

)
(2)

which is the sum of responses to two unit sources located at (ξ, η) and (ξ,−η).
The above represents Green’s function of the Neumann problem for the half-
plane y > 0.

Upon combining two unit sources located at (ξ, η) and (−ξ,−η) with two
unit sinks placed at (−ξ, η) and (ξ,−η), one arrives at the Green’s function

G(x, y; ξ, η) =
1

2π
ln

⎛
⎝
√√√√ [(x− ξ)2 + (y + η)2]

[(x− ξ)2 + (y − η)2]

×
√√√√ [(x+ ξ)2 + (y − η)2]

[(x+ ξ)2 + (y + η)2]

⎞
⎠ (3)

of the Dirichlet problem posed on the quarter-plane {x > 0, y > 0}.
Relocating the sources and the sinks in (3), one arrives at the Green’s

function

G(x, y; ξ, η) =
1

2π
ln

⎛
⎝
√√√√ [(x− ξ)2 + (y + η)2]

[(x− ξ)2 + (y − η)2]
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×
√√√√ [(x+ ξ)2 + (y + η)2]

[(x+ ξ)2 + (y − η)2]

⎞
⎠ (4)

for a mixed boundary value problem on the quarter-plane {x > 0, y > 0},
where Dirichlet condition is assumed on the fragment y = 0 of the boundary,
while Neumann condition is imposed on the fragment x = 0.

The Green’s function [5]

G(r, ϕ; �, ψ) =
1

2π
ln

1

R

√√√√R4 − 2R2r� cos(ϕ− ψ) + r2�2

r2 − 2r� cos(ϕ− ψ) + �2
(5)

of the Dirichlet problem for a disc of radius R centered at the origin, can be
obtained, by the method of images, as the sum of the response

− 1

2π
ln
√
r2 − 2r� cos(ϕ− ψ) + �2

to a unit source placed at an arbitrary point (�, ψ) inside the disc and to a
sink placed outside the disc, response to which is given as

1

2π
ln

1

R

√
R4 − 2R2r� cos(ϕ− ψ) + r2�2

The expressions for Green’s functions listed above represent just a few ones
whose compact closed form is obtainable by the method of images. The present
study discloses a surprising outcome from the procedure of this method when
it is used for the derivation of alternative forms for some classical Green’s
functions. This leads to a different research area, making it possible to obtain
new infinite product representations for some elementary functions.

2 Dirichlet problem for an infinite strip

We begin, in this section, a revision of some classical Green’s functions for
Laplace equation, which have traditionally been obtained by means of other
methods, and obtain then those Green’s functions by the method of images.
This allows us to derive new ‘summation’ formulae for some infinite functional
products.

For the first example, consider Dirichlet problem for Laplace equation
stated on the infinite strip Ω = {−∞ < x < ∞, 0 < y < b}. Green’s
function

G(x, y; ξ, η) =
1

2π
ln

√√√√1 − 2eω(x−ξ) cosω(y + η) + e2ω(x−ξ)

1 − 2eω(x−ξ) cosω(y − η) + e2ω(x−ξ)
, ω =

π

b
(6)
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for this problem can be found in standard texts on partial differential equations.
It was obtained in [3], for example, by a modified version of the method of
eigenfunction expansion [6]. That version brings computer-friendly forms of
Green’s functions due to either complete or partial summation of their series
representations.

Another alternative expression for the Green’s function shown in (6) can be
obtained by the method of images. In doing so, we place a unit source S+

0 at
an arbitrary point (ξ, η) ∈ Ω. The response to S+

0 is the fundamental solution

G+
0 (x, y; ξ, η) = − 1

2π
ln
√

(x− ξ)2 + (y − η)2

To compensate traces of S+
0 on the boundary fragments y = 0 and y = b,

we place two unit sinks S−
1,0 and S−

1,b at the points (ξ,−η) and (ξ, 2b−η), which
are the images of (ξ, η) about the lines y = 0 and y = b, respectively. The
responses to these sinks are

G−
1,0(x, y; ξ,−η) =

1

2π
ln
√

(x− ξ)2 + (y + η)2

and

G−
1,b(x, y; ξ, 2b− η) =

1

2π
ln
√

(x− ξ)2 + (y − (2b− η))2

Traces of the sinks S−
1,0 and S−

1,b on the boundary lines y = 0 and y = b
can, in turn, be compensated with unit sources S+

2,0 and S+
2,b which are located

at (ξ,−2b+ η) and (ξ, 2b+ η). The responses to these are given as

G+
2,0(x, y; ξ,−2b+ η) = − 1

2π
ln
√

(x− ξ)2 + (y − (−2b+ η))2

and

G+
2,b(x, y; ξ, 2b− η) = − 1

2π
ln
√

(x− ξ)2 + (y − (2b+ η))2

Traces of the sources S+
2,0 and S+

2,b can then be compensated with unit sinks
S−

3,0 and S−
3,b located at (ξ,−2b− η) and (ξ, 4b− η).

Following the described procedure of properly placing compensatory unit
sources that alternate with unit sinks, the Green’s function G = G(x, y; ξ, η)
that we are looking for is obtained in a form of the infinite series

G = G+
0 +

∞∑
i=1

(
G−

2i−1,0 +G−
2i−1,b

)
+

∞∑
i=1

(
G+

2i,0 +G+
2i,b

)

Since the terms of this series represent logarithmic functions, its sum can be
written as a single logarithm of an infinite product which is ultimately found
in the form

G(x, y; ξ, η) =
1

2π
ln

∞∏
n=−∞

√√√√(x− ξ)2 + (y + η − 2nb)2

(x− ξ)2 + (y − η + 2nb)2
(7)
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Thus, (7) delivers a new representation of the Green’s function for the
Dirichlet problem on the infinite strip, which is alternative to that in (6).
Since the radicands in (6) and (7) are non-negative quantities, one immediately
obtains

∞∏
n=−∞

(x− ξ)2 + [y + (η − 2nb)]2

(x− ξ)2 + [y − (η − 2nb)]2

=
1 − 2eω(x−ξ) cosω(y + η) + e2ω(x−ξ)

1 − 2eω(x−ξ) cosω(y − η) + e2ω(x−ξ)

This can be interpreted as a ‘summation’ formula for the infinite product.
Assuming b = π, in the above relation, and introducing the parameters β =
x− ξ, u = y + η and v = y − η, we obtain the identity

∞∏
n=−∞

β2 + (u− 2nπ)2

β2 + (v + 2nπ)2
=

1 − 2eβ cos u+ e2β

1 − 2eβ cos v + e2β
(8)

Based on the fact that both the observation point (x, y) and the source
point (ξ, η) belong to Ω, the identity in (8) is supposed to be valid (at least,
formally) for

−∞ < β <∞, 0 < u < 2π, 0 ≤ v < π (9)

given that the parameters β and v are not equal zero at the same time. But
it is important to note that if the product in (8) appears to be uniformly
convergent for a wider range of the variables u and v, then the constraints on
these variables in (9) ought to be accordingly revised.

The identity in (8) reduces to

∞∏
n=−∞

(u− 2nπ)2

(v + 2nπ)2
=

1 − cosu

1 − cos v
= sin2 u

2
csc2 v

2

if we assume a zero value for the parameter β (with v �= 0).
It is evident that the above identity holds if

∞∏
n=−∞

u− 2nπ

v + 2nπ
= sin

u

2
csc

v

2
(10)

representing an infinite product expansion of the function

F (u, v) = sin
u

2
csc

v

2

To take a closer look at the convergence of the infinite product in (10), we
isolate the term n = 0, which is u/v, and group the terms n = k and n = −k.
This yields

∞∏
n=−∞

u− 2nπ

v + 2nπ
=
u

v

∞∏
k=1

(u− 2kπ)(u+ 2kπ)

(v + 2kπ)(v − 2kπ)
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=
u

v

∞∏
k=1

u2 − 4k2π2

v2 − 4k2π2

=
u

v

∞∏
k=1

u2 − v2 + v2 − 4k2π2

v2 − 4k2π2

=
u

v

∞∏
k=1

(
1 +

u2 − v2

v2 − 4k2π2

)

This form of the product implies [1] that it uniformly converges as soon as
the series ∞∑

k=1

u2 − v2

v2 − 4k2π2

does so. But the above series represents a generalized harmonic series with the
convergence rate of the order of 1/k2. It uniformly converges [5] for any finite
value of u and v. Based on that it is possible to conclude that the constraints
put on the parameters u and v in (9) can be revised. This, in turn, implies
that the product in (10) uniformly converges to a value of the function F (u, v)
at any point (u, v) in its domain.

Two infinite product representations for single-variable trigonometric func-
tions can be obtained from that in (10). Indeed, if we assume v = π and make
a substitution u/2 = t, then the relation in (10) transforms in the expansion

sin t =
∞∏

n=−∞

2(t− nπ)

(2n+ 1)π
(11)

of the sine function in an infinite product, the uniform convergence of which
evidently follows from the analysis that we just completed for the infinite
product in (10).

The expansion in (11) can be transformed, similarly to that in (10), by
isolating the n = 0 term, which is 2t/π, and coupling the n = k and n = −k
terms. This yields

sin t =
2t

π

∞∏
k=1

4(t2 − k2π2)

(1 − 4k2)π2

which, after a trivial algebra, reads

sin t =
2t

π

∞∏
k=1

[
1 +

4t2 − π2

(1 − 4k2)π2

]
(12)

The expansion in (12) represents an alternative to the classical [1] infinite
product form

sin t = t
∞∏

k=1

(
1 − t2

k2π2

)
(13)



New infinite product representations 87

of the sine function.
It is evident that the products in (12) and (13) converge at the same rate.

This assertion follows from the appearance of their general terms. Indeed,
both of them converge to the unity value at the rate of 1/k2. It appears
from our observation, however, that the actual convergence of the product
in (12) is somewhat higher of that in (13). This observation does not, of
course, conflict with the apriori estimate, but rather gives a comparison of the
practical convergence. The latter is illustrated with the data in Table 1, where
to give a clear view of the convergence rate of both representations, we display
the relative error of their K-th partial products

∏(12)

K
=

2t

π

K∏
k=1

[
1 +

4t2 − π2

(1 − 4k2)π2

]

and ∏(13)

K
= t

K∏
k=1

(
1 − t2

k2π2

)

computed for a few values of t.
The infinite product representation

cos t = sin
(
π

2
− t

)
=
π − 2t

π

∞∏
k=1

[
1 +

4t(t− π)

(1 − 4k2)π2

]
(14)

for the cosine function, as directly obtained from (12), is an alternative to the
classical [1] form

cos t =
∞∏

k=1

(
1 − 4t2

(2k − 1)2π2

)

Going back to the relation in (10), letting u = π and making the substitu-
tion v/2 = t yields the following representation

csc t =
∞∏

n=−∞

(1 − 2n)π

2(t+ nπ)
=

∞∏
n=−∞

[
−1 +

2t+ π

2(t+ nπ)

]
(15)

for the cosecant function. The infinite product in (15) uniformly converges to
values of the cosecant at any point in its domain.

From the representations in (11) and (15) it follows

∞∏
n=−∞

2(t− nπ)

(2n+ 1)π
≡

∞∏
n=−∞

2(t+ nπ)

(1 − 2n)π

The equivalence of these products is evident because each of them is indifferent
to the replacement of n with −n.
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Upon revisiting the relation in (8) and assuming u = 0 and v = π in it,
one obtains ∞∏

n=−∞

β2 + 4n2π2

β2 + (1 + 2n)2π2
=

(1 − eβ)2

(1 + eβ)2

This can be rewritten in terms of a hyperbolic function as

tanh2 β

2
=

∞∏
n=−∞

β2 + 4n2π2

β2 + (1 + 2n)2π2

or

tanh2 t =
∞∏

n=−∞

4(t2 + n2π2)

4t2 + (1 + 2n)2π2
(16)

which yields the following expansion for the hyperbolic tangent function

tanh t = ±
∞∏

n=−∞
2

√√√√ t2 + n2π2

4t2 + (1 + 2n)2π2
(17)

where the upper case relation holds for t ≥ 0, while in the lower case relation
t is supposed to be less then zero.

It can readily be shown that the infinite product representations in (17)
and (16) uniformly converge for −∞ < t < ∞. Proof of the convergence can
be accomplished in the way used for the product in (10).

3 Dirichlet-Neumann problem on an infinite strip

Continuing the review of classical Green’s functions, we consider a mixed
boundary value problem for Laplace equation on the infinite strip Ω = {−∞ <
x < ∞, 0 < y < b}, with Dirichlet condition imposed on y = 0, while Neu-
mann condition is imposed on y = b. Recall the Green’s function for this
formulation, which is expressed in [3] as

G(x, y; ξ, η) =
1

2π

⎛
⎝ln

√√√√1 + 2eω(x−ξ) cosω(y − η) + e2ω(x−ξ)

1 − 2eω(x−ξ) cosω(y − η) + e2ω(x−ξ)

+ ln

√√√√1 − 2eω(x−ξ) cosω(y + η) + e2ω(x−ξ)

1 + 2eω(x−ξ) cosω(y + η) + e2ω(x−ξ)

⎞
⎠ , ω =

π

2b
(18)

Following the procedure of method of images described earlier, we look for
an alternative to (18) representation of the Green’s function. It can be obtained
in a form of the aggregate response to an infinite sum of properly spaced
unit sources and sinks. Their locations will be chosen in compliance with
the following pattern. To compensate the trace of the fundamental solution
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G+
0 (x, y; ξ, η) on the boundary line y = 0, a unit sink S−

1,0 is placed at the point
(ξ,−η), with the response given as

G−
1,0(x, y; ξ,−η) =

1

2π
ln
√

(x− ξ)2 + (y + η)2

The Neumann condition on y = b can be supported by placing a unit source
S+

1,b at the point (ξ, 2b− η). This yields

G+
1,b(x, y; ξ, 2b− η) = − 1

2π
ln
√

(x− ξ)2 + (y − (2b− η))2

The trace of S+
1,b on the boundary lines y = 0 can, in turn, be compensated

with a unit sink S−
2,0 placed at (ξ,−2b+ η), with the response given as

G−
2,0(x, y; ξ,−2b+ η) =

1

2π
ln
√

(x− ξ)2 + (y − (−2b+ η))2

while the Neumann condition on y = b can be supported with a unit sink S−
2,b

located at (ξ, 2b+ η), with the response

G−
2,b(x, y; ξ, 2b+ η) =

1

2π
ln
√

(x− ξ)2 + (y − (2b + η))2

The trace of the sink S−
2,b on y = 0 can be compensated with a unit source

S+
3,0 placed at (ξ,−2b− η), with the response

G+
3,0(x, y; ξ,−2b− η) = − 1

2π
ln
√

(x− ξ)2 + (y + (2b + η))2

while the Neumann condition on y = b can be supported with a unit sink S−
3,b

at (ξ, 4b− η), with the response

G−
3,b(x, y; ξ, 4b− η) =

1

2π
ln
√

(x− ξ)2 + (y − (4b− η))2

Proceeding in compliance with this scheme, the Green’s function that we
are looking for is obtained in the infinite product form

G(x, y; ξ, η) =
1

2π
ln

∞∏
n=−∞

√√√√(x− ξ)2 + (y + η + 4nb)2

(x− ξ)2 + (y − η + 4nb)2

×
√√√√(x− ξ)2 + (y − η + 2(2n+ 1)b)2

(x− ξ)2 + (y + η + 2(2n+ 1)b)2
(19)

which is an alternative to the closed analytic form in (18).
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By comparison of the expressions in (19) and (18), obtained for the same
Green’s function, one arrives at the identity

∞∏
n=−∞

(x− ξ)2 + (y + η + 4nb)2

(x− ξ)2 + (y − η + 4nb)2

×
∞∏

n=−∞

(x− ξ)2 + (y − η + 2(2n+ 1)b)2

(x− ξ)2 + (y + η + 2(2n+ 1)b)2

=
1 + 2eω(x−ξ) cosω(y − η) + e2ω(x−ξ)

1 − 2eω(x−ξ) cosω(y − η) + e2ω(x−ξ)

×1 − 2eω(x−ξ) cosω(y + η) + e2ω(x−ξ)

1 + 2eω(x−ξ) cosω(y + η) + e2ω(x−ξ)

To obtain a more compact form for this relation, we assume b = π/2, which
evidently implies that ω = 1, and introduce the parameters β = x−ξ, u = y+η
and v = y − η. This yields the following identity

∞∏
n=−∞

[β2 + (u+ 2nπ)2] [β2 + (v + (2n+ 1)π)2]

[β2 + (v + 2nπ)2] [β2 + (u+ (2n+ 1)π)2]

=
(1 − 2eβ cosu+ e2β)(1 + 2eβ cos v + e2β)

(1 − 2eβ cos v + e2β)(1 + 2eβ cosu+ e2β)
(20)

A particular case of the above identity can be obtained if we assume, for
example, β = 0. This reduces the relation in (20) to

∞∏
n=−∞

(u+ 2nπ)2[v + (2n + 1)π]2

(v + 2nπ)2[u+ (2n + 1)π]2

=
(1 − cosu)(1 + cos v)

(1 − cos v)(1 + cos u)
= tan2 u

2
cot2 v

2

It is evident that the above relation holds if

tan
u

2
cot

v

2
=

∞∏
n=−∞

(u+ 2nπ)[v + (2n+ 1)π]

(v + 2nπ)[u+ (2n+ 1)π]
(21)

Two infinite product representations of single-variable trigonometric func-
tions can be derived from the above relation. Indeed, if we let v = π/2 and
make the substitution u/2 = t, then (21) transforms into

tan t =
∞∏

n=−∞

2(3 + 4n)(t+ nπ)

(1 + 4n)[2t+ (2n+ 1)π]
(22)
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or

tan t =
∞∏

n=−∞

{
1 +

4t− π

(1 + 4n)[2t+ (2n+ 1)π]

}

which converges for any value of the variable t in the domain of the tangent
function. This assertion can be proved in the same way as that used in Sec-
tion 2. The data in Table 2 give a clear view of the convergence rate of the
representation in (22).

It is evident that the relation in (22) yields the following infinite product
representation

cot t =
∞∏

n=−∞

(1 + 4n)[2t+ (2n+ 1)π]

2(3 + 4n)(t + nπ)
(23)

or

cot t =
∞∏

n=−∞

[
1 +

π − 4t

2(3 + 4n)(t+ nπ)

]

for the cotangent function. By the way, the representation in (23) can be
directly obtained from that in (21) by letting u = π/2 and making the substi-
tution v/2 = t. The expansion in (23) uniformly converges for t �= nπ, where
n = 0, ±1, ±2, ... .

Another infinite product representation for an elementary function can be
obtained from the relation in (20). Indeed, assuming u = 0 and v = π, one
obtains (

1 − eβ

1 + eβ

)4

=
∞∏

n=−∞

(β2 + 4n2π2)[β2 + 4(1 + n)2π2]

[β2 + (1 + 2n)2π2]2

which converts to the infinite product expansion

tanh4 β

2
=

∞∏
n=−∞

(β2 + 4n2π2)[β2 + 4(1 + n)2π2]

[β2 + (1 + 2n)2π2]2

of the fourth power of the hyperbolic tangent. The above can be rewritten as

tanh4 t =
∞∏

n=−∞

16(t2 + n2π2)[t2 + (1 + n)2π2]

[4t2 + (1 + 2n)2π2]2

=
∞∏

n=−∞

16(t2 + n2π2)2

[4t2 + (1 + 2n)2π2]2
(24)

with the equivalent form

tanh4 t =
∞∏

n=−∞

{
1 +

π2[8(t2 − n(n+ 1)π2) − π2]

[4t2 + (1 + 2n)2π2]2

}

where the expansion uniformly converges for any value of t.
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It is evident that the expansion in (24) can directly be obtained from that
derived for tanh2 t in (16).

4 Problems on a semi-infinite strip

In this section, we apply our technique to boundary value problems formulated
for Laplace equation on the semi-infinite strip Ω = {0 < x < ∞, 0 < y < b}.
For the first example, consider Dirichlet problem whose classical compact form

G(x, y; ξ, η) =
1

2π

⎛
⎝ln

√√√√1 − 2eω(x+ξ) cosω(y − η) + e2ω(x+ξ)

1 − 2eω(x−ξ) cosω(y − η) + e2ω(x−ξ)

+ ln

√√√√1 − 2eω(x−ξ) cosω(y + η) + e2ω(x−ξ)

1 − 2eω(x+ξ) cosω(y + η) + e2ω(x+ξ)

⎞
⎠ , ω =

π

b
(25)

of the Green’s function is well-known in literature. In [3], for example, it is
obtained by the modified version of the method of eigenfunction expansion.

Tracing out the procedure of the method of images described earlier in de-
tail, one arrives at an alternative to that in (25) infinite product representation

G(x, y; ξ, η) =
1

2π
ln

∞∏
n=−∞

√√√√(x− ξ)2 + (y + η − 2nb)2

(x− ξ)2 + (y − η + 2nb)2

×
√√√√(x+ ξ)2 + (y − η + 2nb)2

(x+ ξ)2 + (y + η − 2nb)2
(26)

for the Green’s function. The alternative expressions in (26) and (25) give a
rise to the following identity

∞∏
n=−∞

(x− ξ)2 + (y + η − 2nb)2

(x− ξ)2 + (y − η + 2nb)2

×(x+ ξ)2 + (y − η + 2nb)2

(x+ ξ)2 + (y + η − 2nb)2

=
1 − 2eω(x+ξ) cosω(y − η) + e2ω(x+ξ)

1 − 2eω(x−ξ) cosω(y − η) + e2ω(x−ξ)

×1 − 2eω(x−ξ) cosω(y + η) + e2ω(x−ξ)

1 − 2eω(x+ξ) cosω(y + η) + e2ω(x+ξ)

To view this identity in a more compact form, we assume b = π and
introduce the parameters α = x + ξ, β = x − ξ, u = y + η and v = y − η.
This reduces the above identity to

∞∏
n=−∞

[β2 + (u− 2nπ)2] [α2 + (v + 2nπ)2]

[β2 + (v + 2nπ)2] [α2 + (u− 2nπ)2]
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=
(1 − 2eα cos v + e2α)(1 − 2eβ cosu+ e2β)

(1 − 2eβ cos v + e2β)(1 − 2eα cos u+ e2α)
(27)

which reads as

coth2 α

2
tanh2 β

2
=

∞∏
n=−∞

(β2 + 4n2π2) [α2 + (1 + 2n)2π2]

(α2 + 4n2π2) [β2 + (1 + 2n)2π2]
(28)

if one assigns the values u = 0 and v = π to the variables in (27).
It is worth noting that the expansion in (16) (see Section 2) follows from

that in (28) as α approaches infinity. If, on the other hand, the limit is taken
in (28) as β goes to infinity, then one arrives at

coth2 α

2
=

∞∏
n=−∞

α2 + (1 + 2n)2π2

α2 + 4n2π2

or

coth2 t =
∞∏

n=−∞

4t2 + (1 + 2n)2π2

4(t2 + n2π2)
(29)

from which an expansion for the hyperbolic cotangent directly follows as

coth t = ±
∞∏

n=−∞

1

2

√
4t2 + (1 + 2n)2π2

t2 + n2π2
(30)

with the upper case holding if t ≥ 0, while in the lower case t < 0.
The uniform convergence of the expansions in (29) and (30) is evident for

any non-zero value of t. And it is also evident that the above expansions for
coth2 t and coth t can directly be obtained from those in (16) and (17).

For another example, we consider a mixed boundary value problem stated
on the semi-infinite strip Ω = {0 < x < ∞, 0 < y < b}. Let Dirichlet
conditions be imposed on the boundary fragments y = 0 and y = b, while
Neumann condition be imposed on x = 0. The compact form Green’s function

G(x, y; ξ, η) =
1

2π

⎛
⎝ln

√√√√1 − 2eω(x+ξ) cosω(y + η) + e2ω(x+ξ)

1 − 2eω(x−ξ) cosω(y − η) + e2ω(x−ξ)

+ ln

√√√√1 − 2eω(x−ξ) cosω(y + η) + e2ω(x−ξ)

1 − 2eω(x+ξ) cosω(y − η) + e2ω(x+ξ)

⎞
⎠ , ω =

π

b
(31)

is obtained for this problem in [3] by the modified version of the method of
eigenfunction expansion. Following the procedure of the method of images,
one arrives at an alternative to that in (31) infinite product representation

G(x, y; ξ, η) =
1

2π
ln

∞∏
n=−∞

√√√√(x− ξ)2 + (y + η − 2nb)2

(x− ξ)2 + (y − η + 2nb)2
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×
√√√√(x+ ξ)2 + (y + η − 2nb)2

(x+ ξ)2 + (y − η + 2nb)2
(32)

for the Green’s function. Setting equal the arguments of the logarithmic func-
tions in (31) and (32), one immediately obtains

∞∏
n=−∞

(x− ξ)2 + (y + η − 2nb)2

(x− ξ)2 + (y − η + 2nb)2

×(x+ ξ)2 + (y + η − 2nb)2

(x+ ξ)2 + (y − η + 2nb)2

=
1 − 2eω(x+ξ) cosω(y + η) + e2ω(x+ξ)

1 − 2eω(x−ξ) cosω(y − η) + e2ω(x−ξ)

×1 − 2eω(x−ξ) cosω(y + η) + e2ω(x−ξ)

1 − 2eω(x+ξ) cosω(y − η) + e2ω(x+ξ)

Similarly to the case of the Dirichlet problem, we assume b = π and intro-
duce the parameters α = x + ξ, β = x − ξ, u = y + η and v = y − η. This
yields

∞∏
n=−∞

[β2 + (u− 2nπ)2] [α2 + (u− 2nπ)2]

[β2 + (v + 2nπ)2] [α2 + (v + 2nπ)2]

=
(1 − 2eα cosu+ e2α)(1 − 2eβ cosu+ e2β)

(1 − 2eβ cos v + e2β)(1 − 2eα cos v + e2α)

from which the relation
(1 + eα)2(1 + eβ)2

(1 + e2α)(1 + e2β)

=
∞∏

n=−∞

16[α2 + (1 − 2n)2π2] [β2 + (1 − 2n)2π2]

[4α2 + (1 + 4n)2π2] [4β2 + (1 + 4n)2π2]

follows if it is assumed that u = π and v = π/2.
Due to the symmetry of the right-hand side and the left-hand side in the

above relation with respect to the parameters α and β, we can state

(1 + et)2

1 + e2t
=

∞∏
n=−∞

4[t2 + (1 − 2n)2π2]

4t2 + (1 + 4n)2π2

or, converting to a form of the hyperbolic functions

1 + cosh t

cosh t
=

∞∏
n=−∞

4[t2 + (1 − 2n)2π2]

4t2 + (1 + 4n)2π2
(33)
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This leads to the product expansion

sech t = −1 +
∞∏

n=−∞

4[t2 + (1 − 2n)2π2]

4t2 + (1 + 4n)2π2

of the hyperbolic secant, which uniformly converges for any value of t. Equiv-
alent form for the above reads

sech t = −1 +
∞∏

n=−∞

[
1 +

3(1 − 8n)π2

4t2 + (1 + 4n)2π2

]
(34)

Table 3 brings some data that illustrate the practical convergence of the
expansion in (34).

Table 1: Relative error (%) of computing values of sin t by the K-th partial
product of the expansions in (12) and (13).

Eqn. No. (12) (13)
K 10 20 80 10 20 80

t = π/4 1.25 0.64 0.16 0.42 0.22 0.05
t = π/2 0.00 0.00 0.00 2.41 1.23 0.31
t = 3π/4 2.13 1.09 0.27 3.89 1.97 0.50

Table 2: Relative error (%) of computing values of tan t by the K-th partial
product of the expansion in (22).

t π/6 π/4 π/3 2π/3 3π/4 5π/6
K = 10 0.79 0.00 0.79 3.91 4.67 5.43
K = 20 0.41 0.00 0.41 2.01 2.40 2.81
K = 80 0.10 0.00 0.10 0.51 0.62 0.72
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Table 3: Relative error (%) of computing values of secht by the K-th partial
product of the expansions in (34).

t 0.0 2.0 4.0 6.0 8.0 10.0
K = 10 7.27 4.59 3.75 3.62 3.58 3.55
K = 20 3.69 2.33 1.91 1.85 1.84 1.83
K = 80 0.93 0.59 0.48 0.47 0.47 0.47

Closure

The method of images was used to obtain alternative representations for some
classical Green’s functions to boundary value problems for Laplace equation
in two dimensions. This gives a rise to special identities involving infinite
products. The latter, in turn, allow to derive new infinite product expansions
for a number of elementary functions.

To the best of the author’s knowledge, the infinite product representations
of elementary functions, derived in this study, have never been published before
and are obtained for the first time. It is evident that the work can make a
notable contribution to various areas of applied mathematical analysis. And
the area where the input of this study is expected to be seen really soon is the
approximation of functions. It will also be of interest to researchers in other
areas of applied mathematics.
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