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Abstract

This paper concerns the problem of asymptotic compensation for a
class of discrete disturbed systems. It is an extension of previous works
on the problem of finite time space compensation studied for contin-
uous linear systems. In this work, we introduce and we characterize
the asymptotic exact and weak remediability and we study their re-
lationship with the asymptotic notions of controllability, stability and
stabilizability.

The minimum energy problem is studied with an extension to the
case where the observation is affected by a measurement error. The
cases of multi-actuators and multi-sensors are considered. An applica-
tion with illustrative examples is given and various other situations are
examined. Approximations and numerical results are also presented.

Keywords: Discrete distributed systems, asymptotic remediability, con-
trol, observation, actuators, sensors

1 Introduction

In this paper which concerns the asymptotic analysis of a class of discrete linear
distributed systems, we study the possibility to compensate asymptotically the
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effect of a known or unknown disturbance. This problem, particularly moti-
vated by pollution problems and so-called space compensation or remediability
problem, has been studied in previous works [1,2,3,4] for finite time continuous
systems. It consists to study, with respect to the observation, the possibility
of finite time compensation of the effect of a known or unknown disturbance.
In these works, various systems and situations are considered and studied.

One know the great importance of the asymptotic analysis in systems the-
ory. It is then natural to consider an extension to the asymptotic discrete case
of this problem. In this paper, we give characterization results and we show
that also in the asymptotic discrete case, the remediability remain weaker than
the controllability. The corresponding minimum energy problem is examined
and the relationship with the notions of stability and stabilizability is studied.
We particularly show that a discrete system can be asymptotically remediable
without being stable or stabilizable. Various other problems and situations are
considered, illustrative examples and numerical results are also presented.

This paper is organized as follows:

In the second paragraph, we introduce the notions of weak and exact re-
mediability in the case of a finite time horizon.

In the third paragraph, and under convenient hypothesis, we define and
we characterize the notions of weak and exact asymptotic remediability. We
show how to find an input operator with respect to the output one ensuring
the asymptotic compensation of any disturbance on the system. The cases of
multi-sensors and multi-actuators are also examined. Then, we introduce and
we characterize the notion of asymptotically efficient actuators.

The paragraph 4 is consecrated to the problem of asymptotic remediability
with minimal energy in the case where the observation is exact or affected by
a measurement error. We show how to find the optimal control ensuring the
asymptotic compensation of a disturbance, and then, we characterize the set
of disturbances which are exactly remediable asymptotically.

In the fifth paragraph, we define the notions of asymptotic weak and exact
controllabilty and we give their characterization. We study the relationship
between the asymptotic remediability and the asymptotic controllability, and
hence between asymptotic strategic actuators and asymptotic efficient actua-
tors.

Then, we examine by the same the nature of its relation with the notions
of stability and stabilizability. Hence, we show that a discrete linear system
can be remediable asymptotically but not stable or even stabilizable. Other
situations are also considered.

In paragraph 6, we examine the case of a discrete version of a diffusion
process with a Dirichlet or Neuman boundary conditions.
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In the last paragraph, we present illustrative examples as well as approxi-
mations and numerical results.

2 Finite time case

We consider, without loss of generality, a class of linear distributed systems
described by the following discrete equation:

(Sd)

{
zk+1 = φzk + Buk + fk ; 0 ≤ k ≤ N − 1
z0 ∈ Z

(1)

where φ ∈ L(Z); B ∈ L(U,Z); zk, fk ∈ Z and uk ∈ U are respectively the
state, the disturbance, the control at step k; N is an integer, N ≥ 1; Z and U
are supposed to be Hilbert spaces.

The system (Sd) is augmented by the output equation :

(Ed) y = Cz (2)

where C ∈ L(Z,Y ) , z = (z1, ...., zN)tr, y = (y1, ...., yN)tr with yk = Czk

for k = 1, ...., N ; Y is the observation space, a Hilbert space.

Let f (k) = (f0, ...., fk−1)
tr, u(k) = (u0, ....., uk−1)

tr, f = f (N ) and u = u(N ).
The state of system (Sd) and the observation at step N are respectively given
by:

zN = φNz0 +

N−1∑
i=0

φN−1−ifi +

N−1∑
i=0

φN−1−iBui (3)

and

yN = CφNz0 +
N−1∑
i=0

CφN−1−iBui +
N−1∑
i=0

CφN−1−ifi (4)

In the case without disturbance and without control, the observation at
the final step is given by:

yN = CφNz0

But if u �= 0 and f �= 0, generally yN �= CφNz0.
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The problem consists to study the existence of an input operator, with
respect to the output one, ensuring at the last step, the compensation of any
disturbance on the system, i.e.

For any f = (f0, f1, ..., fN−1) ∈ ZN , there exists u = (u0, u1, ...., uN−1) ∈
UN such that:

N−1∑
i=0

CφN−1−iBui +
N−1∑
i=0

CφN−1−ifi = 0 (5)

Let us consider the following operators:

HN : UN −→ Z

u −→ HNu =
N−1∑
i=0

φN−1−iBui
(6)

HN : ZN −→ Z

f −→ HNf =

N−1∑
i=0

φN−1−ifi
(7)

The equality (5) becomes

CHNu + RNf = 0 (8)

with

RN = CHN (9)

This leads to the following definitions:

Definition 2.1 (Sd) + (Ed) is said to be

i) exactly remediable, if for any f ∈ ZN , there exists u ∈ UN such that

CHNu + RNf = 0

ii) weakly remediable, if for any f ∈ ZN and any ε > 0, there exists u ∈ UN

such that:

‖CHNu + RNf‖ < ε

The characterization results are similar to those established in the finite
time case for continuous linear systems [1,2,3,4]
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3 Asymptotic case

3.1 Problem statement

In this part, we consider the following system, also noted (Sd)

(Sd)

{
zk+1 = φzk + Buk + fk

z0 ∈ Z ; k ≥ 0
(10)

augmented by the output equation, also noted (Ed)

(Ed) yk = Czk ; k ≥ 0 (11)

and the operators H∞ and H
∞

defined by:

H∞ : �2(U) −→ Z

u = (u0, ..., uN, .....)tr −→ H∞u =
+∞∑
k=0

φkBuk
(12)

H∞ : �2(Z) −→ Z

f = (f0, ...., fN, ....)tr −→ H∞f =
+∞∑
k=0

φkfk
(13)

and R∞ defined by

R∞ = CH∞ (14)

The problem consists to study, with respect to the output of the system,
the existence of an input operator B ensuring the asymptotic compensation of
any disturbance, i.e.

For any f = (f0, ...., fN, ....)tr ∈ �2(Z), there exists u = (u0, ..., uN, .....)tr ∈
�2(U) such that

CH∞u + R∞f = 0 (15)

Let us note that if

(
∥∥φk

∥∥)k≥0 ∈ �2(IR) (16)
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then the operators H∞ and H
∞

are well defined, this is also the case for
CH∞ and R∞. Hence, if φ is contraction operator, i.e.

‖ φ ‖< 1

or if (Sd) is exponentially stable:

‖ φk ‖≤ e−αk; k ≥ 1 (α > 0)

then (16) is satisfied. In fact, we are concerned by the operators H∞
C and

R∞
C defined by

H∞
C u ≡

+∞∑
k=o

CφkBuk = CH∞u

and

R∞
C f ≡

+∞∑
k=0

Cφkfk

then one can consider a weaker hypothesis. Indeed, we assume that

(
∥∥Cφk

∥∥)k≥0 ∈ �2(IR) (17)

In this case, H∞
C and R∞

C are well defined and (15) becomes

H∞
C u + R∞

C f = 0 (18)

Under hypothesis (17), the notions of weak and exact asymptotic remedi-
ability can be formulated as follows:

Definition 3.1 We say that
1)(Sd)+(Ed) is exactly remediable asymptotically if for any f = (fk)k≥0 ∈
�2(Z), there exists u = (uk)k≥0 ∈ �2(U) such that:

H∞
C u + R∞

C f = 0

2) (Sd)+(Ed) is weakly remediable asymptotically, if for any f = (fk)k≥0 ∈
�2(Z) and any ε > 0, there exists u = (uk)k≥0 ∈ �2(U) such that:

‖ H∞
C u + R∞

C f‖ < ε
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Let us note that for an integer M > 1, the operators HM and RM defined
by:

HM =
M−1∑
k=0

φkBuk

and

RMf =
M−1∑
k=0

Cφkfk

are such that:

HMu = HMv and RMf = RMg

where v and g are defined by vk = uM−1−k and gk = fM−1−k; HM and RM

are given respectively by (6) and (9). Moreover, we have

H∞
C u + R∞

C f = CHMu + RMf +
+∞∑
k=M

CφkBuk +
+∞∑
k=M

Cφkfk

= [CHMv + RMg] + [ε1(M) + ε2(M)]

(19)

with

lim
M→+∞

[ε1(M) + ε2(M)] = 0

then

lim
M→+∞

[CHMv + RMg] = H∞
C u + R∞

C f

3.2 Characterization

First, let us remark that for fk = −Buk, we have R∞
C f = −H∞

C u, then

Im(H∞
C ) ⊂ Im(R∞

C ) (20)

We have the following characterization result where in the general case, P ∗

and W ′ are respectively the adjoint operator of P and the dual space of W .

Proposition 3.2 Under hypothesis (17):

(i) (Sd) + (Ed) is exactly remediable asymptotically if and only if
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Im(R∞
C ) ⊂ Im(H∞

C )

this is equivalent to :

(ii) ∃γ > 0 such that:

+∞∑
k=0

∥∥(φ∗)kC∗θ
∥∥2

Z
′ ≤ γ

+∞∑
k=0

∥∥B∗(φ∗)kC∗θ
∥∥2

U
′ ; ∀θ ∈ Y

′
(21)

Proof:
(i) derives from the definition.
(ii) derives from the following lemma [5,6,7]

Lemma 3.3 Let X,Y, Z be reflexive Banach spaces, P ∈ L(X,Z) and Q ∈
L(Y,Z). There is equivalence between:

Im(P ) ⊂ Im(Q)

and

∃γ > 0 such that for any z∗ ∈ Z ′, we have ‖P ∗z∗‖X ′ ≤ γ ‖Q∗z∗‖Y ′

Concerning the weak asymptotic remediability, we have the following result.

Proposition 3.4 Under hypothesis (17):

(i) (Sd) + (Ed) is weakly remediable asymptotically if and only if

Im(R∞
C ) ⊂ Im(H∞

C ) (22)

this is equivalent to

(ii)

Ker[B∗(R∞
C )∗] = Ker[(R∞

C )∗] (23)

or

⋂
k≥0

Ker
[
B∗(φ∗)kC∗] = Ker [C∗] (24)
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Proof: (i) derives immediately from the definition.
(i) equivalent to (ii) derives from (22) by considering the orthogonal space

and using (20) to deduce that:

Ker[(R∞
C )∗] = Ker[(H∞

C )∗]

Since

(R∞
C B)(u) = R∞

C (Bu) =
∑
k≥0

CφkBuk = H∞
C u

then R∞
C B = H∞

C and hence (H∞
C )∗ = B∗(R∞

C )∗, we then have the result.
On the other hand, we have (R∞

C )∗ = (C∗, φ∗C∗, ......, (φ∗)kC∗, ......)tr, then
Ker(C∗) = Ker [(R∞

C )∗] .
It is easy to show that:

Ker [B∗(R∞
C )∗] =

⋂
k≥0

Ker
[
B∗(φ∗)kC∗]

then we have (24). �

We examine hereafter the case where the system is excited by actuators
and where the output is given by sensors [7].

3.3 Case of multi-actuators and multi-sensors

In the case of p actuators (Ωi, gi)1≤i≤p, we have U = IRp, Z = L2(Ω) and

B : IRp −→ L2(Ω)

uk −→ Buk =

p∑
i=1

giu
i
k

(25)

where uk = (u1
k, · · ·, up

k)
tr ∈ IRp, gi ∈ L2(Ωi); Ωi = supp(gi) ⊂ Ω.

We have

B∗z = (〈g1, z〉, · · ·, 〈gp, z〉)tr (26)

In this case, the characterization results becomes:
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Proposition 3.5 (Sd) + (Ed) is exactly remediable asymptotically if and only
if, there exists γ > 0 such that:

∑
k≥0

∥∥(φ∗)kC∗θ
∥∥2

Z′ ≤ γ

p∑
i=1

∑
k≥0

(〈φkgi, C
∗θ〉)2; ∀θ ∈ Y

′
(27)

Proof: derives from (21) and (26). �

Moreover, if the output is given by q zone sensors (Di, hi)1≤i≤q, where
hi ∈ L2(Di); Di = supp(hi) and for i �= j, Di ∩ Dj = ∅, the operator C is
defined by:

C : L2(Ω) −→ IRq

z −→ Cz = (〈h1, z〉, · · ·, 〈hq, z〉)tr (28)

and its adjoint by

C∗θ =

q∑
i=1

θihi for θ = (θ1, ....., θq) ∈ IRq (29)

We also have the following characterization result.

Corollary 3.6 (Sd)+ (Ed) is exactly remediable asymptotically if and only if,
there exists γ > 0 such that ∀ θ = (θ1, ··, θq) ∈ IRq :

∑
k≥0

∥∥∥∥∥
q∑

j=1

θj(φ
∗)khj

∥∥∥∥∥
2

Z
′

≤ γ
∑
k≥0

p∑
i=1

(
q∑

j=1

θj〈φkgi, hj〉
)2

In the case of one sensor (D,h) and one actuator (Ω, g), the previous in-
equality becomes

∑
k≥0

∥∥(φ∗)kh
∥∥2

Z
′ ≤ γ

∑
k≥0

(〈φkg, h〉)2 (30)

3.4 Notion of asymptotic efficient actuators

We introduce hereafter the notion of asymptotic efficient actuators and we give
their characterization in the case of a class of linear systems.
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Definition 3.7 Actuators (Ωi, gi)1≤i≤p are said to be asymptotically efficient,
or just efficient, if the corresponding system (Sd) + (Ed) is weakly remediable
asymptotically.

Proposition 3.8 (Ωi, gi)1≤i≤p are efficient if and only if

〈
φkgi, C

∗θ
〉

= 0;∀k ≥ 0,∀i = 1, ....., p =⇒ C∗θ = 0

Proof: Derives from (24) and the fact that:

B∗(φ∗)kC∗θ =
(〈

φkg1, C
∗θ
〉
, ......,

〈
φkgp, C

∗θ
〉)tr

(31)

�

We consider, without loss of generality, the system (Sd) with φ defined by:

φz =
∑
n≥1

eλnτ

rn∑
j=1

〈z, ϕnj〉ϕnj (32)

where τ > 0 (generally small); λ1, λ2, ..... are real numbers such that
λ1 > λ2 > λ3 > ...., {ϕnj , n ≥ 1; j = 1, ..., rn} is an orthonormal basis of
Z constituted by eigenfunctions of the operator A defined by

Az =
∑
n≥1

λn

rn∑
j=1

〈z, ϕnj〉ϕnj (33)

rn is the multiplicity of the eigenvalue λn. We suppose that:

sup
n≥1

λn = λ1 < 0 (34)

φ is a self-adjoint operator and

φkz =
∑
n≥1

ekλnτ
rn∑

j=1

〈z, ϕnj〉ϕnj (35)

The system (Sd) can be considered as a discrete version of a diffusion
process. It is augmented by the output equation:
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(Ed) yk = Czk; k ≥ 0 (36)

and the operator B is given by (25) , i.e.

Buk =

p∑
i=1

giu
i
k

where uk = (u1
k, ....., u

p
k).

For n ≥ 1, let fn be the function defined by

fn : Y � −→ IRrn

θ −→ fn(θ) = (< C�θ, ϕn1 >, ..., < C�θ, ϕnrn >)tr (37)

where Y � is the dual space of Y and let Mn be the matrix

Mn = (〈gi, ϕnj〉)1≤i≤p;1≤j≤rn (38)

We have the following characterization result.

Proposition 3.9 Actuators (Ωi, gi)i=1,p are asymptotically efficient if and only
if

ker(C�) =
⋂
n≥1

ker(Mnfn) (39)

Proof: (Sd) + (Ed) is weakly remediable asymptotically if and only if

ker[B�(R∞
C )�] = ker[(R∞

C )�] (40)

For θ ∈ Y �, we have:

(R∞
C )∗θ = 0 ⇐⇒ (φ∗)kC∗θ = 0; ∀k ≥ 0 ⇐⇒ C∗θ = 0

Then

ker[(R∞
C )�] = ker(C∗) (41)
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Moreover, we have

B∗(R∞
C )∗θ = 0 ⇐⇒ B∗(φ∗)kC∗θ = 0; ∀k ≥ 0

Indeed

B∗(R∞
C )∗θ = 0 ⇐⇒ B∗(φ∗)kC∗θ = 0 ; ∀k ≥ 0

⇐⇒ (
〈
g1, (φ

∗)kC∗θ
〉
, .......,

〈
gp, (φ

∗)kC∗θ
〉
)tr = 0 ; ∀k ≥ 0

⇐⇒ 〈
gi, (φ

∗)kC∗θ
〉

= 0 ; ∀k ≥ 0 and i = 1, ..., p

Since

〈
gi, (φ

∗)kC∗θ
〉

=
∑
n≥1

ekλnτ

rn∑
j=1

〈gi, ϕnj〉
〈
ϕnj , C

∗θ
〉

and

∑
n≥1

ekλnτ

rn∑
j=1

〈gi, ϕnj〉
〈
ϕnj , C

∗θ
〉

= 0 for k ≥ 0 and τ > 0

is equivalent to

rn∑
j=1

〈gi, ϕnj〉
〈
ϕnj , C

∗θ
〉

= 0 ; ∀n ≥ 1

then, we have the result.
�

Now, if the output is given by q zone sensors (Di, hi)1≤i≤q with hi ∈
L2(Di), Di = supp(hi) ⊂ Ω and C is defined by (28), we have the following
result.

Proposition 3.10 Actuators (Ωi, gi)i=1,p are efficient if and only if

⋂
n≥1

ker(MnGtr
n ) = {0} (42)

where Gn is the matrix defined by

Gn = (< hi, ϕnj >) i =1,q
j=1,rn
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Proof:
Since Di ∩ Dj = ∅ for i �= j, and measure(Di) > 0, then the functions

(hi)i=1,q are linearly independent and hence

ker(C�) = {0}
using (41), we have

ker[(R∞
C )�] = {0}

On the other hand, we have seen that B�(R∞
C )�θ = 0 is equivalent to

〈
gl, (φ

∗)kC∗θ
〉

= 0 ; ∀k ≥ 0 and ∀l = 1, ......, p

Since

〈
gl, (φ

∗)kC∗θ
〉

=
∑
n≥1

ekλnτ

rn∑
j=1

< gl, ϕnj >

q∑
i=1

< ϕnj, C
∗θ >

=
∑
n≥1

ekλnτ
rn∑

j=1

< gl, ϕnj >

q∑
i=1

θi < ϕnj, hi >

we have

〈
gl, (φ

∗)kC∗θ
〉

= 0 ⇔
∑
n≥1

ekλnτ

rn∑
j=1

< gl, ϕnj >

q∑
i=1

θi < ϕnj , hi >= 0

We obtain by the same

rn∑
j=1

< gl, ϕnj >

q∑
i=1

θi < ϕnj, hi >= 0; ∀n ≥ 1, ∀l = 1, ....., p

i.e.

MnGtr
n θ = 0; ∀n ≥ 1

Consequently

ker(B�(R∞
C )�) =

⋂
n≥1

ker(MnG
tr
n )

and then we have the result. �

From the previous proposition, it is easy to deduce the following corollary.
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Corollary 3.11 If there exists n0 ≥ 1 such that:

rank(Mn0G
tr
n0

) = q (43)

or such that

rank(Gtr
n0

) = q (44)

and

rank(Mn0) = rn0 (45)

then the actuators (Ωi, gi)i=1,p are efficient.

The proof derive immediately from the fact that the conditions (44) and
(45) imply (43).

4 Minimum energy problem: The optimal

control

Under the condition (17) and the weak asymptotic remediability hypothesis,
we study in this section the problem of exact asymptotic compensation with
minimal energy in the case where the output is exact or affected by an obser-
vation error.

4.1 Case of an observation without error

In this paragraph, we suppose that there exists a control u ∈ l2(U) such that:

H∞
C u + R∞

C f = 0 (46)

We consider the following optimal control problem:
For f ∈ l2(Z), does a minimum energy control u ∈ l2(U) satisfying (46)?

Let

Dd =
{
u ∈ l2(U) such that H∞

C u + R∞
C f = 0

}
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Dd is not empty. We consider the following function:

Jd(u) = ‖H∞
C u + R∞

C f‖2
Y + ‖u‖2

l2(U )

The considered problem becomes

min
u∈D

Jd(u)

For its resolution, we will use an extension of the Hilbert Uniqueness
Method (H.U.M.). For θ ∈ Y

′ ≡ Y , let

‖θ‖Fd
= (
∑
k≥0

∥∥B∗(φ∗)kC∗θ
∥∥2

U
′ )

1
2

‖.‖Fd
is a semi-norm. We suppose that it is a norm, this is equivalent to

assume that (Sd) + (Ed) is weakly remediable asymptotically. Let us consider

Fd = Y
‖.‖Fd

Fd is a Hilbert space with the inner product

〈θ, δ〉Fd
=
∑
k≥0

〈
B∗(φ∗)kC∗θ, B∗(φ∗)kC∗δ

〉
; θ, δ ∈ Fd

We consider the operator Λ∞
C defined by

Λ∞
C = H∞

C (H∞
C )∗

We have the following result:

Proposition 4.1 Λ∞
C has a unique extension as an isomorphism Fd → F ′

d

such that :

〈Λ∞
C θ, δ〉Y = 〈θ, δ〉Fd

; ∀θ, δ ∈ Fd

and

‖Λ∞
C θ‖F

′
d

= ‖θ‖Fd
; ∀θ ∈ Fd
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Proof:
Let θ ∈ Fd. We consider the linear mapping

Λ∞
C θ : δ ∈ Y −→ 〈Λ∞

C θ, δ〉Y ∈ IR

we have

(Λ∞
C θ)(δ) = 〈Λ∞

C θ, δ〉 = 〈
∑
k≥0

CφkBB∗(φ∗)kC∗θ, δ〉

=
∑
k≥0

〈B∗(φ∗)kC∗θ, B∗(φ∗)kC∗δ〉 = 〈θ, δ〉Fd

consequently

|(Λ∞
C θ)(δ)| = |〈θ, δ〉Fd

| ≤ ‖θ‖Fd
‖δ‖Fd

then Λ∞
C θ is continuous on Y for the topology of Fd and can be prolonged

continuously and in a unique way to Fd, then Λ∞
C θ ∈ F ′

d and we have

〈Λ∞
C θ, δ〉Y = 〈θ, δ〉Fd

; ∀δ ∈ Y

then ‖Λ∞
C θ‖F ′

d
= ‖θ‖Fd

.

The operator Λ∞
C : Fd −→ F

′
d is linear. Using the Rietz theorem, it is easy

to show that it is surjective.
Λ∞

C is also injective. Indeed, for θ ∈ F
′
d such that Λ∞

C θ = 0, we have 〈Λ∞
C θ, θ〉 =

0, i.e. ‖θ‖2
F

′
d

= 0, then θ = 0.

Λ∞
C is an isomorphism Fd −→ F ′

d. �

We show hereafter how to find the optimal control ensuring the asymptotic
compensation of a disturbance f .

Proposition 4.2 If R∞
C f ∈ F ′

d, then there exists a unique θf in F
′
d such that:

Λ∞
C θf = −R∞

C f

and the control uθf
= (H∞

C )∗θf satisfy

H∞
C uθf

+ R∞
C f = 0
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Moreover, uθf
is optimal and

∥∥uθf

∥∥
l2(U )

= ‖θf‖F
′
d

Proof: We have

Λ∞
C θf =

∑
k≥0

CφkBB∗(φ∗)kC∗θf = H∞
C uθf

= −R∞
C f

Dd is closed, convex and not empty. For u ∈ Dd, we have:

Jd(u) = ‖u‖2
l2(U )

Jd is strictly convex on Dd, and then has a unique minimum at u� ∈ Dd,
characterized by:

〈u�, v − u�〉 ≥ 0;∀v ∈ Dd

For v ∈ Dd, we have

〈uθf
, v − uθf

〉 = 〈(H∞
C )∗θf , v − (H∞

C )∗θf 〉

= 〈θf , H
∞
C v − Λ∞

C θf〉 = 0

Since u� is unique, then u� = uθf
and uθf

is optimal with

∥∥uθf

∥∥2
= ‖(H∞

C )∗θf‖2 = 〈θf , Λ
∞
C θf〉 = ‖θf‖2

Fd

�

We give hereafter a characterization of the set of disturbances f which are
exactly remediable asymptotically. If Ed is the set of such disturbances, i.e.

Ed =
{
f ∈ l2(Z) : ∃u ∈ l2(U) such that H∞

C u + R∞
C f = 0

}
we have the following result.

Proposition 4.3 Ed is the reciprocal image of F
′
d by R∞

C , i.e.

R∞
C (Ed) = F

′
d
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Proof:
Let y ∈ F

′
d , there exists a unique θ in F

′
d such that Λ∞

C θ = y, then

H∞
C (H∞

C )∗θ = y

Let u be the control defined by:

u = (H∞
C )∗θ

we have y = H∞
C u, and for f = −Bu ∈ l2(Z), we have H∞

C u = −R∞
C f = y,

then y ∈ R∞
C (Ed) .

Conversely, let y ∈ R∞
C (Ed) , there exists f ∈ l2(Z) such that y = R∞

C f
and H∞

C u + R∞
C f = 0 with u ∈ l2(U).

If we identify H∞
C u with the linear map:

Ld : θ ∈ Y −→ 〈H∞
C u, θ〉

we have:

Ld(θ) = 〈H∞
C u, θ〉

=

〈∑
k≥0

CφkBuk, θ

〉

=
∑
k≥0

〈
uk, B

∗(φ∗)kC∗θ
〉

Then |Ld(θ)| ≤ ‖u‖l2(U ) . ‖θ‖Fd
, consequently Ld is continuous on Y for the

topology of Fd and hence can be extended continuously, and in unique way,
to the space Fd. Then Ld ∈ F ′

d and H∞
C u = −R∞

C f = −y ∈ F ′
d, consequently

y ∈ F
′
d. �

4.2 Case of an observation error

In this part, we assume that the system (Sd) given by (10) is augmented by
the following output equation:

w = y + e (47)

where y = (yk)k≥0 is the exact observation given by (11) and e = (ek)k≥0

is an observation error generally unknown.
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In the normal case where f = 0 and u = 0, the ’normal’ observation θ = (θk)k≥0

is given by

θk = Cφkx0 + ek

But in the case of a disturbance f �= 0 and without control (u = 0), the
term corresponding in the observation to the disturbance f = (fk)k≥0, is given
by

Rkf = wk − θk

Moreover, if a control term Buk is introduced, the observation becomes

wk = θk +
k∑

i=0

Cφk−ifi +
k∑

i=0

Cφk−iBui

= θk + Rkf + CHku

Then, in this case (i.e. where the observation is not exact), the problem
of asymptotic compensation is similar to that considered for an observation
without error. It consists to study the existence of an input operator B such
that:

∀f ∈ f ∈ l2(Z) : ∃u ∈ l2(U) such that the corresponding observation,
noted w(u), satisfies the asymptotic condition

wk(u) − θk −→ 0 when k −→ +∞

With the same notations and as indicated in paragraph 3 about the rela-
tion between the finite time and the asymptotic cases, this problem can be
formulated as follows:

For f ∈ f ∈ l2(Z), does exists a control u ∈ l2(U) such that

R∞
C f + K∞

C u = 0 ?

The results are similar, under hypothesis (17), and also in this case, the
optimal control ensuring the asymptotic compensation of a disturbance f =
(fk)k≥0 is given by proposition 4.2 .
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5 Asymptotic remediability, asymptotic

controllability, stability and stabilizability

5.1 Asymptotic remediability and asymptotic control-

lability

In this part, we introduce the asymptotic controllability (which can be also
considered as a stabilizability problem), and we study its relationship with the
asymptotic remediability.

We consider the system described by the following equation

(S0,d)

{
zk+1 = φzk + Buk ; k ≥ 0
z0 ∈ Z

(48)

We suppose that φ satisfy the condition (16). In this case, the operator
H∞ is well defined.

Definition 5.1 The system (S0,d) is said to be exactly ( resp. weakly ) con-
trollable asymptotically if

Im(H∞) = Z ( resp. Im(H∞) = Z )

For the exact asymptotic controllability, we have the following result.

Proposition 5.2 The system (S0,d) is exactly controllable asymptotically if
and only if

∃γ > 0 such that ‖ z� ‖Z′≤ γ

[∑
k≥0

∥∥B∗(φ∗)kz∗∥∥2

U ′

] 1
2

; ∀z� ∈ Z
′

The proof derive from lemma 3.3.
Concerning the weak asymptotic controllability, we have the following char-

acterization.

Proposition 5.3 There is equivalence between

i) The system (S0,d) is weakly controllable asymptotically

ii)

Ker [(H∞)∗] = {0}
iii)

Λ∞ = H∞(H∞)� is positive definite
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Proof:
i) equivalent to ii) derives from the definition and from the fact that:

ImH∞ = [Ker(H∞)�]⊥

The equivalence between ii) and iii) derive from the fact that

< Λ∞θ, θ >=< H∞(H∞)�θ, θ >=‖ (H∞)�θ ‖2

then we have

< Λ∞θ, θ >= 0 if and only if θ ∈ Ker[(H∞)�]

�

We show hereafter that the remediability remain weaker than the control-
lability in the asymptotic case.

Proposition 5.4 If (S0,d) is exactly controllable asymptotically, then (Sd) +
(Ed) is exactly remediable asymptotically.

Proof: For θ ∈ Y ′, we have

∑
k≥0

‖ (φ∗)kC�θ ‖2
Z′ =

∑
k≥0

‖ (φ�)k ‖2‖ C�θ ‖2
Z′

≤ M ‖ C�θ ‖2
Z′ with M > 0

using (16). Since (S0,d) is exactly controllable asymptotically, there exists
γ > 0 such that:

‖ C�θ ‖2
Z′≤ γ2

∑
k≥0

‖ B�(φ∗)kC�θ ‖2
U ′

consequently, there exists η = Mγ2 such that:

∑
k≥0

‖ (φ∗)kC�θ ‖2
Z′≤ η

∑
k≥0

‖ B�(φ∗)kC�θ ‖2
U ′′

The result is then given by proposition 3.2. �
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Remark 5.5 The converse is not true.

We also have the following analogous result.

Proposition 5.6 If (S0,d) is weakly controllable asymptotically, then (Sd) +
(Ed) is weakly remediable asymptotically.

Proof:
(Sd) + (Ed) weakly remediable asymptotically is equivalent to

ker[B�(R∞
C )�)] = ker[(R∞

C )�]

i.e.

ker[B�(R∞
C )�] ⊂ ker[(R∞

C )�]

or equivalently

ker[(H∞)�C�] ⊂ ker[(R∞
C )�]

because (H∞)�C� = B�(R∞
C )�. Let θ ∈ ker[(H∞)�C�], we have

[(H∞)�C�]θ = 0, then (C�)θ = 0 because ker[(H∞)�] = {0}, then θ ∈
ker(C�).

Since ker(C�) ⊂ ker[(R∞
C )�], we have the result. �

We introduce hereafter the notion of strategic actuators in the asymptotic
case.

Definition 5.7 Actuators are said to be strategic asymptotically if the corre-
sponding system (S0,d) is weakly controllable asymptotically.

From proposition 5.6, we deduce that also in the asymptotic case, strategic
actuators are efficient.

As it will be seen hereafter, the converse is not true. Let us note that in
the case of a discrete version of a diffusion process, i.e. where the operator φ is
defined by (32), the results are similar to those obtained in the finite horizon
case, using the analyticity property. In this case:

i) Actuators (Ωi, gi)i=1,p are strategic if and only if

rankMn = rn; ∀n ≥ 1 (49)
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In the case where all the eigenvalues are simple, i.e.

rn = 1 ; ∀n ≥ 1 (50)

then (Ωi, gi)i=1,p are strategic asymptotically if and only if

rank(Mn) = 1;∀n ≥ 1

For p = 1, (Ω1, g1) is asymptotically strategic if and only if

〈g1, ϕnj〉 �= 0 ; ∀n ≥ 1 (51)

ii) The rank condition (49) is not necessary to have efficient actuators. For
example, in a two dimension case where the domain is a disk [4,5,6,7], one need
at least p = 2 to have strategic actuators, but one actuator can be efficient.
Moreover, in the case where the domain is a square, any finite number of
actuators can not be strategic, but here also, one actuator can be efficient.

iii) Actuators can be efficient without being strategic. Indeed, in the case of
a one dimension system with Ω =]0, 1[, then for example g = ϕn0 , the actuator
(Ω, g) is not strategic, using (51). But if the sensor (D,h) is such that

〈h, ϕn0〉 �= 0

the actuator (Ω, g) is strategic using proposition 3.10.

In the general case, and for p zone actuators (Ωi, gi)1≤i≤p, we have the
following characterization result:

Proposition 5.8 Actuators (Ωi, gi) 1≤i≤p are strategic asymptotically if and
only if

〈
φkgi, z

〉
= 0; ∀k ≥ 0, ∀i = 1, ....., p ⇒ z = 0

Proof: Derives from the fact that

(H∞)∗ = (B∗, B∗φ∗, ....., B∗(φ∗)k........)tr

5.2 Asymptotic remediability and stabilizability

In this section, we study the relationship between the notions of stabilizability
and asymptotic remediability. This relation depend on the choice of the sensors
and is not so clear than the previous one with the asymptotic controllability.
Let us note that the problem of asymptotic remediability can be considered
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and solved for non stable systems, and as it will be shown, a non stable system
may be asymptotically remediable without being stabilizable.

We recall hereafter the notion of stabilizability.

Definition 5.9
The system (S0,d) given by (48) is said to be exponentially stabilizable if there
exists a sequence of feedback controls

uk = −Fzk with F ∈ L(Z,U) and k ≥ 0

such that the system

{
xk+1 = (φ − BK)xk ; k ≥ 0
x0 ∈ Z

(52)

is exponentially stable.

Let us note that the considered system can be a discrete version of a con-
tinuous time one. Indeed, if we consider the system described by the following
linear state equation

{
ż(t) = Az(t) + Bu(t) + g(t) ; t > 0
z(0) = z0

(53)

augmented by the following output equation:

y(t) = Cz(t) ; t ≥ 0 (54)

where A generates a strongly continuous semi-group (s.c.s.g) (S(t))t≥0, B ∈
L(U,Z), C ∈ L(Z,Y ), g ∈ L2(0,+∞; Z); u ∈ L2(0,+∞; U). For τ > 0
sufficiently small, the corresponding discrete version is as follows

{
zk+1 = φzk + Buk + fk

z0 ∈ Z ; k ≥ 0
(55)

augmented by the output equation, also noted (Ed)

yk = Czk ; k ≥ 0 (56)

where zk = z(kτ); uk = u(kτ ) and
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φ = S(τ ) ; Buk =

∫ τ

0

S(τ − s)Buk(s)ds ; fk =

∫ τ

0

S(τ − s)gk(s)ds (57)

uk and gk are respectively the restrictions of u and g to the time interval
[kτ, (k + 1)τ [. If τ is small, uk and gk can be assumed to be constant on the
interval [kτ, (k + 1)τ [.

Concerning the stability, if φ is defined by (32), i.e. A given by (33), then
the system

{
zk+1 = φzk

z0 ∈ Z ; k ≥ 0
(58)

is exponentially stable if and only if

sup
n≥1

Re(λn) < 0 (59)

For a non stable system, we have the following result [8,9]

Proposition 5.10
We assume that there exist a finite number n0 ≥ 1 of non negative eigenvalues
noted λ1, ..., λn0. Then the system (S0,d) excited by p actuators (Ωi, gi)i=1,p is
stabilizable if and only if

i) p ≥ sup
1≤n≤n0

rn

ii) rankMn = rn for 1 ≤ n ≤ n0, with Mn defined in (38).

The proof is similar to that established in the continuous case.
As it will be shown in the following paragraph, a system may be remediable

asymptotically but not stabilizable.
But for a non convenient choice of sensors and actuators, the system may be
stabilizable without being remediable asymptotically. Various other situations
are also examined.

6 Case of a discrete version of a diffusion

process

In this part, we examine the case of discrete version of a diffusion system
respectively with a Dirichlet and a Neumann boundary conditions [5,6, ...,11].
We consider without loss of generality a one dimension, the results are similar
in a higher space dimension (for example if Ω is rectangle or a disk).
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6.1 Dirichlet case

We consider the system excited by p zone actuators

(S1,c)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂z(x, t)

∂t
= Δz(x, t) +

p∑
i=1

gi(x)ui(t) + G(x, t) in Ω×]0, +∞[

z(x, 0) = z0(x) in Ω

z(x, t) = 0 on ∂Ω×]0, +∞[

with G ∈ L2(0,+∞; Z) ; u ∈ L2(0,+∞; U).

The discrete version of (6.1) is as follows

(S1,d)

{
zk+1 = φzk + Buk + fk

z0 ∈ Z ; k ≥ 0
(60)

It is augmented by the discrete output equation given by q zone sensors

(E1,d) y = (〈h1, z〉, · · ·, 〈hq, z〉)tr

For Ω = ]0, 1[, the Laplacian operator Δ admits an orthonormal basis of
eigenfunctions defined by

ϕn(ξ) =
√

2 sin(nπξ); n ≥ 1

The associated eigenvalues are simple (rn = 1 for n ≥ 1) and given by

λn = −n2π2; n ≥ 1

Δ generates a s.c.s.g. (S(t))t≥0 defined by:

S(t)z =
+∞∑
n=1

e−n2π2t〈z, ϕn〉ϕn (61)

which is self-adjoint and exponentially stable. In this case, the operator φ
is given by

φz =
+∞∑
n=1

e−n2π2τ 〈z, ϕn〉ϕn (62)
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and the system (60), with u = 0 and f = 0, is exponentially stable. The
operators H∞ and H∞ defined respectively on �2(U) and �2(Z) by

H∞u =
+∞∑
k=0

φkBuk and H∞f =
+∞∑
k=0

φkfk (63)

are well defined. The asymptotic controllability is then well defined. On
the other hand

(S1,d) + (E1,d) is exactly remediable asymptotically if and only if, there
exists γ > 0 such that: for all θ = (θ1, · · ·, θq) ∈ IRq , we have using corollary
3.6

∑
n≥1

1

2n2π2
(

q∑
i=1

θi〈hi, ϕn〉)2 ≤ γ

p∑
j=1

∑
k≥1

(
∑
n≥1

e−n2π2kτ 〈gj , ϕn〉
q∑

i=1

θi〈hi, ϕn〉)2

In the case of one sensor and one actuator (p = q = 1), this inequality
becomes

∑
n≥1

1

2n2π2
[θ〈h, ϕn〉]2 ≤ γ

∑
k≥1

[
∑
n≥1

e−n2π2kτ 〈g, ϕn〉θ〈h, ϕn〉]2

or

∑
n≥1

1

2n2π2
[〈h, ϕn〉]2 ≤ γ

∑
k≥1

[
∑
n≥1

e−n2π2kτ 〈g, ϕn〉〈h,ϕn〉]2

(S1,d) + (E1,d) is exactly remediable asymptotically for example if g = h =
ϕn0 with n0 ≥ 1. But the corresponding system (S1,d) is not exactly control-
lable asymptotically because it is not weakly controllable asymptotically.

Now, in the case of one actuator (Ω1, g1) and one sensor (D,h), consider
n0 ≥ 1 such that 〈h, ϕn0〉 �= 0, we have rank(Gtr

n0
) = 1.

(Ω1, g1) is then efficient if 〈g1, ϕn0〉 �= 0, or equivalently∫
Ω1

g1(ξ)sin(nπξ)dξ �= 0

For example, if g1 = ϕn0 , (Ω1, g1) is efficient (using (42)), but it is not
strategic because the condition∫ 1

0

g1(ξ)sin(nπξ)dξ �= 0 ; n ≥ 1

is not satisfied.
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Remark 6.1 In the Dirichlet case, the s.c.s.g. (S(t))t≥0 is exponentially sta-
ble, the problem of stabilizability is not posed, but it will be considered in the
Neumann case where (S(t))t≥0 is not stable.

6.2 Neumann case

In this par, we consider the following one dimension system with a Neumann
boundary condition

(S2,c)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂z(x, t)

∂t
= Δz(x, t) + G(x, t) +

p∑
i=1

gi(x)ui(t) in ]0, 1[×]0, +∞[

z(x, o) = z0(x) in ]0, 1[

∂z(0, t)

∂x
=

∂z(1, t)

∂x
= 0 in ]0, +∞[

In this case, we have

S(t)z =
∑
n≥0

e−n2π2t 〈z, ϕn〉ϕn

with

ϕn(ξ) =
√

2 cos(nπξ); n ≥ 1 and ϕ0 ≡ 1

The eigenvalues are given by

λn = −n2π2 ; n ≥ 1 and λ0 = 0

(S(t))t≥0 is not exponentially stable. The operator φ is given by

φz =

+∞∑
n=0

e−n2π2τ 〈z, ϕn〉ϕn (64)

In this case, the corresponding discrete system

(S2,d)

{
zk+1 = φzk + Buk + fk

z0 ∈ Z ; k ≥ 0
(65)

with u = 0 and f = 0, is not exponentially stable and the number of
non negative eigenvalues is n0 = 1. The operators H∞ and H∞ defined by
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H∞u =
+∞∑
k=0

φkBuk and H∞f =
+∞∑
k=0

φkfk (66)

are not generally well defined respectively on �2(U) and �2(Z). Conse-
quently, the asymptotic controllability is not well defined.

The system (S2,d) is augmented by the output equation:

(E2,d) yk = (〈h1, zk〉 , · · ·, 〈hq, zk〉)tr ; k ≥ 0

with h1, · · ·, hq orthogonal to ϕ0 , i.e. to the unstable part:

〈hi, ϕ0〉 = 0; 1 ≤ i ≤ q

The operators H∞
C and R∞

C are then well defined and the characterization
results are similar to those obtained in the Dirichlet case.

Concerning the stabilizability, in the case of one actuator and using propo-
sition 5.10, the system is stabilizable if and only if

rankM0 = r0 = 1

this is equivalent to

〈g, ϕ0〉 �= 0

As seen, the stability condition is not necessary for considering the asymp-
totic remediability. Moreover a system may be remediable asymptotically with-
out being stabilizable. Indeed, for g = ϕn0 with n0 ≥ 1, we have 〈g, ϕ0〉 = 0
and then the system is not stabilizable. But if also h = ϕn0, we have

〈h, ϕ0〉 = 0

The problem of asymptotic compensation is well posed. We have

〈g, ϕn0〉〈h,ϕn0〉 = 1 �= 0

The system is then remediable asymptotically.

Conversely, the system may be stabilizable but not remediable asymptoti-
cally. Hence, if g = ϕ0, we have 〈g, ϕ0〉 �= 0 and then the system is stabilizable.
But for h = ϕn0 with n0 ≥ 1, we have

〈g, ϕn〉〈h,ϕn〉 = 0 ; ∀n ≥ 1
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and then the system is not asymptotically remediable.

Let us note that with a convenient choice of actuators and sensors, a non
stable system may be stabilizable and remediable asymptotically. But it may
be also non stabilizable and non remediable asymptotically. These situations
are illustrated here after:

- For g = ϕ1, the system is not stabilizable because 〈g, ϕ0〉 = 0. On the
other hand, if h = ϕ2, we have

〈g, ϕn〉〈h,ϕn〉 = 0 ; ∀n ≥ 1

then, the system is not also asymptotically remediable.

- For g(x) = 2x, we have 〈g, ϕ0〉 = 1. consequently, the system is stabiliz-
able. But if h = ϕ1, we have

〈h, ϕ0〉 = 0

The problem of asymptotic compensation is well posed. We have

〈g, ϕ1〉〈h,ϕ1〉 �= 0

and hence, the system is also asymptotically remediable.

7 Approximations and numerical simulations

This section is consecrated to numerical approximations and simulations of
the asymptotic compensation problem. We give an approximation of θf as
a solution of a finite dimension linear system Ax = b, and then the optimal
control uθf

, with a comparison between the corresponding observation noted
y(uθf

,f ), the normal one (i.e. y(0,0)) and y(0,f )).

7.1 Approximations

• Coefficients of the system :

For i, j ≥ 1, let

aij = <
+∞∑
I=0

Q(I)Q∗(I)ei, ej >

Rq
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where Q(I) is the operator

Q(I) : Rp −→ Rq

x −→ CφkBx

and (ei)1≤i≤q is the canonical basis of Rq . We have

Q(I)x = CΦIBx = C
∑
m≥1

eIλmτ

rm∑
l=1

< Bx, ϕml >L2(Ω) ϕml

and

Q∗(I) : Rq −→ Rp

y −→
∑
m≥1

eIλmτ

rm∑
l=1

< ϕml, C
∗y >L2(Ω) B∗ϕml

then
Q(I)Q∗(I)ei =

C
∑
m≥1

rm∑
l=1

∑
n≥1

rn∑
k=1

eIλmτeIλnτ < BB∗ϕnk, ϕml >L2(Ω)< ϕnk, C
∗ei >L2(Ω) ϕml

and

aij =
∑
m≥1

rn∑
l=1

∑
n≥1

rn∑
k=1

p∑
s=1

1

1 − e(λn+λm)τ
< gs, ϕnk >L2(Ωs)< gs, ϕml >L2(Ω) .

< ϕnk, hi >L2(Ω)< ϕml, hj >L2(Dj)

�
M∑

m=1

rn∑
l=1

N∑
n=1

rn∑
k=1

p∑
s=1

1

1 − e(λn+λm)τ
< gs, ϕnk >L2(Ωs)< gs, ϕml >L2(Ω) .

< ϕnk, hi >L2(Ω)< ϕml, hj >L2(Dj)

for M , N sufficiently large, and

bj = − < R∞
C f, ej >�q

= −
∑
n≥1

rn∑
k=1

∞∑
I=0

(
eIλnτ < fI(.), ϕnk >L2(Ω)< hj, ϕnk >L2(Dj)

)

� −
N∑

n≥1

rn∑
k=1

∞∑
I=0

(
eIλnτ < fI(.), ϕnk >L2(Ω)< hj, ϕnk >L2(Dj)

)
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• Optimal control :
In this part, we give an approximation of the optimal control uθf

, we have

uI,θf
= B∗(Φ∗)IC∗θf

The function coordinates of uj,θf
(.) are given by

uj
I,θf

=
∑
n≥1

rn∑
k=1

q∑
i=1

eIλnτθi,f < hi, ϕnk >L2(Ω)>< gj , ϕnk >L2(Ωj)

�
N∑

n≥1

rn∑
k=1

q∑
i=1

eIλnτθi,f < hi, ϕnk >L2(Ω)>< gj , ϕnk >L2(Ωj)

for a large integer N .

• Cost: The minimum energy (cost) is defined by ‖ uθf
‖l2(U )

‖ uθf
‖l2(U )=

( ∞∑
I=0

‖B∗(Φ∗)IC∗θf‖2

�p

)1
2

=

⎛
⎝ p∑

j=1

(∑
n≥1

rn∑
k=1

q∑
i=1

1

1 − eλnτ
θi,f < hi, ϕnk >L2(Ω)< gj, ϕnk >L2(Ωj )

)2
⎞
⎠

1
2

�
⎛
⎝ p∑

j=1

(
N∑

n≥1

rn∑
k=1

q∑
i=1

1

1 − eλnτ
θi,f < hi, ϕnk >L2(Ω)< gj , ϕnk >L2(Ωj )

)2
⎞
⎠

1
2

for N sufficiently large.

• The corresponding observation :

The corresponding observation is given by

yI,uθf
= CzI,uθf

= C

(
ΦIz0 +

I∑
J=0

ΦJBuJ,θf
+

I∑
J=0

ΦJBfJ(.)

)
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Its coordinates

((
yj

I,uθf

)
I≥0

)
j=1,q

are obtained as follows:

yj
I,uθf

=
∑
n≥1

rn∑
k=1

eIλnτ< z0, ϕnk >L2(Ω) < hj, ϕnk >L2(Dj)

+
∑
n≥1

rn∑
k=1

p∑
i=1

< gi, ϕnk >L2(Ω)< hj , ϕnk >L2(Dj)

I∑
J=0

eJλnτui
J,θf

+
∑
n≥1

rn∑
k=1

< hj , ϕnk >L2(Dj)

I∑
J=0

eJλnτ < fJ (.), ϕnk >L2(Ω)

�
N∑

n=1

rn∑
k=1

eIλnτ< z0, ϕnk >L2(Ω) < hj, ϕnk >L2(Dj)

+
N∑

n=1

rn∑
k=1

p∑
i=1

< gi, ϕnk >L2(Ω)< hj , ϕnk >L2(Dj)

I∑
J=0

eJλnτui
J,θf

+

N∑
n=1

rn∑
j=1

< hj , ϕnk >L2(Dj)

I∑
J=0

eJλnτ < fJ (.), ϕnk >L2(Ω)

for N sufficiently large.

7.2 Numerical simulations

7.2.1 Dirichlet case

We consider the discrete version (S1,d) of system (S1,c) in the one dimension
case with Ω =]0, 1[ and a Dirichlet boundary condition. In this case, the
functions ϕn(.) are defined by

ϕn(ξ) =
√

2sin(nπξ) ; n ≥ 1

The associated eigenvalues are simple and given by

λn = −n2π2 ; n ≥ 1

Then for

� an initial state: z0(.) ≡ 0,

� a sensor (D,h) with D =]0, 1[ and h(ξ) =
√

2ξ2 (q = 1)
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� an efficient actuator (Ω, g) with Ω =]0, 1[ and g(ξ) = 2ξ3

� a disturbance defined as follows

f(I, ξ) =

⎧⎨
⎩

sin(I)e
n
10

Iξ if I = 0, 1, . . . 100

sin(I+1)
(I+1)2

e−
1
10

Iξ if I > 100

� M = N = 10

� τ = 0, 02

we obtain numerical results which illustrate those established previously.
To simplify the notations, let us note y(u, f) ≡ (yI(u, f))I≥0 the discrete ob-

servation corresponding to the control u and the disturbance f . Hence y(0, f)
(respectively y(0, 0)) will represent the observation for u = 0 (respectively the
normal observation, i.e. u = 0 and f = 0).

The figure 1 represents the evolution of the observations y(u, f), y(0,f ) and
y(0,0) ≡ 0 with respect to I . This figure show that for I sufficiently large
(I ≥ 25), we have

yI(uθf
, f) � yI(0, 0)

Figure 1: Representation of y(uθf
,f ), y(0,0) and y(0,f ) in the Dirichlet case.

The optimal control uθf
ensuring the asymptotic compensation of the dis-

turbance is represented, with respect to I , in figure 2.
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Figure 2: The optimal control: Dirichlet case.

7.2.2 Neuman case

We consider the system (S2,d) with Ω =]0, 1[ and a Neuman boundary condi-
tion, in this case

ϕn(ξ) =
√

2cos(nπξ) ; n ≥ 1 and ϕ0 ≡ 1

and

λn = −n2π2 ; n ≥ 1 and λ0 = 0

For

� an initial state: z0(.) ≡ 0,

� a sensor: (D,h), with D =]0, 1[ and h(ξ) = ξeξ

� an efficient actuator (Ω, g) with Ω =]0, 1[ and g(ξ) = cos(Π
3
ξ)

� a disturbance function defined by

f(I, ξ) = 480
cos(I + 1)Π

2

(I + 1)2
e−

1
10

Iξ for I ≥ 0

� M = N = 10
� τ = 10−3
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we obtain similar numerical results. In figure 3, the observations y(uθf
,f ),

y(0,0) and y(0,f ) are represented. We remark that also in the Neumann case, we
have

yI(uθf
, f) � yI(0, 0) for I ≥ 40

Figure 3: Representation of y(uθf
, f)), y(0, 0) and y(0, f) in the Neuman
case.

The figure 4 represents the optimal control uθf
.

Figure 4: The optimal control: Neuman case.
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Conclusion

In this papers which is an extension of previous works to the asymptotic dis-
crete case, we have firstly introduced and characterized the notions of asymp-
totic weak and exact remediability as well as asymptotic efficient actuators.
Then, using an extension of the Hilbert Uniqueness Method, we have shown
how to find the optimal control ensuring the asymptotic compensation of a
known or unknown disturbance, and given a characterization of the distur-
bances which are exactly remediable asymptotically.

We have also defined and characterized the controllability and strategic
actuators in the discrete asymptotic case.

We have shown that also in the discrete asymptotic case, the controllability
remain stronger than the remediability, and hence that asymptotic strategic
actuators are asymptotically efficient. The converse is not true.

The relationship between the asymptotic remediability and the stabilizabil-
ity is also studied. This relation depend on the choice of the actuators and
the sensors. The discrete version of diffusion system is examined. Illustrative
examples, numerical approximations and results are also presented.

The results are developed for a class of discrete linear distributed systems
and for zone actuators and sensors, but the considered approach can be ex-
tended to unbounded operators (pointwise sensors and actuators) with a con-
venient choice of spaces, and also to other classes of systems or other similar
problems.
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