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Abstract

Quasi-fixed inputs are incorporated into dynamic DEA, A unique
feature of the quasi-fixed inputs is that those are considered as outputs
at the current, while being treated as inputs at the next period. In this
paper we propose dynamic Additive model when a firm employs quasi-
fixed inputs, then obtain return to scale in dynamic Additive model.
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1. Introduction

Data envelopment analysis (DEA), first proposed by charnes et al. [2], is a

new technique developed in operations research and management science over

the last two decades for measuring productive efficiency. This is a nonpara-

metric technique based only on the observed input-output data of firms. The

introduction of quasi-fixed inputs into a DEA model can be seen as a first step

toward dynamic DEA and Malmquist indices. Nemoto and Goto [2] extended

DEA to a dynamic framework. They incorporates two different type of inputs

(variable input and quasi-fixed inputs) into dynamic DEA. Sueyoshi and Seki-

tani [5] extended the dynamic DEA of Nemoto and Goto [3] in a manner that

the concept of return to scale is incorporated into the dynamic DEA. Based

on the work of Sueyoshi and Sekitani we obtain return to scale in dynamic
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Additive model. The remainder of this paper is divided in to section: Section

2 begin with dynamic DEA. Then in section 3, dynamic Additive model is

introduced. The next section return to scale in dynamic Additive model is

considered. Section 5 applies an example in volving 11 Iranian gas companies

in two period. Conclusions appear in Section 6.

2. Dynamic DEA

Let xt denote a m×1 vector of variable inputs used in the period t, kt−1 a l×1

vector of quasi-fixed inputs at the beginning of the period t, yt a s × 1 vector

of outputs produced in the period t, and kt a l× 1 vector of quasi-fixed inputs

at the end of the period t. In the dynamic DEA, OMUp is characterized as a

production process from (xtp, kt−1p) ∈ Rm+l to (ytp, ktp) ∈ Rs+l. Furthermore

a production possibility set in the period t specified as follows:

ϕt = {(xt, kt−1, yt, kt) ∈ Rm+2l+s|(xt, kt−1) can yield (yt, kt)}.

It is required that ϕt satisfies the regularity conditions:

(i) if (x̄t, k̄t−1, yt, kt) ∈ ϕt and (x̄t, k̄t) ≤ (xt, kt−1), the (xt, kt−1, yt, kt) ∈ ϕt,

(ii) if (xt, kt−1, ȳt, k̄t) ∈ ϕt and (ȳt, k̄t) ≥ (yt, kt), then (xt, kt−1, yt, kt) ∈ φt,

(iii) ϕt is closed and convex.

Suppose that in period t, there are N observations regarding inputs and

outputs: variable input, Xt = (xt1 , . . . , xtN ), quasi-fixed onputs at the be-

ginning of the period t, Kt−1 = (kt−11, . . . , kt−1N), Variable output, Yt =

(yt1, . . . , ytN), and quasi-fixed inputs at the end of the period t, Kt = (kt1, . . . , ktN).

A vector of weights, λt = (λt1, . . . , λtN ) is used to connect input and output

of N DMUs . It is known that the smallest set including N observations and

satisfing (i)-(iii) take the form:

ϕt =

{(xt, kt−1, yt, kt)|Xtλt ≤ xt, Kt−1λt ≤ kt−1, Ktλt ≥ kt, ytλt ≥ yt, eλt = 1, λt ≥ 0}.

An important feature of DEA dynamics is that its objective is formulated

to minimize a total production cost over an entire observed Period. Nemotu

and Goto [3] use the following formulation to determine the cost minimum of

the pth DMU:
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Min

T∑

t=1

γt(wtxt + vtkt−1)

s.t. Xtλt ≤ xt, t = 1, . . . , T,

Kt−1λt ≤ kt−1, , t = 1, . . . , T,

Ktλt − γt ≥ kt, t = 1, . . . , T − 1, (1)

Ytλt ≥ ytp, t = 1, . . . , T,

eλt = 1, t = 1, . . . , T,

k0 = k̄0, kt ≥ 0, kt ≥ 0, λt ≥ 0, t = 1, . . . , T0

where γt is a constant discount factor, wt and vt are prices of the variable

and quasi-fixed inputs at the period t, respectively, Here the initial values of

quasi-fixed input k0 are given at k̄0.

3. Dynamic Additive Model

We combine input-oriented and output-oriented dynamic model in a dynamic

single model, called the dynamic Additive model. Let there are n decision

making units and their production activities are examind in T periods in the

tth period, each DMUp uses two different type of inputs: xt,p and kt−1,p to yield

two different types of outputs: yt,p and kt,p. The inputs kt−1,p comes from the

(t − 1)th period and kt,p is used as input to the later period t + 1.

Now define dynamic Additive model as:

S = Max

T∑

t=1

wtst +

T∑

t=1

vtσt +

T∑

t=1

utγt +

T∑

t=1

gtzt

s.t. Xtλt + st = xtp, t = 1, . . . , T,

Kt−1λt + σt = kt−1p, t = 1, . . . , T, (2)

Ktλt − γt = ktp, t = 1, . . . , T − 1,

Ytλt − zt = ytp, t = 1, . . . , T,

eλt = 1, t = 1, . . . , T,

λt ≥ 0, st ≥ 0, zt ≥ 0, σt ≥ 0, t = 1, . . . , T,

γt ≥ 0, t = 1, . . . , T − 1.

The following notation are used in this model:

st: vector of slack variable corresponding to inputs xt,p,
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σt: vector of slack variable corresponding to inputs kt−1,p,

γt: vector of slack variable corresponding to outputs kt,p,

zt: vector of slack variable corresponding to outputs yt,p,

wt: the slack variable weight vector of tth period corresponding to st,

vt: the slack variable weight vector of tth period corresponding to σt,

ut: the slack variable weight vector of tth period corresponding to γt,

gt: the slack variable weight vector of tth period corresponding to zt,

the other notations corresponding to [3].

In model (2) the objective is maximize the weighted sum of slack variable

corresponding to DMUp in the whole periods.

DMUp in the whole periods is pareto efficient if and only if S = 0.

Defind the weights as follows:

wti =
1

max
1≤j≤n

{xtij}
t = 1, . . . , T

i = 1, . . . , m
, vth =

1

max
1≤j≤n

{kt−1hj}
t = 1, . . . , T

h = 1, . . . , l

uth =
1

max
1≤j≤n

{kthj}
t = 1, . . . , T

h = 1, . . . , l
, gtr =

1

max
1≤j≤n

{ytrj}
t = 1, . . . , T

r = 1, . . . , s

The dual model (2) is as follow:

Min

T∑

t=1

αtxtp +

T∑

t=1

βtkt−1 −
T∑

t=1

θtktp −
T∑

t=1

μtytp +

T∑

t=1

δt

s.t. αtXt + βtKt−1 − θtKt − μtYt + eδt ≥ 0, t = 1, . . . , T,

αT XT + βT KT−1 − μTYT + eδT ≥ 0, (3)

αt ≥ wt, βt ≥ vt, μt ≥ gt, t = 1, . . . , T,

θt ≥ ut, t = 1, . . . , T − 1,

δtfree, t = 1, . . . , T.

In this program the dual variables αt are related to the first group, βt are

related to the second group, θt are related to the third group, μt are related to

the fourth group and δt are related to the fifth group of constraints of (2).

4. Return to Scale in Dynamic Additive Model

Let DMUp is pareto efficient otherwise use projection DMUp. Now employ

the sign of δ∗t to portray the situation for return to scale. The production

possibility set in tth period is defined as:

ϕt = {(xt, kt−1, yt, kt)|Xtλt ≤ xt, Kt−1λt ≤ kt−1, Ytλt ≥ yt, Ktλt ≥ kt, eλt = 1}
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A support hyperplane of ϕt at the point (xtp, kt−1p, ytp, ktp) is as:

Ht = {(xt, kt−1, yt, kt)|α∗
t xt + β∗

t kt−1 − θ∗t kt − μ∗
tyt + eδ∗t = 0}.

First solve model (3) for determine return to scale of DMUp in a fixed period,

if δ∗t = 0 return to scale is constant if δ∗t < 0 then solve model follows:

Max δ̂t

s.t. αtXt + βtKt−1 − θtKt − μtYt + eδ̂t ≥ 0, t = 1, . . . , T − 1,

αtXt + βtKt−1 − μT YT + eδ̂T ≥ 0, (4)

αtxtp + βtkt−1p − θtktp − μtytp + eδ̂t = 0, t = 1, . . . , T − 1,

αT Xtp + βT kt−1p − μTyTp + eδ̂T = 0,

αt ≥ wt, βt ≥ vt, μt ≥ gt, δ̂t ≤ 0, t = 1, . . . , T,

θt ≥ ut, t = 1, . . . , T − 1.

The RTS on the tth period is as follows:

if δ̂∗t = 0 return to scale is constant.

if δ̂∗t < 0 return to scale is increasing.

if δ∗t > 0 had occurred of model (3) then the inequality δ̂t ≤ 0 in the model

(4) would be replaced by δ̂ ≥ 0 and the objective in (4) would be reoriented

to min δ̂t and return to scale determine from the following conditions,

if δ̂∗t = 0 return to scale is constant.

if δ̂∗t > 0 return to scale is devreasing.

5. A Simple Example

We apply the method to a data set consisting 11 gas companies located in

11 regions in Iran, [1]. The data for this analysis are derived from operations

during 2003 and 2004. We use seven variable from the data set as inputs

and outputs. Inputs include number of staff and budget, and outputs include

amount of piping, number of new customer and amount of branch-line. An-

other type of output that is used as input in later period, is revenue. Each

gas company uses the revenue of gas sold as input in later period. At the

first period, each company uses the revenue of gas sold in previous period as

one of the inputs. The chosen input and output normalized data for two six-

month period that are used in the application are displayed in Table 1 and 2

as follows:
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Table 1
The normalized data used in period 1

Companies Budget Number
of staff

Rev. of
gas sold
in prev.
period.

Amount
of piping

Number
of new
cust.

Amount
of
branch-
line

Rev.
of gas
sold in
current
period

# 1 0.9625 0.8665 0.9992 1 0.3352 0.4594 0.9398
# 2 0.9265 1 0.9969 0.569 0.1373 0.2048 1
# 3 1 0.9863 1 0.357 0.2617 0.5631 0.9907
# 4 0.6009 0.4059 0.8902 0.5915 0.8509 0.5466 0.8996
# 5 0.6617 0.7322 0.6873 0.937 0.682 0.8381 0.5277
# 6 0.5464 0.6271 0.4119 0.2558 0.1846 0.4144 0.4064
# 7 0.7287 0.628 0.5972 0.5177 0.7247 0.7187 0.7782
# 8 0.4038 0.1389 0.1789 0.487 0.6319 0.5499 0.9415
# 9 0.6186 0.4516 0.3959 0.3662 0.6799 0.5793 0.6134
# 10 0.7309 0.4598 0.3239 0.8213 1 1 0.7324
# 11 0.8250 0.7135 0.9957 0.1235 0.2304 0.223 0.5191

Table 2
The normalized data used in period 2
Companies Budget Number

of staff
Rev. of
gas sold
in prev.
period

Amount
of piping

Number
of new
cust.

Amount
of
branch-
line

Rev.
of gas
sold in
current
period

# 1 0.8973 0.9698 0.9398 1 0.3077 0.474 0.1878
# 2 0.3884 0.9943 1 0.5325 0.4978 0.3953 0.8419
# 3 0.7864 1 0.9907 0.2555 0.2935 0.354 1
# 4 0.6879 0.7926 0.8996 0.9130 1 0.9919 0.3372
# 5 1 0.7082 0.5277 0.9385 0.8206 0.5763 0.5516
# 6 0.9662 0.6008 0.4064 0.2656 0.3473 0.2137 0.3555
# 7 0.8261 0.6131 0.7782 0.5658 0.5917 0.5922 0.1811
# 8 0.9169 0.9416 0.9415 0.4614 0.4863 0.4912 0.9952
# 9 0.6223 0.4477 0.6134 0.3408 0.6628 0.3208 0.5262
# 10 0.8813 0.7639 0.7324 0.8819 0.979 1 0.4786
# 11 0.8876 0.9870 0.5191 0.7945 0.6105 0.5994 0.7394
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By using sign of δ∗t we measure type of return to scale in two periods and

results are listed in Table 3.

Table 3

Return to scale in two period

Companies δ∗t in the first period δ∗t in the second period

# 1 10.3107 (DRS) 16.9656 (DRS)

# 2 45.2381 (DRS) 0 (CRS)

# 3 53.8616 (DRS) 0 (CRS)

# 4 17.1814 (DRS) 0 (CRS)

# 5 0 (CRS) 0 (CRS)

# 6 0 (CRS) 0 (CRS)

# 7 5.4829 (DRS) 0 (CRS)

# 8 1.7030 (DRS) 5.4869 (DRS)

# 9 -6.8900 (IRS) 0 (CRS)

# 10 0 (CRS) 0 (CRS)

# 11 1.2730 (DRS) 0 (CRS)

6. Conclusions

In this study we use quasi-fixed inputs in dynamic data envelopment analysis.

The quasi-fixed inputs are considered as outputs at the current period, while

being treated as inputs at the next period. We definded dynamic Additive

model then type of return to scale at the tth period identify by examinig sign

of intercept of a supporting hyperplane. As a future extension of this research

we can ranking DMUs in dynamic DEA in the each period.
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