Applied Mathematical Sciences, Vol. 2, 2008, no. 30, 1487 - 1491

Computing of Signs of Eigenvalues for Diagonally Dominant Matrix for Inertia Problem

F. Naeimi Dafchahi

Department of Mathematics, Faculty of Sciences University of Guilan, P.O. Box 41335-1914, Rasht, Iran f_naeimidafchahi@yahoo.com

Abstract

In this paper we present two theorems for computing of inertia of Diagonally Dominant Matrix and show a good relation between the inertia theorem and the signs of diagonal entries of the diagonally dominant matrix.

Mathematics Subject Classification: 15A18

Keywords: Eigenvalue, Inertia, Diagonally Dominant Matrix

1 Introduction

we know a system

$$\dot{x}(t) = Ax(t) \tag{1}$$

is a asymptotically stable, i.e., $x(t) \to 0$ as $t \to \infty$ if and only if all eigenvalues of A have negative real parts see [1]. The stability of the system (1) is one of the most important problems in sciences and engineering. Lyapunov in 1892 in his PhD thesis described the matrix equation $XA + A^*X = -M$ and also discussed the stability of system (1)

2 Preliminary Notes

Definition 2.1 Inertia of a matrix [2]

The inertia of a $n \times n$ complex matrix A is shown by In (A) and is defined to be an integer triple $In(A) = (\pi(A), \upsilon(A), \delta(A))$ where $\pi(A)$ is the number of eigenvalues of A with positive real parts. $\upsilon(A)$ and $\delta(A)$ with negative and zero real parts respectively.

3 Main Results

These are the main results of the paper.

Theorem 3.1 The diagonal entries of a diagonally dominant matrix are not zero [2].

Theorem 3.2 The diagonally dominant matrix is invertible [2].

Theorem 3.3 (Ostrowski and Schneider-The main inertia theorem) [1, 3, and 4]:

i) A necessary and sufficient condition for existing a symmetric matrix X where $XA + A^{t}Xbe$ symmetric and positive definite is that $\delta(A) = 0$.

ii)In(A)=In(X).

Theorem 3.4 i) If $A = [a_{ij}]$ is a real row and column diagonally dominant matrix then there exist a symmetric matrix X such that In(A) = In(X).

ii)In(A) = (The number of positive diagonal entries; the number of negative diagonal entries; 0)

Proof. By theorem 3.2, we have $\delta(A) = 0$ and from theorem 3.3 there is a symmetric matrix X such that $XA + A^{t}X$ is symmetric and positive definite, and In(A) = In(X).

Now let $X = diag(sgn(a_{ii}))$, $sgn(a_{ii}) = \begin{pmatrix} 1 & a_{ii} > 0 \\ -1 & a_{ii} < 0 \end{pmatrix}, i = 1...n$

-	•	•	•	1	ι	

	(a_{11})	a_{12}	•	•	•	a_{1n}	
	a_{21}	a_{22}	•	•		a_{2n}	
A =		•	•	•	•	•	
	· ·	•	•	•	·	•	
		•	•	•	•	•	
	$\langle a_{n1} \rangle$	a_{n2}	•	•		a_{nn})

Then we have

$$XA = \begin{pmatrix} |a_{11}| & (sgn(a_{11}))a_{12} & . & . & (sgn(a_{11}))a_{1n} \\ (sgn(a_{22}))a_{21} & |a_{22}| & . & . & (sgn(a_{22}))a_{2n} \\ & . & (sgn(a_{33}))a_{32} & . & . & (sgn(a_{22}))a_{2n} \\ & . & . & . & . & (sgn(a_{33}))a_{3n} \\ & . & . & . & . & . \\ (sgn(a_{nn}))a_{n1} & . & . & . & (sgn(a_{nn}))a_{nn-1} & |a_{nn}| \end{pmatrix} \\ A^{t}X = \begin{pmatrix} |a_{11}| & (sgn(a_{22}))a_{21} & . & . & (sgn(a_{nn}))a_{n1} \\ (sgn(a_{11}))a_{12} & |a_{22}| & . & . & (sgn(a_{nn}))a_{n2} \\ & . & (sgn(a_{22}))a_{23} & . & . & (sgn(a_{nn}))a_{n3} \\ & . & . & . & . & . \\ (sgn(a_{11}))a_{1n} & . & . & . & (sgn(a_{n-1,n-1}))a_{n-1,n} & |a_{nn}| \end{pmatrix}$$

If $XA + A^tX = [c_{ij}], i = 1...n, j = 1...n$ Then:

$$c_{ij} = \begin{pmatrix} 2 |a_{ii}| & i = j \\ (sgn(a_{ii}))a_{ij} + (sgn(a_{jj}))a_{ji} & i \neq j \end{pmatrix}$$

With respect to the above matrix and A is a row and column diagonally dominant we have

$$\sum_{\substack{j=1\\j\neq i}}^{n} |c_{ij}| = \sum_{\substack{j=1\\j\neq i}}^{n} |(sgn(a_{ii}))a_{ij} + (sgn(a_{jj}))a_{ji}| \le$$
$$\sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| + \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ji}| < 2 |a_{ii}| = |c_{ii}|, i = 1..n$$

Therefore $XA + A^tX$ is a diagonally dominant matrix with positive diagonal entries, so it is positive definite matrix. Then In(A) = In(X) and since X is a diagonal matrix so;

In(A) = (The number of positive diagonal entries; the number of negative diagonal entries; 0)

Theorem 3.5 (3, 4) *i*)*A* necessary and sufficient condition for a hermitian matrix X to exist such that $XA + A^*X$ is hermitian and positive definite is that $\delta(A) = 0$.

$$i)In(A)=In(X).$$

Theorem 3.6 *i*) If $A = [a_{ij}]$ is a complex row-column diagonally dominant and $a_{ii} \in R$, then there exist a hermitian matrix X such that In(A) = In(X).

ii)In(A) = (The number of positive diagonal entries; the number of negative diagonal entries; 0)

Proof. Since A is a diagonally dominant matrix so according to theorem 3.2 we have $\delta(A) = 0$ and by theorem 3.5 there exist a hermitian matrix X such that $XA + A^*X$ is hermitian positive definite and In(A) = In(X).

Now if we set $X = diag(sgn(a_{ii})), i = 1...n$ then by a similar proof as in 3.4 we conclude that X is a desired matrix, In(A) = In(X).

Since X is diagonal so:

In(A) = (The number of positive diagonal entries; the number of negative diagonal entries; 0)

3.7 Example

Consider the Sturm-Liouville problem as:

$$\begin{aligned} \frac{d^2y}{dx^2} + & [q(x) + \eta r(x)]y = 0\\ a < x < b\\ y(a) &= 0\\ y(b) &= 0 \end{aligned}$$

The object in this problem is finding η .

During solving this problem we obtain the matrix

$$a_{kk} = \frac{2 - h^2 q_k}{h^2 r_k}, a_{ij} = a_{ji} = \frac{1}{(r_i r_j)^{1/2}} |j - i| = 1$$

Where
$$\begin{aligned} x_0 &= a, x_k = x_0 + hk, \\ r(x_k) &= r_k > 0 \\ q(x_k) &= q_k \\ h &= (b-a)/n + 1 \end{aligned}$$

A is a diagonally dominant matrix and by choosing h as $|h| > (q_k/2)^{1/2}$ we have $a_{kk} < 0, k = 1...n$ then In(A) = (0, n, 0).

3.8 Example

Consider Laplace equation as

$$\begin{array}{l} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad in \quad R = \{(x, y) \mid 0 \le x \le \alpha, 0 \le y \le \beta\}\\ u(x, y) = g(x, y) \quad on \quad S \end{array}$$

If we approximate this equation by finite difference method with $\Delta x = \frac{\alpha}{M_x} = \Delta y = \frac{\beta}{M_y}$ where $M_x = 4, M_y = 3$ then we obtain:

$$A = \begin{pmatrix} 4 & -1 & 0 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 & -1 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 \\ -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & -1 & 0 & -1 & 4 \end{pmatrix}$$

This matrix is also diagonally dominant with all positive diagonal entries, so by theorem 3.4 the signs of real parts of all eigenvalues of A are positive.

Conclusions. As the results show, without computing the eigenvalues of a diagonally dominant matrix, the location and the signs of the real parts of eigenvalues can be easily determined, just by observing the main diagonal entries; therefore we are able to discuss about the stability of the system.

References

- B.N.Datta, Stability and Inertia, Linear Algebra and its Appl 302-303 (1999), 563-600.
- [2] B.N.Datta, Numerical Linear Algebra and Applications, Pacific Grove: California(1999).
- [3] A.Ostrowski, H.Schneider, Some theorems on the inertia of general matrices, J Math Anal Appl4 (1962), 72-84.
- [4] B.E.Cain, Inertia theory, Linear Algebra and its Appll**30** (1890), 211-240.

Received: February 20, 2008