Computing of Signs of Eigenvalues for Diagonally Dominant Matrix for Inertia Problem

F. Naeimi Dafchahi
Department of Mathematics, Faculty of Sciences University of Guilan, P.O. Box 41335-1914, Rasht, Iran
f_naeimidafchahi@yahoo.com

Abstract

In this paper we present two theorems for computing of inertia of Diagonally Dominant Matrix and show a good relation between the inertia theorem and the signs of diagonal entries of the diagonally dominant matrix.

Mathematics Subject Classification: 15A18

Keywords: Eigenvalue, Inertia, Diagonally Dominant Matrix

1 Introduction

we know a system

$$
\begin{equation*}
\dot{x}(t)=A x(t) \tag{1}
\end{equation*}
$$

is a asymptotically stable, i.e., $x(t) \rightarrow 0 \quad$ as $\quad t \rightarrow \infty$ if and only if all eigenvalues of A have negative real parts see [1].The stability of the system (1) is one of the most important problems in sciences and engineering. Lyapunov in 1892 in his PhD thesis described the matrix equation $X A+A^{*} X=-M$ and also discussed the stability of system (1)

2 Preliminary Notes

Definition 2.1 Inertia of a matrix [2]
The inertia of a $n \times n$ complex matrix A is shown by $\operatorname{In}(A)$ and is defined to be an integer triple $\operatorname{In}(A)=(\pi(A), v(A), \delta(A))$ where $\pi(A)$ is the number of eigenvalues of A with positive real parts.v (A) and $\delta(A)$ with negative and zero real parts respectively.

3 Main Results

These are the main results of the paper.
Theorem 3.1 The diagonal entries of a diagonally dominant matrix are not zero [2].

Theorem 3.2 The diagonally dominant matrix is invertible [2].
Theorem 3.3 (Ostrowski and Schneider-The main inertia theorem) [1, 3, and 4]:
i) A necessary and sufficient condition for existing a symmetric matrix X where $X A+A^{t} X$ be symmetric and positive definite is that $\delta(A)=0$.
ii) $\operatorname{In}(A)=\operatorname{In}(X)$.

Theorem 3.4 i)If $A=\left[a_{i j}\right]$ is a real row and column diagonally dominant matrix then there exist a symmetric matrix X such thatIn $(A)=\operatorname{In}(X)$.
ii) $\operatorname{In}(A)=($ The number of positive diagonal entries; the number of negative diagonal entries; 0)

Proof. By theorem 3.2, we have $\delta(A)=0$ and from theorem 3.3 there is a symmetric matrix X such that $X A+A^{t} X$ is symmetric and positive definite, $\operatorname{and} \operatorname{In}(A)=\operatorname{In}(X)$.

Now let $X=\operatorname{diag}\left(\operatorname{sgn}\left(a_{i i}\right)\right) \quad, \quad \operatorname{sgn}\left(a_{i i}\right)=\left(\begin{array}{cc}1 & a_{i i}>0 \\ -1 & a_{i i}<0\end{array}\right), i=$ 1...n

$$
A=\left(\begin{array}{cccccc}
a_{11} & a_{12} & . & . & . & a_{1 n} \\
a_{21} & a_{22} & \cdot & \cdot & \cdot & a_{2 n} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
a_{n 1} & a_{n 2} & \cdot & \cdot & \cdot & a_{n n}
\end{array}\right)
$$

Then we have

$$
\begin{aligned}
& X A=\left(\begin{array}{ccccc}
\left|a_{11}\right| & \left(\operatorname{sgn}\left(a_{11}\right)\right) a_{12} & \cdot & \cdot & \left(\operatorname{sgn}\left(a_{11}\right)\right) a_{1 n} \\
\left(\operatorname{sgn}\left(a_{22}\right)\right) a_{21} & \left|a_{22}\right| & \cdot & \cdot & \left(\operatorname{sgn}\left(a_{22}\right)\right) a_{2 n} \\
\cdot & \left(\operatorname{sgn}\left(a_{33}\right)\right) a_{32} & \cdot & \cdot & \left(\operatorname{sgn}\left(a_{33}\right)\right) a_{3 n} \\
\cdot & \cdot & \cdot & \cdot & \left|a_{n n}\right|
\end{array}\right) \\
& A^{t} X=\left(\begin{array}{ccccc}
& \cdot & \left(\operatorname{sgn}\left(a_{n n}\right)\right) a_{n, n-1} & \left.\left.\mid a_{n n}\right)\right) a_{n 1} & \cdot \\
a_{11} \mid & \left(\operatorname{sgn}\left(a_{22}\right)\right) a_{21} & \cdot & \cdot & \left(\operatorname{sgn}\left(a_{n n}\right)\right) a_{n 1} \\
\left(\operatorname{sgn}\left(a_{11}\right)\right) a_{12} & \left|a_{22}\right| & \cdot & \cdot & \left(\operatorname{sgn}\left(a_{n n}\right)\right) a_{n 2} \\
\cdot & \left(\operatorname{sgn}\left(a_{22}\right)\right) a_{23} & \cdot & \cdot & \left(\operatorname{sgn}\left(a_{n n}\right)\right) a_{n 3} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\left(\operatorname{sgn}\left(a_{11}\right)\right) a_{1 n} & \cdot & \cdot & \left(\operatorname{sgn}\left(a_{n-1, n-1}\right)\right) a_{n-1, n} & \left|a_{n n}\right|
\end{array}\right)
\end{aligned}
$$

If $X A+A^{t} X=\left[c_{i j}\right], i=1 . . . n, j=1 . . n$
Then:

$$
c_{i j}=\left(\begin{array}{cc}
2\left|a_{i i}\right| & i=j \\
\left(\operatorname{sgn}\left(a_{i i}\right)\right) a_{i j}+\left(\operatorname{sgn}\left(a_{j j}\right)\right) a_{j i} & i \neq j
\end{array}\right)
$$

With respect to the above matrix and A is a row and column diagonally dominant we have

$$
\begin{gathered}
\sum_{\substack{j=1 \\
j \neq i}}^{n}\left|c_{i j}\right|=\sum_{\substack{j=1 \\
j \neq i}}^{n}\left|\left(\operatorname{sgn}\left(a_{i i}\right)\right) a_{i j}+\left(\operatorname{sgn}\left(a_{j j}\right)\right) a_{j i}\right| \leq \\
\sum_{\substack{j=1 \\
j \neq i}}^{n}\left|a_{i j}\right|+\sum_{\substack{j=1 \\
j \neq i}}^{n}\left|a_{j i}\right|<2\left|a_{i i}\right|=\left|c_{i i}\right|, i=1 . . n \\
j
\end{gathered}
$$

Therefore $X A+A^{t} X$ is a diagonally dominant matrix with positive diagonal entries, so it is positive definite matrix. Then $\operatorname{In}(A)=\operatorname{In}(X)$ and since X is a diagonal matrix so;
$\operatorname{In}(A)=($ The number of positive diagonal entries; the number of negative diagonal entries; 0)

Theorem $3.5(3,4)$ i) A necessary and sufficient condition for a hermitian matrix X to exist such that $X A+A^{*} X$ is hermitian and positive definite is that $\delta(A)=0$.
i) $\operatorname{In}(A)=\operatorname{In}(X)$.

Theorem 3.6 i) If $A=\left[a_{i j}\right]$ is a complex row-column diagonally dominant anda ${ }_{i i} \in R$, then there exist a hermitian matrix X such thatIn $(A)=\operatorname{In}(X)$.
ii) $\operatorname{In}(A)=($ The number of positive diagonal entries; the number of negative diagonal entries; 0)

Proof. Since A is a diagonally dominant matrix so according to theorem 3.2 we have $\delta(A)=0$ and by theorem 3.5 there exist a hermitian matrix X such that $X A+A^{*} X$ is hermitian positive definite and $\operatorname{In}(A)=\operatorname{In}(X)$.

Now if we set $X=\operatorname{diag}\left(\operatorname{sgn}\left(a_{i i}\right)\right), i=1 \ldots n$ then by a similar proof as in 3.4 we conclude that X is a desired matrix, $\operatorname{In}(A)=\operatorname{In}(X)$.

Since X is diagonal so:
$\operatorname{In}(A)=($ The number of positive diagonal entries; the number of negative diagonal entries; 0)

3.7 Example

Consider the Sturm-Liouville problem as:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+[q(x)+\eta r(x)] y=0 \\
& a<x<b \\
& y(a)=0 \\
& y(b)=0
\end{aligned}
$$

The object in this problem is finding η.
During solving this problem we obtain the matrix

$$
\begin{aligned}
& A=\left(\begin{array}{cccccc}
a_{11} & -a_{12} & 0 & \cdot & \cdot & 0 \\
-a_{21} & a_{22} & -a_{23} & 0 & \cdot & 0 \\
0 & -a_{32} & a_{33} & \cdot & \cdot & 0 \\
\cdot & 0 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & -a_{n-1, n} \\
0 & 0 & 0 & \cdot & -a_{n, n-1} & a_{n n}
\end{array}\right) \\
& a_{k k}=\frac{2-h^{2} q_{k}}{h^{2} r_{k}}, a_{i j}=a_{j i}=\frac{1}{\left(r_{i} r_{j}\right)^{1 / 2}}|j-i|=1 \\
& x_{0}=a, x_{k}=x_{0}+h k, \\
& r\left(x_{k}\right)=r_{k}>0 \\
& q\left(x_{k}\right)=q_{k} \\
& h=(b-a) / n+1
\end{aligned}
$$

A is a diagonally dominant matrix and by choosing h as $|h|>\left(q_{k} / 2\right)^{1 / 2}$ we have $a_{k k}<0, k=1 \ldots n$ then $\operatorname{In}(A)=(0, n, 0)$.

3.8 Example

Consider Laplace equation as

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \text { in } \quad R=\{(x, y) \mid 0 \leq x \leq \alpha, 0 \leq y \leq \beta\} \\
& u(x, y)=g(x, y) \quad \text { on } \quad S
\end{aligned}
$$

If we approximate this equation by finite difference method with $\Delta x=$ $\frac{\alpha}{M_{x}}=\Delta y=\frac{\beta}{M_{y}}$ where $M_{x}=4, M_{y}=3$ then we obtain:

$$
A=\left(\begin{array}{cccccc}
4 & -1 & 0 & -1 & 0 & 0 \\
-1 & 4 & -1 & 0 & -1 & 0 \\
0 & -1 & 4 & 0 & 0 & -1 \\
-1 & 0 & 0 & 4 & -1 & 0 \\
0 & -1 & 0 & -1 & 4 & -1 \\
0 & 0 & -1 & 0 & -1 & 4
\end{array}\right)
$$

This matrix is also diagonally dominant with all positive diagonal entries, so by theorem 3.4 the signs of real parts of all eigenvalues of A are positive.

Conclusions. As the results show, without computing the eigenvalues of a diagonally dominant matrix, the location and the signs of the real parts of eigenvalues can be easily determined, just by observing the main diagonal entries; therefore we are able to discuss about the stability of the system.

References

[1] B.N.Datta, Stability and Inertia,Linear Algebra and its Appl 302-303 (1999), 563-600.
[2] B.N.Datta, Numerical Linear Algebra and Applications,Pacific Grove: California(1999).
[3] A.Ostrowski,H.Schneider, Some theorems on the inertia of general matrices ,J Math Anal Appl4 (1962), 72-84.
[4] B.E.Cain, Inertia theory, Linear Algebra and its Appll30 (1890), 211-240.
Received: February 20, 2008

