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Abstract

In this paper, we formulate a delayed IS-LM model of business cycle.
This model is represented by the Gabisch model [2] in considering the
Kalecki assumption on time lag investment [5], i.e. there is a time shift
after which capital equipment is available for production. A similar
idea has been proposed by J. Cai [1], but the main difference with our
model is the inclusion of the time delay into capital stock in capital
accumulation equation. The dynamics are studied in terms of local
stability and of the description of local Hopf bifurcation, that is proven
to exist as the delay (taken as a parameter of bifurcation) cross some
critical value. Additionally we conclude with an application.
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1 Introduction

Kalecki (in 1935, [5]) was probably the first economist to introduce time delay
in business cycle model, which is the result of time interval required between
investment decision and installation of investment capital.
Besides the influence of Kyenes (in 1936, [10]) and Kalecki (in 1937, [6]), Kaldor
(in 1940, [4]) proposed his first nonlinear business cycle model by an ordinary
differential equations as follows{

dY
dt

= α[I(Y (t), K(t)) − S(Y (t), K(t))],
dK
dt

= I(Y (t), K(t)),
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where Y is the gross product, K is the capital stock, α is the adjustment
coefficient in the goods market, I(Y, K) is the investment function and S(Y, K)
is the saving function.
In (1977, [12]) Torre revised and updated this model by replacing the capital
stock K(t) with the interest rate R(t) to formulate the following standard
IS-LM business cycle model{

dY
dt

= α[I(Y (t), R(t)) − S(Y (t), R(t))],
dR
dt

= β[L(Y (t), R(t)) − M̃ ],

where M̃ is the constant money supply, β is the adjustment coefficient in
money market and L is the demand for money.
In (1989, [2]), Gabisch and Lorenz considered an augmented IS-LM business
cycle model as follows

⎧⎪⎨⎪⎩
dY
dt

= α[I(Y (t), K(t), R(t)) − S(Y (t), R(t))],
dK
dt

= I(Y (t), K(t), R(t)) − δK(t),
dR
dt

= β[L(Y (t), R(t)) − M̃ ],

where δ is the depreciation rate of capital stock.
Based on the Kalecki’s idea of time delay (see [5, 8] for more information), Cai
(in 2005, [1]) presented the following delayed IS-LM model:

⎧⎪⎨⎪⎩
dY
dt

= α[I(Y (t), K(t), R(t)) − S(Y (t), R(t))],
dK
dt

= I(Y (t − τ), K(t), R(t)) − δK(t),
dR
dt

= β[L(Y (t), R(t)) − M̃ ],

(1)

with τ is the time delay needed for new capital to be installed, and he inves-
tigated the local stability and the local Hopf bifurcation for (1) in the linear
case.
In this paper, we think that it’s more interesting to introduce the delay τ into
gross product, capital stock and interest rate, because the change in the cap-
ital stock is due to the past investment decisions (see [9], p103). Thus in the
following analysis we will consider the following delayed IS-LM business cycle
model: ⎧⎪⎨⎪⎩

dY
dt

= α[I(Y (t), K(t), R(t)) − S(Y (t), R(t))],
dK
dt

= I(Y (t − τ), K(t − τ), R(t − τ)) − δK(t),
dR
dt

= β[L(Y (t), R(t)) − M̃ ],

(2)

The dynamics are studied in terms of local stability and of the description of
the Hopf bifurcation, that is proven to exist as the delay (taken as a parameter
of bifurcation) cross some critical value. In the end, we give some numerical
simulations which show the existence and the nature of the periodic solutions.
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2 Steady state and local stability analysis

As in Cai (2005, [1]), we assume that the investment function I, the saving
function S, and the demand for money L are given by

I(Y, K, R) = ηY − δ1K − β1R,

S(Y, R) = l1Y + β2R,

and

L(Y, R) = l2Y − β3R,

with δ1, l1, l2, β1, β2, β3 are positive constants. Then system (2) becomes:⎧⎪⎨⎪⎩
dY
dt

= α[(η − l1)Y (t) − δ1K − (β1 + β2)R(t))],
dK
dt

= ηY (t − τ) − δ1K(t − τ) − δK(t) − β1R(t − τ),
dR
dt

= β[l2Y (t) − β3R(t) − M̃ ].

(3)

In the following proposition, we give a sufficient conditions for the existence
and uniqueness of positive equilibrium E∗ of the system (3).

Proposition 2.1 Define

Θ = δ(β3η − β1l2) − (δ + δ1)(β2l2 + β3l1),

and suppose that
(H1): Θ < 0;
(H2): (δ + δ1)l1 − δη ≤ 0.
Then there exists a unique positive equilibrium E∗ = (Y ∗, K∗, R∗) of system
(3), where Y ∗, K∗, R∗ are given by

Y ∗ =
−((β1 + β2)δ + β2δ1)M̃

Θ
, (4)

K∗ =
−(β1l1 + β2η)M̃

Θ
, (5)

and

R∗ =
((δ + δ1)l1 − δη)M̃

Θ
. (6)

Proof.
(Y, K, R) is a steady-state of (3) if

dY

dt
=

dK

dt
=

dR

dt
= 0,
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that is ⎧⎪⎨⎪⎩
(η − l1)Y − δ1K − (β1 + β2)R = 0,

ηY − (δ + δ1)K − β1R = 0,

l2Y − β3R − M̃ = 0.

(7)

We have

det

⎛⎜⎝ η − l1 −δ1 −(β1 + β2)
η −(δ + δ1) −β1

l2 0 −β3

⎞⎟⎠ = δ(β3η − β1l2) − (δ + δ1)(β2l2 + β3l1)

(8)
= Θ.

In view of hypotheses (H1) and (H2) of proposition 2.1 it’s clear that system
(7) has a unique positive solution given by (4), (5) and (6).

In the next, we will study the stability of the positive equilibrium E∗ with
respect to the time delay.
The characteristic equation associated to system (9) takes the general form

P (λ) + Q(λ)exp(−λτ) = 0 (9)

with
P (λ) = λ3 + Aλ2 + Bλ + C

and
Q(λ) = Dλ2 + Eλ + F,

where
A = δ + ββ3 − α(η − l1),

B = αβl2(β1 + β2) + ββ3δ − α(δ + ββ3)(η − l1),

C = αβδ[(β1 + β2)l2 − β3(η − l1)],

D = δ1,

E = δ1(ββ3 + αl1),

and
F = αβδ1(β2l2 + β3l1).

Recall that the equilibrium of (3) is asymptotically stable if all roots of (9)
have negative real parts, and the stability is lost only if characteristic roots
cross the imaginary axis, that is if pure imaginary roots appear. In order
to investigate the local stability of the steady state, we begin by considering
the case without delay τ = 0. This case is of importance, because it can be
necessary that the nontrivial positive equilibrium of (3) is stable when τ = 0
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to be able to obtain the local stability for all nonnegative values of the delay,
or to find a critical values which could destabilize the equilibrium.
When τ = 0 the characteristic equation (9) reads as

λ3 + (A + D)λ2 + (B + E)λ + (C + F ) = 0. (10)

From (H1) we have C + F > 0. Hence, according to the Routh-Hurwitz crite-
rion, we have the following,

Proposition 2.2 For τ = 0, the equilibrium E∗ is locally asymptotically
stable if and only if
(H3): A + D > 0;
(H4): (A + D)(B + E) − (C + F ) > 0;
where A, B, C, D, E, are defined in (9).

We assume in the sequel, that hypotheses (H1), (H2), (H3) and (H4) are
true, and we return to the study of equation (9) with τ > 0. Clearly, λ(τ) =
u(τ) + iv(τ) is a root of equation (9) if and only if

u3 − 3uv2 + Au2 − Av2 + Bu + C = − exp(−uτ){Du2 cos(vτ)

−Dv2 cos(vτ) + Eu cos(vτ) + F cos(vτ) + 2Duv sin(vτ) + Ev sin(vτ)}, (11)

and

3u2v − v3 + 2Auv + Bv = − exp(−uτ){2Duv cos(vτ)

+Ev cos(vτ) − Du2 sin(vτ) + Dv2 sin(vτ) − Eu sin(vτ) − F sin(vτ)}, (12)

We set u = 0 into the two equation (11) and (12) to get

−Av2 + C = (Dv2 − F ) cos(vτ) − Ev sin(vτ), (13)

and

v3 − Bv = Ev cos(vτ) + (Dv2 − F ) sin(vτ). (14)

Squaring and adding the squares together, we obtain

v6 + av4 + bv2 + c = 0, (15)

with a = A2 − D2 − 2B, b = B2 − 2AC − E2 + 2DF, c = C2 − F 2,
where A; B; C; D; E are given by (9).
Letting z = v2, equation (15) becomes the following cubic equation

h(z) := z3 + az2 + bz + c = 0, (16)
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Lemma 2.3 [11] Define

Δ = a2 − 3b, (17)

(i) If c < 0, then equation (16) has at least one positive root.
(ii) If c ≥ 0 and Δ ≤ 0, then equation (16) has no positive roots.
(iii) If c ≥ 0 and Δ > 0, then equation (16) has positive roots if and only if
z := 1

3
(−a +

√
Δ) > 0 and h(z) ≤ 0.

Suppose that equation (16) has positive roots. Without loss of generality, we
assume that it has three positive roots, denoted by z1, z2 and z3, respectively.
Then equation (15) has three positive roots, say

v1 =
√

z1; v2 =
√

z2; v3 =
√

z3

Let

τ j
l =

1

vl
[arccos(

(Av2
l − C)(F − Dv2

l ) + (v3
l − Bvl)Evl

(Dvl − F )2 + E2v2
l

)+2jπ], l = 1, 2, 3; j = 0, 1....

Then ±ivl is a pair of purely imaginary roots of equation (9) with τ = τ j
l ,

l=1,2,3; j=0,1.... Clearly,

lim
j→∞ τ j

l = ∞, l = 1, 2, 3.

Thus, we can define

τ0 = τ j0
l0

= min
j=0,1...,l=1,2,3

(τ j
l ), v0 = vl0 . (18)

From proposition 2.2 and lemma 2.3, we have the following lemma.

Lemma 2.4 Suppose that (H1)-(H4) hold.
(i) If one of the following:
(N1) c ≥ 0 and Δ ≤ 0;
(N2) c ≥ 0 Δ > 0, and z ≤ 0;
(N3) c ≥ 0 Δ > 0, z > 0, and h(z) ≤ 0;
is true, then all roots of equation (9) have negative real parts for all τ ≥ 0.
(ii) If c < 0, or c ≥ 0, Δ > 0, z > 0 and h(z) ≤ 0, then all roots of equation
(9) have negative real parts when τ ∈ [0, τ0),
where Δ and z > 0 are defined in lemma 2.1.

Next we need to guarantee the transversality condition of the Hopf bifurcation
theorem (see [3]). Let λ(τ) = u(τ)+iv(τ) be the root of equation (9) satisfying
u(τ0) = 0, and v(τ0) = v0.
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Lemma 2.5 Suppose that (H1)-(H4) hold.
If one of the following:
(S1) c < 0, and h′(v2

0) �= 0;
(S2) c ≥ 0, Δ > 0, z > 0 and h(z) < 0;
is true, then

dReλ(τ0)

dτ
> 0,

where τ0, and v0 are defined in (18).

Proof
By differentiating equations (11) and (12) with respect to τ and then set

τ = τ0. Doing this, we get

G1
du(τ0)

dτ
+ G2

dv(τ0)

dτ
= H1, (19)

−G2
du(τ0)

dτ
+ G1

dv(τ0)

dτ
= H2, (20)

where

G1 = −3v2
0 + B + (E + Dv2

0τ0 − Fτ0) cos(v0τ0) + (2Dv0 − Ev0τ0) sin(v0τ0),

G2 = −2Av0 + (−2Dv0 + Ev0τ0) cos(v0τ0) + (E + Dv2
0τ0 − Fτ0) sin(v0τ0),

H1 = (−Dv3
0 + Fv0) sin(v0τ0) − Ev2

0 cos(v0τ0),

and
H2 = (−Dv3

0 + Fv0) cos(v0τ0) + Ev2
0 sin(v0τ0).

Solving for du(τ0)
dτ

we get

du(τ0)

dτ
=

G1H1 − G2H2

G2
1 + G2

2

, (21)

Therefore, we have
du(τ0)

dτ
=

v2
0h

′(v2
0)

G2
1 + G2

2

, (22)

Note that if h(z) < 0, then h′(v2
0) �= 0, because h(±∞) = ±∞ and h(0) = c ≥

0.
Thus, if h′(v2

0) �= 0 we have the transversality condition:

du(τ0)

dτ
�= 0.

If du(τ0)
dτ

< 0 for τ < τ0 and close to τ0, then equation (9) has a root λ(τ) =
u(τ) + iv(τ) satisfying u(τ) > 0, which contradicts (ii) of lemma 2.4. This
completes the proof.

By lemmas 2.4 and 2.5, we obtain the following theorem.
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Theorem 2.6 Assume that (H1)-(H4) hold,
(a) If (i) of lemma 2.4 holds, then, the equilibrium E∗ of system (3) is locally
asymptotically stable for all τ ≥ 0.
(b) If (S1) or (S2) in lemma 2.5 holds. then there exists a positive τ0 such
that, when τ ∈ [0, τ0) the steady state E∗ is locally asymptotically stable, and
a Hopf bifurcation occurs as τ passes through τ0, where τ0 is given by

τ0 =
1

v0
arccos

(Av2
0 − C)(F − Dv2

0) + (v3
0 − Bv0)Ev0

(Dv0 − F )2 + E2v2
0

, (23)

and v0 is the least simple positive root of equation (12), with A, B, C, D, E, are
defined in (9).

3 Application

Proposition 3.1 If

α = 0.96; β = 2; δ = 0.2; δ1 = 0.5; β1 = β2 = β3 = 0.2; l1 = l2 = 0.1; η = 0.4; M̃ = 0.05.

Then systems (4) have the following positive equilibrium

E∗ = (0.5624, 0.3125, 0.03125).

Furthermore, the critical delay corresponding to (3) is τ0 = 2.437523028.

By theorem 2.1 and proposition 3.1, we have if τ < 2.437523028, then E∗ is
locally asymptotically stable (see Fig.1). If we increase the value of τ, then
a periodic solution occurs at τ0 = 2.437523028 (see Fig.2) and E∗ becomes
unstable for τ > 2.437523028 (see Fig.3).
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Figure 1: For τ = 2 solutions Y (t) (blue line), R(t) (green line), K(t) (red
line) of (3) are asymptotically stable and converge to the equilibrium E∗.
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Figure 2: When τ = 2.4375, a Hopf bifurcation occurs and periodic solutions
appear, with same period for the three solutions Y (t) (blue line), R(t) (green
line), K(t) (red line) of (3).
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Figure 3: The steady state E∗ of (3) is unstable when τ = 3.

References

[1] J.P. Cai, Hopf bifurcation in the IS-LM business cycle model with time
delay, Electronic Journal of Differential Equations, 2005(15):1-6.

[2] G. Gabisch and H.W. Lorenz, (1987) Business Cycle Theory: A survey of
methods and concepts. 1989 edition Berlin:Springer-Verlag.

[3] J. K. Hale and S.M. Verduyn Lunel, Introduction to Functional Differen-
tial Equations, Springer- Verlag, New York, 1993.

[4] N. Kaldor, A Model of the Trade Cycle, Economic Journal, 1940, V.50,
78-92.

[5] M. Kalecki, A Macrodynamic Theory of Business Cycles, Econometrica,
1935, V.3, 327-344.

[6] M. Kalecki, A Theory of the Busines cycle, Rev. Studies 4 (1937), 77-97.

[7] Q. J. A. Khan, Hopf bifurcation in multiparty political systems with time
delay in switching, Applied Mathematics Letters, 13(2000), 43-52.

[8] A. Krawiec and M. Szydlowski, The Kaldor-Kalecki Business Cycle Model,
Ann. of Operat. Research, 1999, V.89, 89-100.

[9] A. Krawiec and M. Szydlowski, On nonlinear mechanics of business cycle
model, Regular and Chaotic Dynamics, V.6, N.1,2001.

[10] J.M. Kynes, The General Theory of Employment, Interest Money,
Macmillan Combridge University Press, 1936.



Delayed IS-LM business cycle model 1539

[11] S. Ruan, J. Wei, On the zeros of a third degree exponential polynomial
with applications to a delayed model for the control of testosterone secre-
tion. IMA J. Math. Appl. Med. Biol. 18, 41?52,2001.

[12] V. Torre, Existence of limit cycles and control in complete Kynesian sys-
tems by theory of bifurcations, Econometrica, 45(1977), 1457-1466.

Received: December 7, 2007


