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Abstract
In this paper Lie group classification of a Generalized Bonussinesq

Equation (p, q, r are constant) is obtained by the one-parameter optimal
system of one-dimensional subalgebras of the Lie Algebra which is one-
to-one correspondence with the Lie group and their associated reduced
equations.
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1 Introduction

In applied group analysis, Lie theory of symmetry group for differential equa-
tions, constituted by Sophus Lie , is the most important solution method for
the nonlinear problems in the field of applied maths. The fundamentals of
Lie’s theory are based on the invariance of the equation under transformation
groups of independent and dependent variables, so called Lie groups. In the
last century, the application of the Lie group method has been developed by
a number of mathematicians. Ovsiannikov [6], Olver [14], Ibragimov [8], Bau-
mann [2] and Bluman and Anco [5] are some of the mathematicians who have
enormous amount of studies in this field.

The existence of symmetries of diferential equations under Lie group of
transformations often allows those equations to be reduced to simpler equa-
tions. One of the major accomlishment of Lie was to identify that the proper-
ties of global transformations of the group are completely and uniquely deter-
mined by the infinitesimal transformations around the identity transformation.



1542 F. Açil Kiraz

This allows the nonlinear relations for the identification of invariance groups to
be dealing with global transformation equations, we use differential operators,
called the group generators, whose exponentiation generates the action of the
group. The collection of these differentail operators forms the basis for the Lie
algebra. There is a one-to-one correspondence between the Lie groups and the
associated Lie algebras.

A basic problem concerning the group invariant solution is its classifica-
tion. Since a Lie group (or Lie algebra) usually contain inifitely many sub-
groups (or subalgebras) of the same dimensional, a classification of them up to
some equivalence relation is necessary. Ovsiannikov [6] given equivalent of two
subalgebras of a given Lie algebra. Optimal system consists of representative
elements of each equality class. Disussion on optimal systems can be found in
[14], [6]. Some examples of optimal system can also be found in Ibragimov [9].

In this paper, we find one-dimensional optimal system for equation (1)(
p,q,r are constant) and classify reductions obtained by using one-dimensional
subalgebras.

2 Lie Point Symmeties

Consider, now, Generalised Boussinesq (GBQ) Equation

uxxxx + putuxx + quxuxt + ru2
x + utt = 0 (1)

where p,q and r are constants such that r �= 0 and subscripts denote partial
derivatives.

Clasical symmetry reductions of some special cases of equation (1) have
been discussed by Schwarz [1], Clarkson [12], Kawamoto [15], Lou [16], Paquin
and Winternitz [4]. Clasical symmetrys of some different type of equation (1)
have been investigated by Clarkson and Priestly [13], Gandarias and Bruzon
[7]. Clarkson and Kruskal [10] developed a direct method (in the sequel referred
as the Direct Method) for finding symmetry reductions which is used to ob-
tain previously unknown reductions of the Boussinesq Equation and Clarkson
and Ludlow [11] derived new nonclassical smmetry reductions of generalised
Boussinesq equation by using Direct method and said that those derived by
using the Lie group method with one illustration.

To apply the classical Lie group method to the GBQ equation (1), we
perform symmetry analysis. Let us consider a one-parameter Lie group of
infinitesimal transformation

x → x + εξ1(x, t, u) + O(ε2)

t → t + εξ2(x, t, u) + O(ε2) (2)
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u → u + εη(x, t, u) + O(ε2)

where ε is group parameter in (x,t,u)-space. The vector field associated with
the above group of transformations can be written as

U = ξ1(x, t, u)
∂

∂x
+ ξ2(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u

This is symmetry generator and invariance of equation (1) under transfor-
mation (2). Solving the determining equations yields the following infinitesi-
mals (throughout this paper we will use package MathLie to perform all cal-
culation [2]):

p,q,r constant : ξ1 = k4x + k3

ξ2 = 2k4t + k2

η = k1

p=0,q,r constant : ξ1 = k5x + k4

ξ2 = 2k5t + k3

η = k2t + k1

p�=0, r=1
4
q(p + q) : ξ1 = k5x + 1

2
k3qt + k4 ,

ξ2 = 2k5t + k1

η = k3x + k2

p=0, r=1
4
q2 : ξ1 = k6x + 1

2
k4qt + k5

ξ2 = 2k6t + k2

η = k4x + k1t + k3

p=q, r=1
2
q2 : ξ1 = k6qtx + k3x + 1

2
k5qt + k2

ξ2 = k6qt
2 + 2k3t + k1

η = k6x
2 + k5x + k4

where k1, k2, k3, k4, k5, k6 are arbitrary constants. The symmetry variables
are then found by solving the characteristc equations

dx

ξ1
=

dt

ξ2
=

du

η

and then, substituting the resulting expression into (1), one obtains the re-
duced equation.

Clarkson and Ludlow obtained some similarity transformations of equation
(1) with direct method and said that this similarity transformations can be
obtained from Lie group method with one illustration in [11].

A basic problem concerning the group invariant solution is its classification.
We cannot say anything concerning whether equation (1) is invariant under
group transformation corresponding to similarity transformations which is ob-
tained with the direct method. Furthermore, direct method cannot give the
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answer to the question about whether we can obtain other similarity trans-
formations of this type, for we cannot specify a connection between similarity
transformations obtained through the direct method.

In this paper it is showed that symmetry reductions obtained from the di-
rect method of equation (1) ( p,q,r constant ) correspond symmetry reductions
obtained from optimal system of one-dimensional subalgebras of Lie algebra
which is of infinitesimal symmetries for this equation. Thus, we ensure that
equation (1) is invariant under group transformation and all reductions which
are performed with one-dimensional subalgebras of Lie algebra are find with
optimal system.

3 A One-Parameter Optimal System

The construction of the one-paremeter optimal system of one-dimensional sub-
algebras can be made by using a global matrixof the adjoint transformations
as suggested by Ovsiannikov [6]. In this paper we follow, instead, the method
by Olver [14] which uses a slightly different technique. It consist in constructig
a table, which is usually called the adjoint table, showing the separate adjoint
actions of each element the lie algebra on all other elements.

In this section we will give an optimal system for equation (1) where p,q,r
are constant. Let us take infinitesimals above

ξ1 = k4x + k3

ξ2 = 2k4t + k2

η = k1

where k1, k2, k3, k4 are arbitrary constants. Hence, symmetry generator of
equation (1) is

U = (k4x + k3)
∂

∂x
+ (2k4t + k2)

∂

∂t
+ k1

∂

∂u
.

The presence of these arbitrary constants lead to a finite-dimensional Lie
algebra of symmetries. A general element of this algebra is written as

X = a1X1 + a2X2 + a3X3 + a4X4

where

X1 =
∂

∂u
, X2 =

∂

∂t
, X3 =

∂

∂x
, X4 = x

∂

∂x
+ 2t

∂

∂u

construct a basis of vector space. The Lie algebra of infinitesimal symmetries
for equation (1) is spanned by these base vectors. The associated Lie algebra
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among these vector fields becomes

[, ] X1 X2 X3 X4

X1 0 0 0 0
X2 0 0 0 -2X2

X3 0 0 0 -X3

X4 0 2X2 X3 0

where the entry in jth row and kth column represents the Lie product [Xj,Xk]
[14]. In order to find the optimal system of this equation, first the following
adjoint table is constituted from the Lie product table and the definition of
adjoint representation [14].

Ad(exp(ε∗)∗) X1 X2 X3 X4

X1 X1 X2 X3 X4

X2 X1 X2 X3 X4+2ε2X2

X3 X1 X2 X3 X4+ε3X3

X4 X1 e−2ε4X2 e−ε4X3 X4

Thus, the following matrixes are obtained by using adjoint table [3].

Ad(eε1X1) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ , Ad(eε2X2) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 2ε2

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ ,

Ad(eε1X1) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 ε3

0 0 0 1

⎞
⎟⎟⎟⎠ , Ad(eε1X1) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 e−2ε4 0 0
0 0 e−ε4 0
0 0 0 1

⎞
⎟⎟⎟⎠

Then adjoint representation of any element of the group is

Adg =

⎛
⎜⎜⎜⎝

1 0 0 0
0 e−2ε4 0 2ε2

0 0 e−ε4 ε3

0 0 0 1

⎞
⎟⎟⎟⎠

which is obtained by being multiplied with these matrixes and following equal-
ities are found by using adjoint representation [3].

1

a
Adg =

⎛
⎜⎜⎜⎝

α1

α2

α3

α4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

β1

β2

β3

β4

⎞
⎟⎟⎟⎠
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1

a

⎛
⎜⎜⎜⎝

α1

α2e
−2ε4 + 2α4ε2

α3e
−ε4 + α4ε3

α4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

β1

β2

β3

β4

⎞
⎟⎟⎟⎠

We are trying to simplify the right hand side of last equality by determining
εi, where i = 1, 2, 3, 4. We have to distinguish several case referring to α4.

1.α4 �= 0 : (α4 = a, β4 = 1)
We begin with the second and third component. β2 = β3 = 0 are obtained

by choosing ε3 = −α3

α4
e−ε4 and ε2 = − α2

2α4
e−2ε4 and we find β = (λ, 0, 0, 1)with

λ = α1

a
∈ IR. Thus, we obtain generator which is λX1 + X4.

2.α4 = 0

Thus, we have

1

a

⎛
⎜⎜⎜⎝

α1

α2e
−2ε4

α3e
−ε4

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

β1

β2

β3

β4

⎞
⎟⎟⎟⎠

In this case ,for λ = α1

a
∈ IR , we have α2 �= 0, α3 �= 0 and α2 �= 0, α3 = 0

and α2 = 0, α3 �= 0 and α2 = 0, α3 = 0 and . if either of them different zero,
than we find

β2 =

{
1 α2 > 0
−1 α2 < 0

,

by choosing ε4 = 1
2
ln |α2|

a
and

β3 =

{
1 α3 > 0
−1 α3 < 0

by choosing ε4 = ln |α2|
a

from following equalitys β2 = −α2

a
e−2ε4 , β3 = −α3

a
e−2ε4 .

Thus we find β = (λ, δ, δ, 1)with δ = {−1, 0, 1} and we obtain generator which
is λX1 + δX2 + δX3.

Finally, the optimal system consist of

λX1 + X4, λX1 + δX2 + δX3

where λ ∈ IR, δ ∈ {−1, 0, 1}.
Now, let us do similarity reductions by using the optimal system.
1. Reduction by using algebra Lλ

1,1 :

From equation (λX1 + X4 ) w(x, t, u) = 0, similarity variables z = x√
t
, u =

v(z) + λ
2
ln t is found by solving characteristic equation

dx

x
=

dt

2t
=

du

λ
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If reduction of equation (1) is done by these similarity variables, then

W´́́− 1

2
z(p + q)WW´+ (

λ

2
p +

1

4
z2)W´− q

2
W 2 + rW 2W´+

3

4
zW − λ

2
= 0.

where v́ = W. if q = 0 and r = −1
2
p2 and we make the transformation

W (z) =
1

p
(−3

3
4 y + z), x = −1

2
3

1
4 z

then y(x) satisfies the fourth Painleve equation (PIV) [11].

y´́=
1

2y
(ý)2 +

3

2
y3 + 4xy2 + 2(x2 − A) +

B

y

with A = λp
6

and B a constant of integration.

2. Reduction by using algebra Lλ,δ
1,2 :

Similarity variables z = x− t, u = v(z) + λ
δ
t = v(x− t) +λ

δ
t is obtained by

solving equation (λX1 +δX2 +δX3 ) w(x, t, u) = 0.Thus, reduction of equation
(1) done by these similarity variables is

W´́+ r
W 3

3
− (p + q)

W 2

2
+ (

λ

δ
p + 1)W = C

with C a constant of integration where v́ = W. This equation is solved by using
elliptic integral.

4 Concluding remarks

In this paper, we have determined an optimal system for Generalised Boussi-
nesq (GBQ) equation ( p,q,r are constant). Thus, one classification of the
similarity solutions has been obtained. One reduction of equation (1) can be
done by using two-dimensional subalgebras.
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