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Abstract

We consider a WCDMA system with two types of calls: real time
(RT) calls that have dedicated resources, and data on real time (BE)
calls (i.e. best effort) that share system capacity. We consider reserva-
tion of some capacity resources for the BE traffic as well as any capacity
left over from RT calls. Our analysis approach is based on modeling of
the system as a two dimensional Markov chain, where the first cor-
respond to the number of RT calls and the second to the number of
BE calls in the system. In order obtain the steady state distribution
of this system, we use a singular perturbation solution approach for
approximating the steady state. Our approach gives a good approxi-
mation and relatively faster computation in comparison with our exact
methods like spectral analysis [17]. Based on this analysis, we derive
performance evaluation results regarding blocking of RT calls and so-
journ time of BE calls, under different traffic characteristics. Finally,
we extend our result to cover BE admission control. Here, we find the
maximum BE arrival rate such that the sojourn time of BE calls not
exceed a threshold.

Keywords: Singular W-CDMA, singular perturbation, Lyapunov, quasi-birth-
death process.
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1 Introduction

The Universal Mobile Telecommunication System (UMTS) operates with Wide-
band Code Division Multiple Access (WCDMA) over the air interface. The
advantage of 3G (third generation of mobile networks) resides in the fact that
they offer to users a large possibility of services. These services are related
to real time and best effort applications like transferring files, emailing, etc.
Each service has a demand of quality of service. The variations caused by the
diversity of classes can affect the WCDMA capacity.

There are many existing works on the capacity analysis for wireless net-
works. Several research axes on W-CDMA capacity has been considered. In
[25], the authors present a method to calculate the WCDMA reserve link Er-
lang based on the Lost Hel (LCH) model as described in [24]. [10] This algo-
rithm calculate the occupancy and capacity UMTS/WCDMA systems based
on a system outage condition. In this research, the authors derive a closed form
expression of Erlang capacity for a single type of traffic. The capacity of an
uplink with two classes is considered in [15] in which the real-time (RT) traffic
is transmitted all the time, the non real time mobiles (BE) are time-shared .
In [1], the author considers best-effort (BE) and real-time (RT) applications.
He study the influence of the value of a fixed (not-adaptive) bandwidth per
BE calls on the Erlang capacity of the system (that includes also RT calls),
taking into account that a lower bandwidth implies longer call durations. In
[13], the authors extend the notion of capacity in [1] to other QoS. The delay
aware capacity, suitable in particular for the BE traffic, is defined as the ar-
rival rate of BE calls that the system can handle such that their expected delay
is bounded. In ad hoc networks, there many existing works on the capacity
analysis [9, 11, 18, 21]. The performance of ad hoc network based on 802.11
is studied in [7, 23, 8, 16, 12].

In this paper, we consider a uplink WCDMA system with two types of calls
: real time (RT) calls that have a dedicate resources , and BE traffic without
any QoS. The first objective of this paper is to compute the distribution of
number of RT connections and the number of BE connections in the steady-
state. By using the singular perturbation, we simplify the computation of this
distribution. After this, we provide a closed form of that distribution. We
shall apply this method to the case when the transition of the number of RT
calls occur much more frequently than those of the number of BE calls. This
approach allows us to compute different performances measures : blocking
probability, expected delay and throughput.

Our analysis approach is based on modeling of the system as a two dimen-
sional Markov chain, where the first corresponds to the number of (RT) calls in
the system and the second to the number of (BE) calls in the system. In order
to obtain the steady state distribution of this system we make use of singular
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perturbation methods of analysis of quasi birth and death (QBD) processes
[22, 6, 5].

The objective of this paper is to study a singular perturbation solution
approach for approximating the steady state solution. This approach allows
us to obtain a simple approximation for the case that the number of RT calls
evolves much faster that the number of BE calls. The singular perturbation
approach allows us to represent the steady state probabilities as a Taylor series.
The first term in the series already gives a good approximation.

Singular perturbation is applied in modeling problems as well as control and
optimization in the literature. We find for example the singular perturbation
chains under weak and strong interactions, between groups and within group
members respectively [22, 6, 5, 3, 4]. This approach is a good method to obtain
simple approximation of steady-state probabilities of Markov chains with two
time scales : short-time scale and long-time scale. The transitions between
group of states are less frequent than within each group.

The structure of this rapport is as follows. Next section 2 introduces the
model and the problem formulation. Section 3, we use singular perturbation
approach to derive a closed of steady-states probabilities and compute the
performance of RT and BE traffic. In section 4, we provide numerical examples
and and we compare our approach with exact solution which obtained by
spectral analysis approach [17]. Finally, section 5 concludes the paper.

2 Problem formulation

Let S = {1, . . . , C} be the set of multi-service classes in a uplink of a WCDMA
system with multi-sectors. Let Mi be the number of mobiles of class i where
M1, . . . , MC mobiles are in a sector. We define the received power from mobile
of class i, at the base station in the sector by (Pi). This power is the same
for all mobiles of class i and the following signal to interference ratio (SIR)
expression should be satisfied in order to have uplink communication [19] :

Pi

N + Iown + Iother − Pi

� (
Ei

N0

Ri

W
)i

where i = 1, 2, ..., C, N is the background noise density, Ei i the energy per
transmitted bit of type i, Ri is the transmission rate of class i service, W is
the spread-spectrum bandwidth, Iown is the total power received from mobiles
belong in same sector, and Iother denote the total power received from mobiles
in other sectors.

By definition, the intra-cell interferences in a sector is given by

Iown =
C∑

i=1

MiPi
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then Iother can be obtained from Iother = gIown (see [19]), where g is the con-
stant of interference given from measurement. In the WCDMA other sources
of degradation i.e. shadow fading, etc are exist. In order to take into account
shadow fading, the authors in [13] introduced a new constant (Γ) indepen-
dent of class type. So the signal ti interference ration (SIR) must be larger
than ( Ei

N0

Ri

W
Γ)i. Then for a better satisfaction of calls of the class i without

degradation in QoS, the minimal received power (Pi) must satisfy the following
[13]:

Pi =
NΔi

1 − (1 + g)
∑C

i=1 MiΔi

where Δi = αi

1+αi
, αi = ( Ei

N0

Ri

W
Γ)i, and the load rate is defined as : θ = ΣC

j=1MjΔj.
(1 + g)Δi in above expression is the capacity required by a call of type i ∈ S.

In this paper we consider two types of calls: real time (RT) calls that
have dedicated resources and data Best Effort (BE) calls that share system
capacity. The upper bound for the capacity of uplink of the CDMA system
(i.e. (θ < θε′)) [2, 13] with single sector is given by: θε′ = 1 − ε′ where ε′ > 0.
Let LRT (resp. LRT ) be the the capacity used by RT (resp. BE) calls with
LRT + LBE = θε′ .

We suppose UMTS uses the AMR2codec. This codec offer eight different
transmission rates of voice that vary between 4.75 kbps tp 12.2 kbps, and
that can dynamically changed every 20 msec. Hence, we assume that the set
available transmission rates for RT traffic has the form [RRT

min, RRT
max], where

RRT
min is the minimum rate and RRT

max is the maximum rate. The normalized
bandwidth corresponding to both rates are ΔRT

min and ΔRT
max respectively. Then

we have

ΔRT
max =

ERT /N0

W/RRT
max + ERT /N0

and

ΔRT
min =

ERT /N0

W/RRT
min + ERT/N0

where ERT /N0 is the SIR (signal-to-interference ratio) required for a RT calls
and W is the WCDMA modulation bandwidth.

The number of RT calls respectively corresponding to RRT
max and RRT

min is
given by MRT = |LRT /ΔRT

min| and NRT = |LRT /ΔRT
max| where LRT is the capacity

reserved of RT calls. Thus the bandwidth required by each RT call is

Δ(i) =

{
ΔRT

max, if i ≤ NRT ;
LRT /i, for NRT < i ≤ MRT .

Recall that the process X(t) is a birth and death process, with birth rate
λRT and death rate μRT . The probability of accepting a new RT call is given

2Adaptation Multi-Rate (AMR) codec used by UMTS that offers eight transmission rate
varying between 4.75 kbps and 12.2 kbps.
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by P [X = i] = P [limt→∞X(t) = i] =
ρi

RT /i!

q
, where q =

∑MRT

i=0
ρi

RT

i!
and

ρRT = λRT

μRT
. Therefore, the blocking probability of a new RT calls is given by

P
(RT )
B = P [X = MRT ] as follows :

P
(RT )
B =

ρMRT
RT /MRT !∑MRT

i=0
ρi

RT

i!

We consider that BE calls make use of the reserved system capacity, as
well as any capacity left over from RT calls. Thus the BE and RT calls share
a common portion of capacity between them. Thus the available capacity of
BE calls is a function of the number of RT calls in the systems:

C(i) =

{
θε − iΔRT

max, if i ≤ NRT ;
LBE, for NRT < i ≤ MRT .

where EBE/N0 is the required SIR of BE of the call. However, in order to
guarantee a QoS for BE calls, a maximal number of BE calls (MBE) should be
computed. The departure rate of BE calls is depended on the current number of
RT calls given by v(i) = μBERBE(i), where RBE(i) = C(i)W

(1−C(i))EBE/N0
and EBE

is the energy per bit transmitted for BE calls. We define the total transmission
rate of RT calls , as follow: RT = | θε′

ΔRT
min

|Rm, the normalized load for RT calls

by ρRT = λRT

μRT

Rr

RT
and by ρBE = ρBE × 1

RT
normalized load for BE calls, where

ρBE = λBE

μBE
.

We assume that RT and BE calls arrive according to independent Poisson
processes with rates λRT and λBE, respectively. The duration of an RT call
is exponentially distributed with parameter μRT . The size of an BE file is
exponentially distributed with parameter μBE. Interval times, RT call duration
and BE file sizes are all independent.

Let X(t) (resp. Y (t)) be the number of RT (resp. BE) calls in the system
at time t. The Markov chain (X(t), Y (t)) is a birth and death process of two
dimension, with birth rates λRT and λBE, and death rates μRT and μBE.

The performances of the uplink WCDMA system is usually investigated
by studying the blocking probability, sojourn time and the throughput. These
parameters are complex to compute. We need to obtain steady state distri-
bution of the number of RT calls and BE calls in order to investigate these
performance metrics. In paper [17], we obtain a closed form of the steady
state, but remains difficult to compute it. In this paper we introduce a simple
method that offers simpler computation under some specific conditions.

The conditions which makes us able to use singular perturbation is the
following: In a typical WCDMA system BE services (e.g. chat service) remain
for a longer time, but the RT services (e.g. voice call) in generally takes less
time. We thus represent the transition rate as follow :

λε
BE = ελBE , με

BE = εμBE
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where ε is small strictly positive parameter. Hence the transition matrices of
the Markov chain (X(t), Y (t)) is given by:

Q(ε) = Q0 + εQ1 (1)

where Q(ε) is a generator correspond to perturbed Markov chain, Q0 is a
generator unperturbed correspond to strong interactions, and εQ1 is perturbed
term for weak interactions; i.e.,

Q0 =

⎡
⎢⎢⎢⎣

QRT 0 0 . . .
0 QRT 0 . . .
0 0 QRT . . .

0 0
. . .

. . .

⎤
⎥⎥⎥⎦

and

Q1 =

⎡
⎢⎢⎢⎣

−A0 A0 0 0 . . .
A2 −A2 − A0 A0 0 . . .
0 A2 −A2 − A0 A0 . . .

0 0
. . .

. . .
. . .

⎤
⎥⎥⎥⎦

where the matrices A0, A2 and QRT are square matrices of size (MRT +1). The
matrix A0 corresponds to a BE calls arrival,i.e., A0 = diag(λBE). The matrix
A2 corresponds to departure of a BE calls,i.e., A2 = diag(v(i)), i = 0, 1, 2, ..., MRT

where i is the number of RT calls. The matrix QRT corresponds to the arrival
and departure process of RT calls. This matrix is tri-diagonal as follows:

QRT [i, i − 1] = iμRT ,

QRT [i, i] = −(λRT + iμRT ), i = 0, . . . , MRT − 1,

QRT [MRT , MRT ] = −MRT μRT ,

QRT [i, i + 1] = λRT .

Of course, QRT it’s the generator of queuing model M/M/MRT/MRT with
arrived rate λRT and rate departure iμRT for i= 0, ..., MRT .
Let π(ε)(i, j) = limt→∞P (X(t) = i, Y (t) = j) = P (X = i, Y = j) be the
probability distribution of the number RT and BE in the system. Since Q(ε)
is irreducible (ε > 0), then the steady state solution is unique and satisfies the
following system:

π(ε)Q(ε) = 0 (2)

π(ε)1 = 1 (3)
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where 1 is a vector of ones with the same dimension as π(ε). The states space
of Markov chain E = {(i, j), 0 ≤ i ≤ MRT , j ≥ 0} is partitioned in subsets j
such as B = {l(0), l(1), l(2), ...}. where l(j) = {(0, j), ..., (MRT , j)} for j ≥ 0
and l(j) is a group of RT calls correspond to a j BE calls. The matrix Q0

contains several ergodic classes j where each class has a generator QRT as block
diagonal in the matrix Q0. This distribution allows us to compute the average
number of BE calls, and expected delay of sojourn time of BE calls as follows:

Eε(Y ) =

∞∑
j=0

jP (n)
ε (Y = j),

and

T BE
ε =

Eε(Y )

λε
BE

where P
(n)
ε (Y = j) =

∑MRT

i=0 π(ε)(i, j), and n is order of approximate in Taylor
series, see lemma 3.4 in the next section.

Remark 2.1. Alternatively, our analysis is equally applies when transitions
within the groups (i.e RT calls occurred rapidly) are much more frequent than
between groups (i.e BE calls occurred slowly). In this case, the arrived rate
λε

RT = 1
ε
λRT and the departure rate με

RT = 1
ε
μRT . This formulation represent

the strong interactions within groups, can be writing in multiple of 1
ε
, i.e. when

Q(ε) = 1
ε
Q0 + Q1, for the same matrices Q0 and Q1. If ε is very small, then

the sojourn time of RT calls is very big (i.e. 1
ε

goes in infinite). In this case,
our system are considered as perturbed by that phenomena.

3 Taylor series for steady-state distribution in

the perturbation parameter ε

Firstly we need to introduce some definitions needed in the sequel. Fixe a
denumerable vector δ with strictly positive entries. Let v be a vector defined
on a subset I of the nonnegative integers. Then its δ-norm is defined as

‖v‖δ � max
i∈I

| vi |
δi

The corresponding induced δ-norm for any operator A on I ×I is given by

‖A‖δ � max
i∈I

∑
j∈I | bij | δj

δi

The following results show that the Markov chain satisfies the following
assumptions.
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Lemma 3.1. 1. The unperturbed Markov chain has a several ergodic
classes l(j), j ∈ I∞ = {0, 1, 2, ...}.

2. Each Markov chain that correspond to a ergodic class of Q0 is uniformly
Lyapunov stable.

3. The aggregated Markov chain is irreducible and Lyapunov stable.

4. The generator Q1 is δ-bounded (‖Q1‖δ < ∞).

Proof. 1. From the previous analysis, the unperturbed Markov chain con-
sists of several classes l(j), j ∈ I and there are no transient states. Since
the values λRT and μRT are positive, then the class l(j) is a finite ergodic
class.

2. The operator of unperturbed Markov chain is P (0) = r−1
0 Q0 + I which

given by

P (0) = I +

⎛
⎜⎝

r−1
0 QRT + I 0 . . .

0 r−1
0 QRT + I

. . .

0
. . .

. . .

⎞
⎟⎠

where I is a matrix square of of order MRT + 1, and r−1
0 = 1

λRT +MRT μRT
.

Let PRT = 1 − λRT

r0
> 0.. Since PRT (i, i)1 − λRT

r0
> 0, then the matrix

chain correspond to the ergodic classes of the unperturbed Markov chain
are strongly aperiodic which implies that there exists constant c and β
(c > 0, 0 < β < 1) positive such that [see [6] fore more details]

‖P n
RT − 1q̃l(i)‖δ ≤ cβn, ∀n ≥ 0 and β < 1

3. Let Q̃1 is a generator of aggregated Markov chain in the space B where
each class l(j) is replaced by aggregated state j (in the sequel we replace
l(j) by j).

(Q̃1)i,j = q̃iQ1[i, j]ξ, ∀(i, j) ∈ I∞ × I∞

where ξ = (1, . . . , 1)t ∈ �(MRT +1)×1. This aggregate matrix, represents
the transition rates between groups. Each column, and likewise each
row, in Q̃1 corresponds to a group in B. The matrix Q̃1 is tr-diagonal as
follows:

Q̃1[j, j + 1] = q̃jA0ξ

Q̃1[j, j − 1] = q̃jA2ξ

Q̃1[j, j] = −q̃j(A0 + A2)ξ, (∀j > 0)

Q̃1[0, 0] = −q̃0(A0)ξ
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where q̃jAnξ=
∑MRT

i=0 q̃j(i)(An)(i,i) forn = 0, 2. The invariant distribution

v =
[
v0v1 . . .

]
corresponded to this generator can be obtained by the

following equation.

vQ̃1 = 0,

∞∑
i=0

vi = 1 (4)

The vector q̃j = [q̃j(0), ..., q̃j(MRT )] is unique solution of the following
equation

q̃jQRT = 0, q̃jξ = 1 (5)

hence, the vector q̃j is given by

q̃j(n) =
(ρRT )n

n!

( ∑MRT

i=0
(ρRT )i

i!

)−1

, 0 ≤ n ≤ MRT (6)

The generator Q̃1 becomes

Q̃1 =

⎡
⎢⎢⎢⎣

−λBE λBE 0 . . .

c −λBE − c λBE
. . .

0 c −λBE − c λBE

0
. . .

. . .
. . .

⎤
⎥⎥⎥⎦

where

c =

NRT∑
i=0

v(i)q̃(i) +

MRT∑
i=NRT +1

v(i)q̃(i)

Let

α(MRT ) =
λBE∑NRT

i=0 v(i)q̃(i) +
∑MRT

i=NRT +1 v(i)q̃(i)

The generator of aggregated Markov chain as homogenous QBD process
with arrived rate is λBE and depart rate is c. We can show easily that the
aggregated Markov chain is ergodic irreducible and strongly aperiodic,
hence it’s ergodic irreducible if α(MRT ) < 1. Let P̃ = r−1

BEQ̃1 + I, the
matrix of transitions the probabilities associated to aggregated Markov
chain and r−1

BE = 1
λBE+2v(0)

. We observe the state (0,0) is strongly ape-

riodic, because P̃ (0, 0) = 1 − λBE

r0
> v(0)

r0
> 0, then Lyapunov function

δ to hold P̃ δ ≤ γδ + b1(0,0), where b =
√

c(1 − √
α(MRT ))δ0, δl(i) =

(
√

α(MRT ))i et γ = 1 − (λBE − c)2 (see [6, 20]).

4. The norm of operator Q1 is bounded by a positive constant. By definition
we have
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‖Q1‖δ � maxj∈I∞

∑
k∈I∞ ‖Q1(i, k)‖δk

δj
= max

i∈I∞
{‖A2(i, ‖δ(δ0 + δ1)

δ0
,

‖A0‖δδi−1 + ‖(A2 + A0)‖δδi + ‖A0‖δδi+1

δi−1

}

where
‖A0‖δ = λBE‖I‖δ = λBE, and ‖A2‖δ = v(0)

Since
max(v(i)) = v(0), and ‖(A2 + A0)‖δ = λBE + v(0)

Then we have

‖Q1‖δ = max
i∈IMRT

{λBE(1 +
δ1

δ0

), λBE(1 +
δi

δi−1

) + v(0)(1 +
δi+1

δi

)}

which shows that the generator Q1 is δ-bounded

Now, we are able present the steady-state distribution of the perturbed Markov
chain, as an analytical function of ε. From lemma 3.1, the assumptions of
theorem 2 in [5] are satisfied, then we have the following results

Theorem 3.2. The invariant probability measure π(ε) is an analytic func-
tion of ε

π(ε) = π(0) + π(1)ε + π(2)ε2 + π(3)ε3 + ... (7)

where 0 < ε ≤ min(εmax,
1

‖U‖δ
) and ‖U‖δ is given in the proposition3.3.

The coefficients of probabilities π(ε) are recursively calculated by the following
formulas :

π(0)Q0 = 0,

(MRT ,∞)∑
(i=0,j=0)

π(0)(i, j) = 1 (8)

π(n)Q0 + π(n−1)Q1 = 0,

(MRT ,∞)∑
(i=0,j=0)

π(n)(i, j) = 0, ∀n ≥ 1 (9)

The unperturbed stationary probability is given by : π
(0)
j = vj q̃j,

where vj is solution of the equation (3) and obtained as follows :

vi = α(MRT )iv0 where v0 = 1 − α(MRT ), ∀i ∈ I∞ (10)

Let ξ(l(i) be the right eigenvector column corresponding to the one eigenvalue
of the matrix QRT . In our model this vector is given by : ∀j ∈ IMRT

, ∀k ∈ I∞,
we have
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ξl(i)(k, j) =

{
1 if k = i;
0 else.

Let N be a matrix of eigenvalues corresponding to the zero eigenvalue of
the unperturbed generator Q0, i.e N =

[
ξl(0) ξl(1) . . .

]
and M is a ma-

trix whose rows are stationary distribution of the Markov chain Q0, i.e M =
diag(q̃0, q̃1, ...).

Proposition 3.3. A solution of the equations (8)-(9) with the normalization
conditions is given by the following recursive formulas:

1.

π
(0)
(i,j) = (1 − α(MRT ))α(MRT )j

(ρRT )i

i!∑MRT

k=0
(ρRT )k

k!

(11)

2.

π(n) = π(0)Un, U = Q1H [I + Q1ΛH̃M ] (12)

where ‖U‖δ = g1‖H‖δ(1 + g1‖ΛH̃M‖δ).

The matrices H , H̃ are deviation matrices of unperturbed Markov chain and
aggregated Markov chain.

Λ =

⎛
⎜⎜⎜⎜⎝

ξ 0 0 0 .
0 ξ 0 0 .
0 0 ξ 0 .
. . . . .
. . . . .

⎞
⎟⎟⎟⎟⎠ , where ξ =

⎡
⎢⎢⎢⎢⎣

1
.
.
.
1

⎤
⎥⎥⎥⎥⎦ and 0 =

⎡
⎢⎢⎢⎢⎣

0
.
.
.
0

⎤
⎥⎥⎥⎥⎦

H = [−Q0 + NM ]−1 − NM = diag(H0, . . . )

where H0 = [q∗ − QRT ]−1 − q∗, and q∗ = ξq̃ (q̃ = q̃j), then the δ−norm of
deviation matrix H is given by ‖H‖δ = ‖H0‖δ.

H̃ = [−Q̃1 + Q̃∗
1]

−1 − Q̃∗
1, where Q̃∗

1 = ξBπ̃, ξB = (1, . . . , 1) ∈ �∞×1 and

H̃ = (H̃[i, j]), ∀i, j ∈ I∞.
The matrix blocs Ui,j of the matrix U = {Ui,j}i,j∈B can be computed by using
the follows formulas:

Ui,j = Q1
i,jHj +

∑
l∈B

Q1
i,lHl

∑
k∈B

Q1
l,kH̃k,j1qj.

We observe here that our approach here is more simpler than other methods as
spectral analysis (see [17]). We just need to compute the invariant distributions
of each recurrent class of the unperturbed Markov chain Q0 in (5), and the

invariant distributions of aggregated Markov chain Q̃1 given by (10).
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Lemma 3.4. The marginal distribution probability of BE calls, in the Tay-
lor series, is given by :

1. For first coefficient π(0), then

P
(0)
ε (Y = j) = π

(0)
j 1 = (1 − α(MRT ))α(MRT )j

2. For others coefficient π(n) (n ≥ 1), then

P
(n)
ε (Y = j) = π

(0)
j 1 + επ

(1)
j 1 + ... + εnπ

(n)
j 1

where π
(n)
j =

∑
i∈B π

(0)
i U

(n)
i,j and Un = {U (n)

i,j }.
Now, we can to compute the average marginal number Eε(Y ) of BE calls,

using the first coefficient Taylor (when (n = 0) ), as follow :

EBE =
α(MRT )

1 − α(MRT )
(13)

The mean delay of sojourn time of BE calls, using Little formulas, as follows :

T BE =
EBE

λε
BE

(14)

We can rewrite this equation as follows with threshold LBE parameter:

TBE(LBE) =
1
ε

γ[
∑NRT

i=0 q̃(i)βε′ + LBE
1−LBE

∑MRT
i=NRT +1 q(i)] − λBE

where γ = μBEW
EBE/N0

and βε′ =
θε′−iΔr

RT

1−θε′+iΔr
RT

. We observe in the above equation,

if the capacity LBE of BE calls changes, then the BE sojourn time (T BE(LBE))
is directly influenced by this variation.

4 Numerical results

In this section, we test our approximation based on singular perturbation ap-
proach. We suppose that upper bound3 for RT calls is 12.2 kbps and the
minimum rate is 4.75 kbps. We assume ERT/N0 = 4.1 dB, W = 3.86Mcps,
EBE/N0 = 4.1 dB [14], ρBE = 0.55, ρRT = 0.5, RT = 38 kbps and θε′ = 1 −
10−5. The arrived rate of BE is λε

BE = 0.209ε and depart rate is με
BE = 10−5ε

3bounded denote the maximum rate for AMR speech service, see Holma [14].
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where ε = 10−3. In the figure 1 we compare steady state vector of marginal
probabilities obtained by two methods: spectral analysis and singular pertur-
bation. The capacity threshold of BE is LBE = 0.752 and the sojourn mean
time rate of RT calls is μRT = 0.1. In this figure, we observe that the first term
in Taylor series give a good approximation when the parameter of perturbation
is sufficiently small (ε = 10−3).
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Figure 1: Marginal probability of BE calls versus versus number of the number
of BE calls in the system for ε = 10−3, λε

BE = 0.209ε, με
BE = 10−5ε, λRT =

0.1557, threshold BE LBE = 0.752 and μRT = 0.1.

Figures 2 and 3, shows the expected average sojourn time of BE calls in
the system. We observe that the first coefficient in Taylor series gives a good
approximation in the figure 2. We observe also that the error between the ap-
proximative solution (singular perturbation) and the exact solution (spectral
analysis), increases when the service time of RT calls decreases. An intuitive
explanation is as follow: when we use the first term of the Taylor series, we get
the limiting behavior as ε tends to zero, i.e, as the transition of the number of
RT calls occur much faster than the transition of the number of BE calls. How-
ever, when the service time of RT calls decreases, the RT calls spend more time
in the system which means that the transition between of the number of RT
calls becomes less faster. However, the service provider can use this approach
to evaluate in real time with fast computation the performance measures of
RT calls and BE calls and decides which best configuration (BE threshold) or
admission control (CAC) improves the bandwidth utilization. Indeed, these
performances depends on several parameters as arrival probabilities of calls,
average duration of RT call, shadow fading, ect. These parameter change
dynamically and the system needs to evaluate the performance with new pa-
rameters. Hence, our approach is useful to service provider to obtain best
CAC and BE threshold that maximize the bandwidth utilization and satisfy
the QoS required by RT calls and BE calls.
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Figure 2: Expected sojourn time of BE calls ver-
sus capacity threshold of BE for ε = 10−3, λε

BE =
0.209ε, με

BE = 10−5ε, λRT = 1.5573, μRT = 1
and any number of RT (MRT ). Comparison of tow
methods: spectral analysis (exact solution) and sin-
gular perturbation (approximate solution).
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Figure 3: Expected sojourn time of BE calls ver-
sus capacity threshold of BE for ε = 10−3, λε

BE =
0.209ε, με

BE = 10−5ε, λRT = 0.1557, μRT = 0.1
and any number of RT. Comparison of tow meth-
ods: spectral analysis (exact solution) and singular
perturbation (approximate solution).

5 Conclusion

In this paper, we considered a WCDMA system with two types of calls : real
time (RT) calls that have dedicated resources, and data on real time (BE)
calls (i.e. best effort) that share system capacity. We considered reservation
of some capacity resources for the BE traffic as well as any capacity left over
from RT calls. Our analysis approach is based on modeling of the system as
a two dimensional Markov chain, where the first correspond to the number of
RT calls and the second to the number of BE calls in the system. We used
an approximation based on singular perturbation approach to approach the
steady state of this Markov chain. We showed that our approach gives a good
approximation of steady state with simple computations. However, the system
can use this approach to evaluate in real time the performance measures of RT
calls and BE calls and decide which best configuration or admission control
improves the bandwidth utilization.
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