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and
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Abstract

Inference for bivariate distributions with fixed marginals is very im-
portant in applications. When a bayesian approach is followed, the
problem of defining a (prior) distribution on a class of probabilities
having given marginals arises. We consider the class of Lancaster dis-
tributions. It is a convex and compact set, so that any element may
be represented as a mixture of extreme points. Therefore a prior distri-
bution can be assigned to the Lancaster class by assuming the mixing
measure as a random probability. We analyse in detail the Lancaster
class with Gamma marginals. Choosing as mixing measure a Dirichlet
process, the model turns out to be a Dirichlet process mixture model.
Many quantities relevant for statistical purposes are linear functionals
of the Dirichlet process. Posterior laws are determined; in order to ap-
proximate these laws a MCMC algorithm is suggested. Results of an
example with simulated data are discussed.
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1 Introduction

Let us consider two quantitative characteristics whose joint distribution, in a
statistical population, is unknown. In some cases it is reasonable to assume
as known (at least approximately) the corresponding marginals. This usu-
ally happens when observations on each characteristic can be obtained for the
whole population (or for large subsets of it), while only small sets of data are
available on the joint distributions. For instance, [4] considers 1940 Census of
Population, observing that ”although there will be a complete count of certain
characters for the individuals in the population, consideration of efficiency will
limit to a sample many of the cross-tabulations (joint distributions) of these
characters”.
This problem was considered, within a classical approach, in the already cited
paper by Deming and Stephan and discussed in some generality in [10] and [14].
According to a bayesian approach, the problem described above can be for-
malized as follows. Let ((Xn, Yn))n≥1 be an exchangeable sequence of random
vectors and denote by P the directing measure of the sequence; that is, given
P , the elements of the sequence are independent and identically distributed
according to P . P is then a random distribution whose marginals, denoted by
P1 and P2 respectively, are assumed to be known. Therefore bayesian inference
on P requires the assignment of a prior distribution on a class of probabilities
having fixed marginals. In other words, a probability measure on the so-called
Fréchet class generated by P1 and P2 is needed. This is in general a very hard
problem, since probabilities in this class are subject to constraints difficult to
deal with.
The problem could be addressed starting from the convexity of the Fréchet
class. Such property makes it possible to represent any distribution P belong-
ing to a given Fréchet class as a mixture over the extreme points of the class.
In the case of marginal distributions having finite supports, this approach has
been already followed in [18]. It is difficult to follow the same approach in the
case of general (in particular continuous) marginals, since it is not available a
useful characterization of the extreme points of the Fréchet class with non-finite
support marginals; see for this problem [1]. Then, a possible way to address
the problem is to restrict the attention to subclasses of the Fréchet class, which
should be large enough to describe different kinds and degrees of association
between the characteristics and, at the same time, should have good properties
both from a mathematical and a computational point of view. Many classes
of bivariate distributions with fixed marginals are known in literature; see, for
a review, [9]. Being indexed by few parameters, such classes are generally not
very large; a nonparametric approach appears more suitable. As observed in
[12] and [16], a useful proposal in this direction is due to H.O.Lancaster (see
[15]). Lancaster proposed a representation for bivariate distributions having
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the so-called φ2-boundedness property, i.e. distributions for which the Pearson
mean square contingency index φ2 is finite. In this representation, any such
bivariate distribution is completely characterized by its marginal distributions
and the (infinite) matrix of correlation coefficients between pairs of elements of
complete sequences of orthonormal polynomials with respect to the marginals.
The present paper considers the completion of the class of those φ2-bounded
bivariate distributions for which the above matrix is diagonal. This class is
known as Lancaster class and it is parameterized by an infinite sequence of
real numbers. Since, as proved in [13] by Koudou, Lancaster class is con-
vex and compact, the approach described above can be followed and hence
each element of the class may be represented as a mixture over its extreme
points. Moreover, the extreme points of the Lancaster class can be, in some
cases, identified and their explicit form can be obtained. Hence the problem
of assigning a prior distribution (and then computing corresponding posterior
quantities) on a Lancaster class can be solved by representing each element P
of it as a mixture over the extreme points of the class and then by treating
the mixing measure as a random probability. Choosing as mixing measure a
Dirichlet process, the model turns out to be a Dirichlet process mixture model,
as introduced in [5], discussed in [17] and deeply investigated in the last years.
In this paper, the Lancaster class with Gamma marginals is analyzed in de-
tail, its extreme points having a particular straight form. Interesting results
are obtained: many quantities relevant for statistical purposes turn out to be
linear functionals of the Dirichlet process. Many works in the recent literature
address this topic.
As it is known, explicit forms for the distributions of these functionals are
very complex and it is necessary to resort to simulation procedures in order
to obtain suitable approximations. Following [11], a MCMC algorithm is sug-
gested allowing to obtain the posterior estimates of interest. An example is
proposed in which posterior estimates are obtained applying this algorithm to
a simulated data set.
The set-up of the paper is as follows. Section 2 recalls some properties of
Lancaster classes of probabilities. In Section 3 a family of prior distributions
on the Lancaster class with Gamma marginals is introduced and discussed.
Posterior computations are described in Section 4. Finally, in the last section,
a numerical example is proposed.

2 Preliminary Notes

Let G and H be (univariate) distribution functions; in the paper, the same
symbol will be used to denote a probability measure (on � or �2) and the
corresponding distribution function.
Let us suppose that G and H have all moments and are determined by the
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moments; sufficient conditions for this to hold are well known in the litera-
ture. We consider the class L(G, H) of bivariate distribution functions with
marginals G and H defined as follows:

L(G, H) =

{
F : EF (Y n|X = x) =

n∑
i=0

aix
i, EF (Xn|Y = y) =

n∑
i=0

biy
i, n ≥ 1

}
,

(X, Y ) being a random vector distributed according to F and EF the expected
value with respect to F . The elements of L(G, H) are called Lancaster proba-
bilities. L(G, H) is, then, the class of all bivariate distributions, with marginals
G and H , whose conditional moments of any order n are polynomials with de-
gree less than or equal to n. In particular, the regression functions of Lancaster
probabilities are linear. The class L(G, H) was introduced in 1958 by H. O.
Lancaster and studied by several authors; see, for instance, [15],[19] and [7].
L(G, H) has many interesting properties from both a probabilistic and a sta-
tistical point of view; for a review of such properties see [13]. The following
characterization of L(G, H) is of particular interest: F is an element of L(G, H)
if and only if there exists a sequence of real numbers ρ = (ρn)n≥0 such that

EF (ξn(X)ηm(Y )) =

{
ρn if n = m
0 if n �= m.

(1)

ξ = (ξn)n≥0 and η = (ηn)n≥0 (with ξ0 = η0 = 1) are orthogonal polynomials
complete sequences on the Hilbert spaces L2(G) and L2(H), respectively. The
sequence ρ = (ρn)n≥0 characterizes F ; that is, if F and F ′ are elements of
L(G, H) such that, for every n ≥ 0, EF (ξn(X)ηn(Y )) = EF ′ (ξn(X)ηn(Y )) =
ρn, then F = F ′. ρ = (ρn)n≥0 is called Lancaster sequence corresponding
to F . Hence there is a one-to-one correspondence between the class S(G, H)
of all Lancaster sequences and L(G, H). Observe that ρ1 is, up to the sign,
the Pearson correlation coefficient of the random vector (X, Y ) (distributed
according to the Lancaster probability F corresponding to the sequence ρ).
L(G, H) and the corresponding class S(G, H) are convex and, under suitable
topologies, compact sets; see [13].
Moreover the Lancaster probabilities are absolutely continuous, under weak
conditions on the corresponding Lancaster sequences. More precisely, if G and
H are absolutely continuous with respect to the measures G and H, respec-
tively, with densities g and h, and F ∈ L(G, H) is such that its corresponding
Lancaster sequence ρ = (ρn)n≥0 satisfies

+∞∑
n=0

ρ2
n < +∞, (2)

then F is absolutely continuous with respect to the product measure G ×
H and a version of the corresponding density has the following L2(G × H)
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representation

f(x, y) = g(x)h(y)
+∞∑
n=0

ρnξn(x)ηn(y); (3)

for a proof of this result, see [15].
The quantity

∑+∞
n=0 ρ2

n, when finite, coincides with the Pearson mean square
contingency index φ2.

3 The model

In this section, we propose a family of prior distributions on the Lancaster
class whose marginals are Gamma distributions.
Let G and H be the distribution functions corresponding to the densities (with
respect to Lebesgue measure on (0, +∞)) g(x) = (Γ(α))−1xα−1 exp(−x) and
h(x) = (Γ(β))−1xβ−1 exp(−x) respectively, with 0 < α ≤ β. In this case,
the orthonormal basis for the spaces L2(G) and L2(H) are the sequences of
standardized Laguerre polynomials (Lα

n)n≥0 and (Lβ
n)n≥0, where

Lα
n(x) = (Γ(α + n)Γ(α)n!)1/2

n∑
m=0

(−1)m

m!(n − m)!Γ(α + m)
xm.

Our aim is to define a family of probability measures on L(G, H) to be used
as priors for bayesian inference, as described in the Introduction. Since, as
already observed, L(G, H) is a convex and compact set, we can follow the
general approach towards the construction of prior distributions on convex
sets of probabilities suggested by P. Hoff in [8].
Hoff considers a convex and compact class P of probabilities and the subset
E of the extreme points of P. An application of the Choquet theorem makes
it possible to express each element P of P as a mixture on E . More precisely,
for each P in P, there exists a probability measure μ on E such that

P =
∫
E
qμ(dq). (4)

If μ is a random probability measure, P turns out to be a random probabil-
ity measure too. The arising model is then a mixture model. Representation
(4) makes it possible to transform the (general very difficult) problem of as-
signing a distribution on a class of constrained probability measures into a
non-constrained problem.
Let us go back to the class L(G, H), with G and H being gamma distributions
as defined at the beginning of this section. In order to follow Hoff approach,
the extreme points of such class are needed. Their characterization is given
in the following theorem, whose proof can be found in [7]; for a > 0, (a)n is
Pochammer symbol, i.e. (a)n = Γ(a + n)/Γ(a).
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Theorem 3.1 A distribution function F ∈ L(G, H) is an extreme point of
this class if and only if its corresponding Lancaster sequence is ρ = (ρn)n≥0,
with

ρn =

√
(α)n√
(β)n

tn (5)

for some t ∈ [0, 1].

Then, denoting by F ∗
t the distribution function in L(G, H) corresponding to

the (extreme) Lancaster sequence (

√
(α)n√
(β)n

tn)n≥0, any F ∈ L(G, H) can be rep-

resented as follows:
F =

∫
[0,1]

F ∗
t μ(dt). (6)

Theorem 3.1 along with the condition for absolute continuity of Lancaster
probabilities shows that, if t < 1, all extreme points F ∗

t are absolutely contin-
uous distributions. Indeed

+∞∑
n=0

ρ2
n =

+∞∑
n=0

⎧⎨
⎩
√

(α)n√
(β)n

tn

⎫⎬
⎭

2

≤
+∞∑
n=0

t2n < +∞.

The remaining extreme distribution F ∗
1 is singular with respect to the Lebesgue

measure on (0, +∞)2.
The density of the extreme point F ∗

t , for t < 1, has the following series expan-
sion:

f ∗
t (x, y) = e−(x+y) xα−1yβ−1

Γ(α)Γ(β)

+∞∑
m=0

√
(α)m√
(β)m

tmLα
m(x)Lβ

m(y)(x, y). (7)

Griffiths in [8] shows that the series in (7) converges pointwise for all positive
x, y.
It is interesting to establish when the mixture F in (6) has density, i. e.
when the Lancaster sequence ρ corresponding to F satisfies condition (2). The
following theorem, due to Griffiths (see [8]), gives a sufficient condition on the
mixing measure μ for F to be absolutely continuous with square integrable
density.

Theorem 3.2 If there exists ε > 0 such that

lim
t→0

μ ((1 − t, 1])

t(α−β+1)/2+ε
= 0 (8)

then F =
∫
[0,1] F

∗
t μ(dt) is absolutely continuous and its density has a (conver-

gent) series representation as in (7).
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Roughly, Theorem 3.2 states that if the mass given by the mixing measure μ
near 1 is negligible than F is absolute continuous. Of course, the condition is
satisfied when 1 does not belong to the support of μ.
In order to follow Hoff approach, μ will be considered as a random probability
measure. We choose a Dirichlet process for μ for several reasons. First, Dirich-
let processes have well known good properties and have been widely studied,
so that a large number of both theoretical and computational results are avail-
able on them. Second, as proved by Dalal in [3], all prior distributions can
be approximated resorting to mixtures of distributions of Dirichlet processes,
so that the choice of the Dirichlet process can be considered in some sense a
general one.
Let μ be a Dirichlet process on [0, 1] with base measure cμ0, where c is a
positive number and μ0 a probability measure on [0, 1]. Then, the random
probability measure F in (6) turns out to be a mixture of known distribution
functions having a Dirichlet process as mixing measure. These particular mix-
ture models are widely studied in literature; see [5], [6] and [17].

Since ρn =
∫
[0,1]

√
(α)n√
(β)n

tnμ(dt), ρ = (ρn)n≥0 is, up to constants, the sequence of

all moments of the Dirichlet process μ. In particular the Pearson correlation
coefficient of F is, up to a multiplicative constant, a random Dirichlet mean.
Many papers have been published on this topic; see, for instance, [2].

4 Main Results

Let us consider the model described in the previous section, that is

F =
∫
[0,1]

F ∗
t μ(dt),

where F ∗
t is the distribution function defined after Theorem 3.1 and μ is a

Dirichlet process with base measure cμ0; we will denote by τcμ0 the distribution
of μ. Next proposition shows that if μ0 satisfies (8), then (8) holds (almost
surely) for μ too .

Theorem 4.1 If μ0 is a measure on [0, 1] such that there exists ε > 0 for
which

lim
t→0

μ0 ((1 − t, 1])

t(α−β+1)/2+ε
= 0 (9)

and c is any positive number, then μ satisfies with probability 1 condition (8).

Proof
Fix ε > 0; it is enough to show that limn→+∞

μ((1−tn ,1])

t
(α−β+1)/2+ε
n

= 0 for any

arbitrary sequence (tn)n≥1 such that tn → 0 for n → +∞; we show such result
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for tn = n−1, the proof being the same for any other sequence converging to
zero for n → +∞.
Let rn = μ0((1−1/n, 1]) and let us consider, for arbitrary positive δ, the event

An =

{
μ((1 − 1/n, 1]) >

δ

n(α−β+1)/2+ε

}
.

We will show that
∑+∞

n=1 P (An) < +∞, so that, by Borel-Cantelli Lemma,
P (An, i.o.) = 0 and the thesis follows.
Since, by the hypothesis and the properties of the Dirichlet process, the random
variable μ((1− 1/n, 1]) has distribution beta with parameters crn and c− crn,
then

P (Ac
n) =

∫ δ

n(α−β+1)/2+ε

0

Γ(c)

Γ(crn)Γ(c − crn)
tcrn−1(1 − t)c−crn−1dt

=
Γ(c)

Γ(crn)Γ(c − crn)

(
δ

n(α−β+1)/2+ε

)crn ∫ 1

0
ycrn−1

(
1 − δ

n(α−β+1)/2+ε
y

)c−crn−1

dy

=
Γ(c)

crnΓ(crn)Γ(c − crn)

(
δ

n(α−β+1)/2+ε

)crn

2F1

(
crn − c + 1, crn, crn + 1,

δ

n(α−β+1)/2+ε

)
.

By hypothesis, 2F1

(
crn − c + 1, crn, crn + 1, δ

n(α−β+1)/2+ε

)
and

(
δ

n(α−β+1)/2+ε

)crn

are asymptotically equivalent (∼) to 1 , so that

P (Ac
n) ∼ Γ(c)

crnΓ(crn)Γ(c − crn)

or, equivalently,

P (An) ∼ 1 − 1

crnΓ(crn)

= 1 − 1

crn

sin(πcrn)

π
=

1

6
π2c2r2

n + o(r2
n)

and the proof is complete since
∑

n r2
n converges by hypothesis.

Hence, if μ0 satisfies (8), the mixture F has, with probability one, a density
f . Then (6) is equivalent to

f =
∫
[0,1)

f ∗
t μ(dt), (10)

where f ∗
t is the density of F ∗

t . Observe that, for fixed (x, y) in (0, +∞)2,
F (x, y) and f(x, y) are linear functionals of the Dirichlet process μ.

In the remainder of the paper, posterior and predictive distributions and
estimates are derived. μ0 is assumed to satisfy condition (8).
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By introducing latent random variables T1, T2, . . . , Tn, with values in [0, 1] (6)
is equivalent to the following hierarchical model; see [17] and [8] for a general
discussion of this equivalence:

L((X1, Y1), (X2, Y2), · · · , (Xn, Yn)|T1 = t1, · · · , Tn = tn) =
n∏

i=1

F ∗
ti
; (11)

L(T1, · · · , Tn|μ) = μn; L(μ) = τcμ0 ; (12)

((X1, Y1), (X2, Y2), · · · , (Xn, Yn)) and μ are independent given (T1, · · · , Tn).

Now consider the following measures on the class of Borel sets of [0, 1]n:

λ(A1 × A2 × . . . × An) =
∫
⊗n

i=1
Ai

n∏
i=1

cμ0 +
∑i−1

j=1 δtj

c + i − 1
(dti) (13)

and, for each n-uple [x, y] = [(x1, y1), . . . , (xn, yn)] ∈ ((0, +∞)2)n,

γ[x,y](A1 × A2 × . . . × An) =

∫⊗n

i=1
Ai

∏n
i=1 f ∗

ti
(xi, yi)λ(dt1, dt2, . . . , dtn)∫

[0,1]n
∏n

i=1 f ∗
ti(xi, yi)λ(dt1, dt2, . . . , dtn)

=

∫⊗n

i=1
Ai

∏n
i=1

{∑+∞
m=0

√
(α)m√
(β)m

tmi Lα
m(xi)L

β
m(yi)

}
λ(dt1, dt2, . . . , dtn)

∫
[0,1]n

∏n
i=1

{∑+∞
m=0

√
(α)m√
(β)m

tmi Lα
m(xi)L

β
m(yi)

}
λ(dt1, dt2, . . . , dtn)

.

We prove the following theorem.

Theorem 4.2 The posterior distribution of the random probability measure
μ, given a sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) from F , is as follows:

L(μ|(X1, Y1) = (x1, y1), (X2, Y2) = (x2, y2), . . . , (Xn, Yn) = (xn, yn)) =

∫
[0,1]n

τcμ0+
∑n

i=1
δti

γ[x,y](dt1, dt2, . . . , dtn),

τcμ0+
∑n

i=1
δti

being the law of a Dirichlet process with base measure cμ0 +∑n
i=1 δti.

Proof
Consider, as above, a sample T1, . . . , Tn from μ. Then, for Borel sets in

[0, 1] A1, . . . , An, denoting by PTk
(·|T1 = t1, . . . , Tk−1 = tk−1) the conditional

distribution of Tk given T1, . . . , Tk−1, for k ∈ {1, 2, . . . , n}, we have

P (T1 ∈ A1, T2 ∈ A2, . . . , Tn ∈ An) =

=
∫
[0,1]n

PTn(An|Ti = ti, i = 1, . . . , n−1)PTn−1(dtn−1|Ti = ti, i = 1, . . . , n−2) · · ·PT1(dt1)



1628 D. M. Cifarelli, R. Graziani and E. Melilli

= λ(A1 × A2 × . . . × An),

where the last equality follows from a well known property of Dirichlet pro-
cesses. Since (X1, Y1), . . . , (Xn, Yn) and μ are conditionally independent given
T1, T2, . . . , Tn, then, for a Borel set C in the class P of all probability measures
on [0, 1],

P (μ ∈ C|(X1, Y1) = (x1, y1), . . . , (Xn, Yn) = (xn, yn))

=
∫

[0,1]n
P (μ ∈ C|T1 = t1, . . . , Tn = tn)PT1,...,Tn(dt1, . . . , dtn|(Xi, Yi) = (xi, yi), i = 1 . . . n)

=
∫
[0,1]n

τcμ0+
∑n

i=1
δti

(C)PT1,...,Tn(dt1, . . . , dtn|(Xi, Yi) = (xi, yi), i = 1 . . . n)

where PT1,...,Tn(·|(X1, Y1) = (x1, y1), (X2, Y2) = (x2, y2), . . . , (Xn, Yn) = (xn, yn))
denotes the conditional law of T1, . . . , Tn given the sample (X1, Y1), . . . , (Xn, Yn).
An application of Bayes theorem gives

P (T1 ∈ A1, T2 ∈ A2, . . . , Tn ∈ An|(Xi, Yi) = (xi, yi), i = 1 . . . n) =

=

∫⊗n

i=1
Ai

∏n
i=1

{∑+∞
m=0

√
(α)m√
(β)m

tmi Lα
m(xi)L

β
m(yi)

}
λ(dt1, dt2, . . . , dtn)

∫
[0,1]n

∏n
i=1

{∑+∞
m=0

√
(α)m√
(β)m

tmi Lα
m(xi)L

β
m(yi)

}
λ(dt1, dt2, . . . , dtn)

= γ[x,y](A1, A2, . . . , An)

that, together with (9), gives the thesis.

Remark 4.1 Theorem 4.2 shows that the posterior distribution of μ, given
a sample from F , is a mixture of Dirichlet processes, as defined and discussed
by Antoniak (1974).

For a bounded real function σ on [0, 1], let ϕ(μ) =
∫
[0,1] σ(t)μ(dt) be a linear

functional of μ.
The following proposition gives the posterior bayes estimate (with respect to
quadratic loss) of ϕ(μ).

Theorem 4.3

E(ϕ(μ)|(X1, Y1) = (x1, y1), . . . , (Xn, Yn) = (xn, yn)) =

c

c + n
ϕ(μ0) +

1

c + n

n∑
i=1

∫
[0,1]n

σ(ti)γ[x,y]dt1, dt2, . . . , dtn). (14)
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Proof
Since the posterior law of μ is a mixture of Dirichlet processes, with mixing

measure γ[x,y], then the posterior expectation of every linear functional of μ
is equal to the same mixture of the posterior expectations of its components.
By well known properties of the Dirichlet processes, the expected value of
ϕ(μ) =

∫
[0,1] σ(t)μ(dt) with respect to τcμ0+

∑n

i=1
δti

is

∫
[0,1]

σ(s)

{
cμ0 +

∑n
i=1 δti

c + n

}
(ds) =

c

c + n

∫
[0,1]

σ(s)μ0(ds) +
1

c + n

n∑
i=1

σ(ti),

so that (14) is true.

Remark 4.2 When σ(t) = tk, ϕ(μ) is the (random) k-th moment of the
Dirichlet process μ; that is, up to a constant, the k-th term ρk of the Lancaster
sequence corresponding to the mixture.

Remark 4.3 Pearson mean square contingency

φ2 =
+∞∑
n=0

ρ2
n =

+∞∑
n=0

(α)n

(β)n

{∫
tnμ(dt)

}2

can be estimated, when finite, by the truncated series of the estimates of the
random moments of μ. Pommeret (2004) considers the same problem in a
classical approach.

Remark 4.4 For (u, v) in (0, +∞)2, when σ(t) = f ∗
t (u, v), ϕ(μ) is the

density f(u, v). Then, by (14), we have

E(f(u, v)|(X1, Y1) = (x1, y1), . . . , (Xn, Yn) = (xn, yn)) = (15)

=
c

c + n

∫
[0,1]

f ∗
t (u, v)μ0(dt) +

1

c + n

n∑
i=1

∫
[0,1]n

f ∗
ti
(u, v)γ[x,y](dt1, . . . , dtn)

Of course, (15) gives the predictive density of (Xn+1, Yn+1), given (X1, Y1) =
(x1, y1), (X2, Y2) = (x2, y2), . . . , (Xn, Yn) = (xn, yn).

The expressions in Theorems 4.2 and 4.3 are difficult to use. For this rea-
son, we resort to a MCMC algorithm to approximate the posterior distribution
of the process μ along with the distributions of its linear functionals. The ap-
proach suggested in [11] is followed.
Let μ0 satisfy condition (8) and have density h0 with respect to the Lebesgue
measure and let c be a positive constant. Starting from [20], the Dirichlet pro-
cess with base measure cμ0 can be approximated resorting to the random prob-
ability measure PN =

∑N
j=1 pjδZj

, where N is a positive integer, (p1, · · · , pN)
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has Dirichlet distribution with parameter (c/N, · · · , c/N), the Zj’s are indepen-
dent random variables identically distributed according to μ0 and (p1, · · · , pN)
is independent on (Z1, · · · , ZN).
Then the posterior distribution of PN can be approximated resorting to a Gibbs
sampler with full conditional distributions:

L((p1, . . . , pN), (Z1, · · · , ZN)|(K1, · · · , Kn), (X1, Y1), · · · , (Xn, Yn)), (16)

L((K1, . . . , Kn)|(p1, . . . , pN), (Z1, . . . , ZN), (X1, Y1), . . . , (Xn, Yn)). (17)

K1, . . . , Kn are latent classifications variables defined by Ki = j if and only if
Ti = Zj, T1, T2, . . . , Tn being the random variables introduced in (11).
Due to assumptions, (16) reduces to the following product:

L(p1, . . . , pN |K1, . . . , Kn) ·
m∏

j=1

h0(zK∗
j
) · ∏

i:Ki=K∗
j

f ∗
zKi

(xi, yi) ·
∏

Zj∈ZK

h0(zj),

where L(p1, . . . , pN |K1, . . . , Kn) is a Dirichlet distribution with parameter (c/N+
m1, . . . , c/N + mN), mi being the number of Kj ’s equal to i, for i = 1, . . . , n
and K∗

1 , . . . , K
∗
m are the distinct values of (K1, . . . , Kn).

By standard computations, for the second full conditional (17), we have

L(K1, . . . , Kn|(p1, . . . , pN), (Z1, . . . , ZN), (X1, Y1), . . . , (Xn, Yn)) = (
N∑

j=1

p∗j,iδj)
n,

where p∗j,i is, up to a constant, equal to f ∗
Zj

(xi, yi).

5 Numerical results

The model described in the previous sections is applied to a simulated data
set of 50 pairs drawn from a bivariate distribution F belonging to the Fréchet
class with both marginals equal to the exponential distribution with mean 1.
The Pearson correlation coefficient of the sample is 0.8877.
Using the modified Bessel function I0 of order 0, the density (7) of the extreme
point can be written as

f ∗
t (x, y) =

1

1 − t
e−

x+y
1−t I0

(
2
√

xy

√
t

1 − t

)
.

We set, in the approximating random measure PN , N = 30. Posterior esti-
mates are obtained with different choices of c and μ0.
After a burn-in of 10000 iterations, 10000 trajectories of the process μ are
drawn from its posterior distribution.
Since the marginals are equal, the Pearson correlation coefficient ρ is the mean
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of the random probability measure μ.
Tables 1-2 show the bayesian estimates (with respect to quadratic loss func-
tion) of ρ corresponding to different values of c and different choices of μ0; a
uniform distribution on (0, 1) (U(0, 1)) and a Beta distribution with parame-
ters 700, 300 (Beta(700, 300)) are considered.

Table 1: Bayesian estimates of the correlation coefficient, μ0 = U(0, 1)
c estimate

0.1 0.8626
1 0.8343
50 0.6119

1000 0.5631

Table 2: Bayesian estimates of the correlation coefficient, μ0 = Beta(700, 300)
c estimate

0.01 0.7053
1 0.7027

100 0.7002

Figure 1 shows the histogram of the sample drawn from the posterior dis-
tribution of ρ for c equal to 1 and μ0 = U(0, 1).

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 1: Histogram of ρ, c = 1, μ0 = U(0, 1)

An estimate of the Pearson mean square contingency, φ2, can be obtained
by truncating

∑+∞
n=0 ρ2

n at a suitable value and by plugging in the sum the
estimates of the ρi’s.
Table 3 displays the bayesian estimates of φ2 obtained truncating the series at
n = 100, for different values of c and μ0 = U(0, 1).
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Table 3: Bayesian estimates of φ2

c estimates
0.1 3.0595
1 2.9250
50 1.0358

1000 0.8094
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