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Abstract ; Second order Fluid Stochastic Petri nets are a modeling formalism used for
performance and dependability evaluation of computer and communication systems.
Hybrid Stochastic Petri nets are an extension of second order Fluid Stochastic Petri
nets, in which the fluid jump arcs as a modeling primitive are assigned the function
that instantaneously empties the fluid place connected to it. The dynamic equations
of the stochastic marking process are given, and in the derivation of the equations
the discrete state transitions concurrent with fluid jumps are taken into account for
the first time. Finally, the boundary conditions for the case in which fluid flow
rates depend on fluid levels are presented, upon which the solution of the dynamic
equations can be obtained directly by numerical methods.
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0 Introduction

Stochastic Petri netst’ are well suited for specifying and solving performance and
dependability models of complex computer and communication systems. Fluid Stochastic
Petri nets (FSPNs) are a generalization of General Stochastic Petri nets by introducing
stochastic fluid flow models. FSPNs are a high level modeling formalism that enables a
simple description of a complex hybrid system with both continuous and discrete
components?'. FSPNs can also be thought of as a graphical language to represent (non-
Markovian) stochastic processes with rewards/.
The FSPN formalism was inspired by the work of Mitra etc. on queuing systems with

a continuous flow of customers-"', which was first proposed in [ 5], then extended in [6].

A noticeable extension called the flush-out arcs was introduced in [ 3]. Second order fluid
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diffusion approximation was first used in FSPNs in [ 7] in order to allow non-deterministic
modeling of continuous quantities, and in [ 8] the jump transitions were added.

It has been shown that the flush-out arcs considerably increase the modeling power of
the FSPN formalism™® *!. The modeling primitive of the flush-out arcs hasn’t been
included in the second order FSPN formalism up to now. In[8], the function of the flush-
out arcs that instantaneously empties a continuous place was realized by choosing a large
deterministic jump height and the force-jump strategy for the fluid jump arcs. But in some
cases, the fluid upper bounds on some continuous places may be infinite; this would bring
about much inconvenience in analyzing the dynamic equations of the marking process. The
modeling means also impairs the close-to-intuition graphical representation effect of
Stochastic Petri nets. In [8~10] the discrete state transitions concurrent with fluid jumps
were ignored in the derivation of the dynamic equations, so the dynamic equations failed to
describe the marking process correctly. Neither has probability mass component been
taken into account in the literature. However, probability mass accumulated will result in
discontinuities in the cumulative distribution functions, and then direct numerical solution
can not be obtained due to the Dirac delta functions in the probability density functions.

In the present paper the name of Hybrid Stochastic Petri net (HSPN) is used-'". We
let the fluid jump arcs used as a modeling primitive have the function of the flush-out arcs
directly, to increase the representative power of FSPNs as a mathematical and graphical
tool. Then the dynamic equations of the stochastic marking process are given, in the
derivation of the equations the discrete state transitions concurrent with fluid jumps are
taken into account for the first time. The third contribution of the paper is the complete
boundary conditions for the case in which fluid flow rates depend on fluid levels are
presented, and the problem from probability mass accumulation is solved. Examples of the

formalism will not be given for the space limitation.

1 Definition and Notations

The definition of the HSPNs is derived from [ 2, 8] with common notations inherited
from [1]. With N, R, and R" we denote natural, real, and non-negative real numbers
respectively.

An HSPN is an 11-tuple HSPN=(P,T,A.B,x.g,H,y,9,w,M,), where

(1) P = P,; |J P. is the set of places consists of a set of discrete places and a set of
continuous (fluid) places. The complete marking is defined as M = (m,x), withx = (a1,
¢ € P,) giving the content of the continuous places and m = (# p;.p;, € P,) for the
discrete places. We use S to denote the state space and S, the discrete component of the
state space.

(2) T=T,UJT.UT:is the set of transitions. T, is a set of transitions with arbitrary

firing time distributions. T, is a set of exponentially distributed transitions and T is a set
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of immediate ones with a constant zero firing time.

(A=A, UAs UA; UA.is the set of arcs. The subset A, contains inhibitor arcs,
which can be seen as a function A, : (P; X T) — N. A, is the set of discrete arcs. and they
can be seen as a function A, : (P, X (T, U T) U (T, U T:) X P,;) XS, — N. A, is the set
of jump arcs, which is a subset of (P, X (T, J T:)) U ((T, U T:) X P.). A jump arc can
connect a fluid place and an immediate transition under certain restrictions'*). A. is a subset
of (P.X(T,UT,)) U T, UT, XP,), the elements of which are called continuous arcs.

4) Bt P,—~R"J {0} defines the fluid upper bound for each continuous place. Each
continuous place has an implicit lower bound at level 0.

(5)2: TXS—>R"J {eo} is the firing rate function for each transition.

(6) w: T; XS; - R" is the weight function of immediate transitions.

(7) g+ T XS, — {True,False} is the guards.

(8) H:A; XS; — {h(+)} U { *} is the jump height function for each jump arc, in
which h(+) is the jump height probability density function. If an input jump arc of a
transition is labeled with the symbol * , it plays the role of a flush-out arc in [ 3], and it
will empty in zero time the existing fluid from a continuous place when the corresponding
transition fires. The output jump arcs of transitions cannot be labeled with the symbol % .

(9 7+ A. X S— (R")?is the flow rate function of fluid arcs that assigns a cardinality
in the form of a normal distribution to each fluid arc, and the distribution is specified by its
expectation and variance. To preserve the flow rates’ independence they can only depend
on the fluid level of the fluid place the arc is connected to.

(10) 9 + T — N defines the priority for each transition.

(11) M, = Gmy+x,) denotes the initial state of the HSPNs.

2 Model Parameters

In this section we demonstrate the computation of all the parameters that are needed
to define the dynamics of the discrete as well as the continuous part of HSPNs,

Since the enabling and firing rules of transitions don’t depend on the continuous part
of HSPNs, the vanishing markings can be removed by using any analysis technique for
General Stochastic Petri nets. From now on, we will only consider tangible states and S,
will be used to denote the set of all the discrete tangible states.

The fluid parameters have to be specified for each discrete state and for every fluid
place. We first regard the continuous flow. The continuous dynamics are defined by the
fluid change rate dx/dt that describes the change in the fluid level over time. The change in
the fluid level is determined by the difference between the inflow and the outflow, each of
which is normally distributed. The parameters of the normal distribution are either
specified by the user or calculated as diffusion approximation. The details have been given

in [ 9], and will not be repeated here. The expectations and variances for each fluid place
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are collected into diagonal matrices (if there is none in a discrete state, the corresponding
entry is equal to zero) :
M, () = diagu,(x) i € Sp)v 2 () = diag(ah, ()i € S

Where y4.; () and o7.; () are the expectation and variance of the flow rate of the fluid
place ¢, € P, in the discrete statei € S,.

We use Z: 1, ,2 to enumerate all the output fluid jump arcs (the elements of (T, |
T,) X P,)). All the input fluid jump arcs (the elements of (P. X (T, |J T,)) labeled with
a probability density function are enumerated bylv =1, ,Z, and all the flush-out arcs by
[=1,,L.

The infinitesimal generator matrix Q(x) accounts for the transition rates among
discrete tangible states, and can be obtained by using standard analysis methods. If we
don’t consider the effect of immediate transitions, the entry g;;(x) (i.;j € S;) can be

defined as

g, (0 = D) AU Gax)) iF G g0 =— D) A, (LX),

te E()

P
—>)

(€ED
Here, E(i) denotes the set of enabled transitions in the discrete marking i.

In this paper we assume that any discrete tangible state transition concurs with at
most one fluid jump, and if a tangible state transition may concur with a fluid jump, it
must always occur with the fluid jump simultaneously. For a fluid jump, the jump rate and
the jump height have to be specified. The height is drawn from a probability density
function, and the density function can be arbitrary, but the jump height must depend on
the bounds of the fluid place. To make sure that the fluid jumps will not go across the
boundaries the jump height probability distributions must be transformed. Two kinds of
transformation have been considered in [ 9].

For notational convenience all the parameters are collected in matrices H,(+) for the
jump heights (There aren’t corresponding matrices for flush-out arcs. ), and A, (x) for the
jump rates. H, () is defined as H,(+) = diag(H(l,i)(*),i € S;). A, (x) is defined as

q..;(x) if i—j and [ jump concur =

Ay = A (x) = : 17

0 otherwise
Namely, A;,;(x) is the transition rate from the discrete state i to the state j, if the
transition concurs with the fluid jump indicated by the arc / (/ jump for short). A fluid
jump can also occur without a discrete state transition. A;.,;(x) is used to show this case,
Aii(x) = (A (x)),;; = A(t,(i,x)), in which ¢ is the transition that / is connected with, and
A(¢,(i,x)) is the firing rate of the transition ¢ in the marking M = (i,x) (The transition ¢
must be an exponential transition™).

We use & (¢, € P,) to indicate if the arc/is connected with the continuous place ¢,. &

1 if / is connected with ¢,

is defined as & =

0 otherwise
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The matrix Q (x) is used to show the rates of those discrete state transitions without
. . . / . .
a fluid jump concurrently and its entry g ;.; (x) is defined as
qi.; (x) if i = j occurs without a fluid jump

/ .
i (x) = . 1 i )
K 0 otherwise /

L
q/i.,j (x) = qi.i(x) — Z/lzz'.i(x).
=1
In order to write dynamic equations in a more compact form, we define a projection

operator §(x,k) as 0(x k) = (13225 s 215y s Tpi1 5" s 1p | ).

3 Dynamic equations

The stochastic marking process under consideration is a Markov process in continuous
time with mixed discrete and continuous state space, M(z) = {(m(¢) ,x()),z =0}, where
m(7) is the discrete tangible marking at time z, and x(¢) is a random variable vector,
representing the fluid levels in the fluid places at time 7. In this section, we give out the
equations for the stochastic marking process describing the dynamic behaviour of the
HSPN model as a function of the time.

Define the cumulative distribution function (CDF) of the process M(z) = {m(o),
x() =0} as P(z,x,1) = Pr{m(¢c) =i, x(¢) <x}, and let P(z.x) = [P(z,x:i) i € S, ]
be a row vector of the CDFs of all the discrete states. Similarly, at the points where the
CDF P(z,x,1) is differentiable, the probability density function (pdf) is defined as g(z.x,
i) = dP(z,x,i)/dx, and g(z,x) = [g(ryx,i),i € S,] is a row vector of the pdfs.
Probability mass may be accumulated at certain points, and that will result in
discontinuities in the CDFs. At these points, the derivative is generalized to include the
Dirac delta function.

Theorem 1 For each discrete state j E S. . the function g(z,x,j) is governed by
P.|

7g(r7,x,g 2 a[g('l'»x,’}]),u}\](.l}\)]+ E al[g(r,x,])a?,(xﬁ)]Jr
ar dXy, — aIk

I's,| [P | ['s; |

T
2 g(r,x,i)q/,-,j(x)—O— 2 Z J( g(r’lls T s Yo Xpt1 9 s TP | 71) * 5’; *

i=1 k=1 [=1 i=1

H(Z,i)(Ik —y) . A[i,j (o 9t e Ll s Yo Tpt1 9 s TP | )dy+

DANTANE B )
J g(zsay s T Xp—1 9 Yot P | o1) * &

k=1 |=1 i=1

H(l 71)(:}/*T}\) . Aii,j (lﬁl 9 e L 9y7'°°7I\PI\)dy+

el ¢ Isl

Bley) .
Z 6(Tﬁ)f g(Tyflv"WIk»l 9y7'°°71'\PL\ 71) °

S[g,, 'Aj,',j(fl,"',f/ﬁlsyyn'af\}?{\)dy (1)



54 Hybrid Stochastic Petri Nets 721

b

In vector form, (1) can be written as

[P, I

¢

Pl 42 2
- a ( 7x) ( \) /
‘aaggu,x) _ 2 gz 0OM, ()] Z ESEIDINE J+g<f,x>Q (x) +

k=1 dxy k=1 dxy

M¥
M~>

g(T,@(x’k)) °$ﬁ H[(T/*y) ’Az (@(x,k))dy+

»
I

1

1

-
=

J g(ea0Cxak)) &« Hi(y— ) » A (0Cx k) dy +

~
Il
-
I
A

&

M~\

(c;,)
Do) JO g(ra0x b))+ &+ A, (0Cx.2))dy )

~~

,_
Il

1
Equations (1) and (2) are parabolic partial differential equations of convection-

diffusion type. The boundary conditions for the equations will be addressed in later
section.

Theorem 1 can be derived in a way proposed in [ 2, 9]. Although the governing
equations are given by Theorem 1, they are not amenable to a direct numerical solution due
to the delta functions in g(z,x). For this reason, the probability mass functions (pmfs)

will be treated separately from the pdfs.

4 Initial and boundary conditions
4.1 Initial conditions

The initial conditions are defined by the models’ configuration at time zero. Let g, be
the vector of initial discrete state probabilities and let x, be the vector of initial fluid levels,
then the initial conditions are

g(0,x) = g, » 0(x—xy)
4.2 Boundary conditions

In this subsection, the problem of boundary conditions is discussed. The lower and
upper boundaries are formed naturally because the fluid levels of continuous places cannot
exceed their upper and lower bounds. The treatment at the boundaries for fluid jumps is
included in the transformation of the jump height functions, so there aren’t separate
boundary conditions needed. For the fluid flow boundary conditions at the upper and lower
bounds are required. In addition, if the fluid flow rates depend on fluid levels,
intermediate boundaries may be formed where the flow rates change their values or
directions.

We present the complete boundary conditions for the case in which HSPNs have only
one fluid place and the case of two fluid places. Extension to more continuous places is
straight forward and can be carried out along the same lines. The unifying form of the
boundary conditions will not be given, because it involves more cumbersome notations,

and moreover, the numerical methods developed for the solution of second order FSPNs
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are so far feasible only for the models with one or two fluid places™ %),

(1) The case of one fluid place
The set of boundary points, Z, is defined as
Z=1b| 3i € Syspu..(b") # pur.; (b ),0<b<Bley)sorb=0,B(c)},
where 0 and B(¢,) are the lower and upper bounds of the single fluid place, respectively.
This means that the boundaries are formed at those points where the fluid flow in any of

the discrete states changes rates.

Let g(z.x,1) = p(zsx,i) + 28(1‘ — b c(z,b,1), where c(z,b,i) is the probability

beZ
mass accumulated at point & under the discrete state i, p(z.x,7) is the probability density

function at point x where P(z,x,17) is differentiable with respect to .

The pmf ¢(z,b) is given by

b))+ Pl Dy (0 = plesb iy, (b)) =
d . J N
%[awu,x,mi,-(.@)Lf —%[a—x@(f,x,;)gz.f<x>>l:f +
Dlelrbiidd () b#0 YjE S, (3
=
d . . 1ra Ny
0 P00 (00 = 5[ Sop(earaidat, () |+
L 15! "Blep)
Selebiidd 0+ 2 2 | ey 8 a0y V€S, @
i€s, =1 i=1

Equations (3) and (4) can be derived in a way proposed in [11, 2].

(2) The case of two fluid places

By the same way, we define
Zy =1b| 3i € Syspi (b)) F p.:(b1),0 << by << B(e1)s0r by = 0,B(c))} s
Z, = {bz ‘ di e Sd’,uz.,-(b?) #/xz,;(b?),o < by, < B(c¢y)j0r b, = O,B(C‘z)}.

Let g(‘hx’i) = p(Taxl s 2 51) + 2 oy _[)1)P1(‘[J)1 s X2.1) t+ E o, _bz)Pz(Z'a-’h NI

A by€Z,

D4 D0 D)8 — b))y —by)c(zsby oby +1) s where p(z,ay s 25 +1) is the joint probability

by €2,by € 2,
density function at point (x,,25), ¢(zsb,,b;,1) is the probability mass accumulated at
point (b, .b;) under the discrete state i, and p, (z.b1s25,0) (py(zs21 505 ,7)) is the marginal
probability density function of the CDF P, (z,2, () = by a2 (2) << a257) (P2 (7,21 (0) <K
x1.25(7) = by 1) at point x; (x;) where the CDF is differentiable with respect to x, (x1).

The function p, (z,b, ,x5) is governed by
(%P] (23b1+2207) + pCrsbi s s Dy (OF) — plesby sxs s j)pn.,; (b)) =

d
81'1

%[ail (plrsaisass ot (o ”l o %[

(,’D(T,Ilaxzaj)a%.j(xl))] T+

a1 =0,
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D01 Ceabyas s i (b)) b £ 0 Vi E S,
1'65(1
The pmf ¢(z,b, ,0,) is governed by
%(ml 33D A b1 Coabysbt s g (B3 — py Cosby b7 s s, (07 +

Pz(‘[»/)l‘ sbz 9j)/11__, (!11‘ ) *[)2(1'7/)17 ,1)2 9j)/11._,(1717) -

1ra . 172 :

?[axz (T,bl s X2 7])(7%.] (12>):|I2:/;; _?[312 (T,bl s X2 7])U§.j (12)):|1-2:/;§ +
179 o2 _1ra ., N

2[311 z<r,xl,/72,J>m,]<xl>>l]:b? 2[311 <r,xl,hz,J)m.J(xl))l]:bT+
D eabyiaby )G i (bysby) by #0 by #0 Yj€E S,

€S,

If b, = 0orb;, = 0, the flush-out fluid jumps must be considered.

For example, the p;(z,0,x,) is given by

%pl(r,O»l‘zyj)—|—])(T,0+y12’j)#1,](0+)—%[ <1)<r,11,12,1>m,<xl>>] +

Ty =0

T IS,

B(¢,
Dp1(s00xy s 1 00y) + ) ZJ prayeas i)+ & xis (veaddy V€ S

€S, =1 i=1

The functions p, (z.x1+65) 5 ps(z.21.0) and ¢(z,0,0) can be analyzed analogously.

Note that the fluid behavior at upper and lower boundaries is different from that at
intermediate boundaries. These boundaries may exhibit very different properties under
different discrete states, according to the fluid flow rates associated with them!'?. For this
reason, the discrete states should be classified according to their mean flow rates around
the boundaries. For the continuous place ¢, in the discrete state ¢ whose mean flow rate p.;
does not change direction at the boundaries, there is no probability mass accumulated, and
the probability mass transferred from other states are converted to changes in probability
densities, otherwise, probability mass is accumulated. The details will be discussed in a

separated paper.

S Conclusions

In the present paper., Hybrid Stochastic Petri nets are defined as an extension of
second order FSPNs. The fluid jump arcs in the formalism as a modeling primitive have
the function that empties in zero time the existing fluid from a continuous place when the
corresponding transition fires. The underlying stochastic process is described by parabolic
partial differential equations of convection-diffusion type, in the derivation of the equations
the discrete state transitions concurrently with fluid jumps are taken into account for the
first time. And the complete boundary conditions for the case in which fluid flow rates
depend on fluid levels are presented, so the direct numerical solution of the dynamic

equations is possible. Efficient solution techniques for the dynamic equations of HSPNs
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with more than two fluid places are an open research area.
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