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Abstract 
 
One of the powerful analytical methods to solve partial differential equations is 

the Adomian decomposition method (ADM). This paper presents a novel approach 
for the dynamic analysis of a flexible plate by using the ADM, which is a Boundary 
Value Problem (BVP). In this regard, a general approach based on the generalized 
Fourier series expansion is applied. The obtained analytical solution is simplified in 
terms of a given orthogonal basis functions that these functions satisfy the boundary 
conditions of plate. For the first time, we solved this equation using ADM and 
compared the results with those of the modal classical analysis in two cases to 
demonstrate the validity of the present study. 

 Keywords: The Adomian Decomposition Method (ADM); Thin plates; Boundary 
Value Problems (BVPs); Orthogonal basis functions 
 
 
1. Introduction 
 

Most scientific problems and phenomena in different fields of science and 
engineering occur nonlinearly. Except in a limited number of these problems, we  
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encounter difficulties in finding the exact analytical solutions. Decomposition 
methods provide the most versatile tools available in nonlinear analysis of 
engineering problems. 

In civil and mechanical engineering sciences, for design of slabs and systems with 
plate behavior, it is important to know the change of deflection and stress in slabs 
under the different loadings. We use the classical small–deflection theory of thin 
plates in supplied problems. 

This paper is devoted to the study of rectangular elastic plate and their governing 
differential equations with ADM [1-3]. In fact, we used the general solution of this 
differential equation from the orthogonal functions to satisfy the complex boundary 
conditions of plate, which depends on the nature of the supported edges. 

There are restrictions for the exact analytical solution of plate and there is no 
general solution for any boundary conditions, and mostly, numerical solutions are 
applied in complex boundary condition and shape of plate. 

Finally, we successfully found the general solution of the differential equation 
governing rectangular plates with ADM, which is the same as the classical solution. 
 
 
2. Mathematical modeling of the problem 
 

The basic differential equation of lateral motion for plates with forced, non–
damped motion and subjected to lateral and in-plane loadings in classical Small–
Deflection theory of thin plates is obtained [1,2]: 

2 2 2 2
4

2 2 2[ ] ( , , ) 2z x y x y
w w w wD w p x y t n n n h

x yx y t
ρ∂ ∂ ∂ ∂

∇ = + + + −
∂ ∂∂ ∂ ∂

                            (1) 

which is a variable coefficient fourth–order parabolic partial differential equation, 
where ),,( tyxww =  the deflection middle surface of plate or the lateral plate 
displacement, D  is plate bending stiffness , ),,( tyxpz  is lateral loads per unit area, 
ρ  is the plate material density, xn , yn and  xyn  in order in series are in-plane forces 
in parallel to x , y  directions and shear force, and h  is the plate thickness. 
In general, The Homogeneous Boundary Conditions (HBCs) for rectangular plate are 
a combination as the followings (for example for x direction and at x a= ) [1, 2, 3]: 

3 3

3 2

2 2

2 2

[ (2 ) ] 0
( )

[ ] 0

w wD v
x y x

Two HBCs for free edge at x a
w wD v

x y

⎧ ∂ ∂
− + − =⎪

∂ ∂ ∂⎪= ⎨
∂ ∂⎪ − + =⎪ ∂ ∂⎩

                    (2) 

and 
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0
( )

0

w
Two HBCs for fixed edge at x a w

x

=⎧
⎪= ∂⎨

=⎪ ∂⎩
                                                            (3) 

or 

2 2

2 2

0

( )
[ ] 0

w

Two HBCs for simple edge at x a w wD v
x y

=⎧
⎪

= ∂ ∂⎨− + =⎪ ∂ ∂⎩

                                       (4) 

whereν  the Poisson ratio of plate material. 
 

 

 

Fig. 1. The rectangular plate with general loadings 
 

It should be noted that two HBCs must be satisfied at 0x = , x a=  and two HBCs 
must also be satisfied at 0y = , y b= . In any case for analysis of plate, we must chose 
two HBCs for each edge of rectangular plate that the choice as to which of the two 
equations has to be satisfied depends on the nature of the plate supports. 

Also, it is shown that a BVP consisting of an inhomogeneous differential equation 
with inhomogeneous boundary conditions can be transformed into a problem 
consisting of an inhomogeneous differential equation with homogeneous boundary 
conditions [4, 5].  

The transverse vibrations of plates are studies by any of the following: finite 
element methods, finite difference methods, and the modal analysis technique. While 
finite element and finite difference methods are in the category of numerical 
techniques, modal analysis is one of the most powerful analytical means, with the 
capability to join with the aforementioned methods in order to analyze the dynamic 
characteristics of mechanical systems. 
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Since the 1980s, studies have illustrated that the ADM can be applied to 

determine the solution of a wide range of linear and nonlinear, ordinary or partial 
differential and integral equations. This method gives the solution as an infinite series 
usually converging to an accurate solution [6-16]. In recent years, it has been applied 
to the problem of vibration of structural and mechanical systems in two and three 
space variables [17-20] as well. 

In this paper, the solution of the governing equation of a uniform flexible plate is 
presented which takes the boundary conditions of the problem into account. For this 
purpose, the initial conditions are expanded using the extended Fourier series. The 
final solution is compared with the result from modal analysis. A comparison shows 
that both techniques converge to the same solution as the series approaches infinity.  

 
 

3. Formulation with ADM 
 

Using the ADM for Eq. (1) can be rewritten in operator form as: 
4[ ] [ ] ( , , ) [ ] [ ] 2 [ ]t z x x y y xy xyh L w D L w P x y t n L w n L w n L wρ ∇+ = + + +          (5) 

where the xyyxt LLLLL ,,,, 4∇
 operators and tL 1−  inverse are defined as follows: 

4

2 4 4 4

2 4 2 2 4

2 2 2

2 2

, 2

, ,

t

x y xy

w w w wL w L w
t x x y y

w w wL w L w L w
x yx y

∇

⎧ ∂ ∂ ∂ ∂
= = + +⎪ ∂ ∂ ∂ ∂ ∂⎪

⎨
∂ ∂ ∂⎪ = = =⎪ ∂ ∂∂ ∂⎩

                                          (6) 

and 
1

0 0

( , , )
t

tL w w x y d d
σ

τ τ σ− = ∫ ∫                                                                                          (7) 

The general solution of an inhomogeneous linear equation (1), ),,,( tyxw is a sum 
of a general solution of the corresponding homogeneous equation ),,( tyxu  and a 
particular of the inhomogeneous equation ),,( tyxv as follows: 

),,(),,(),,( tyxvtyxutyxw +=                                                                                     (8) 
These two terms will be evaluated separately in the following sections. 
 
3.1. Homogeneous problem 
 
In order to solve the homogeneous part, using ADM, the notation of Ref. [4] is used 
in this section. Neglecting the source term on the right–hand side of Eq. (5) and 
introducing the, tL 1−  operator on both sides, the solution of the homogeneous 
equation can be written as 

4( ) [ ] [ ] [ ] 2 [ ]y xyx
t x y xy

n nnDL u L u L u L u L u
h h h hρ ρ ρ ρ∇

= − + + +                                              (9) 
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( , , ) ( , ) ( , )u x y t f x y t g x y= + +  

4
1( 1) { [ ] [ ] [ ] 2 [ ]}y xyx
t x y xy

n nnDL L u L u L u L u
h h h hρ ρ ρ ρ

−
∇

− − − −                            (10)  

 
By using the Adomian decomposition method, ),,( tyxu  can be expanded as an 

infinite series expansion in terms of the ),,( tyxui components: 

∑
∞

=

=
0

),,(),,(
i

i tyxutyxu                                                                                              (11) 

 
In order to find the components, ),,( tyxui , substitution of Eq. (11) into both sides 

of Eq. (10) yields: 

0

( , , ) ( , ) ( , )i
i

u x y t f x y t g x y
∞

=

= + +∑                                                        

4
1

0

1 ( 2 ) ( , , )t x x y y xy xy i
i

L D L n L n L n L u x y t
hρ

∞
−

∇
=

⎧ ⎫⎡ ⎤⎛ ⎞ ⎪ ⎪− − − −⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠ ⎪ ⎪⎣ ⎦⎩ ⎭

∑            (12) 

 
Considering the decomposition method, ),,(0 tyxu is assumed to be of following 

form: 
 

0 ( , , ) ( , ) ( , )u x y t f x y tg x y= +                                                                         (13) 
 
Along with the following recurrence relation for ),,( tyxui : 

[ ]{ }4
1

1
1( , , ) ( 2 ) ( , , ) 1i t x x y y xy xy iu x y t L D L n L n L n L u x y t i
hρ

−
−∇

⎛ ⎞
= − − − − ≥⎜ ⎟
⎝ ⎠

      (14) 

Thus the first i  terms of the series are 
),(),(),,(0 yxtgyxftyxu +=                                                                                   (15) 

[ ]{ }4
1

1 0
1( , , ) ( 2 ) ( , , )t x x y y xy xyu x y t L D L n L n L n L u x y t
hρ

−
∇

⎛ ⎞
= − − − −⎜ ⎟
⎝ ⎠

  

4

2 31 ( 2 )[ ( , ) ( , )]
2! 3!x x y y xy xy
t tD L n L n L n L f x y g x y

hρ ∇

⎛ ⎞
= − − − − +⎜ ⎟
⎝ ⎠

        (16) 

[ ]{ }4
1

2 1
1( , , ) ( 2 ) ( , , )t x x y y xy xyu x y t L D L n L n L n L u x y t
hρ

−
∇

⎛ ⎞
= − − − −⎜ ⎟
⎝ ⎠

 

4
2 2 2 22 4 5

2 2 2 2

( ) ( )1 [ ( , ) ( , )]
4! 5!( ) ( 2 )

x x

y y xy xy

D L n L t tf x y g x y
h n L n Lρ

∇
⎧ ⎫+ − +⎛ ⎞ ⎪ ⎪= − +⎨ ⎬⎜ ⎟
− + −⎝ ⎠ ⎪ ⎪⎩ ⎭

                 (17) 
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[ ]{ }4

4

1
1

2 2 1

1( , , ) ( 2 ) ( , , )

( ) ( )1 [ ( , ) ( , )]
(2 )! (2 1)!( ) ( 2 )

i t x x y y xy xy i

i i i ii i i
x x

i i i i
y y xy xy

u x y t L D L n L n L n L u x y t
h

D L n L t tf x y g x y
h i in L n L

ρ

ρ

−
−∇

+
∇

⎛ ⎞
= − − − −⎜ ⎟
⎝ ⎠

⎧ ⎫+ −⎛ ⎞ ⎪ ⎪= − +⎨ ⎬⎜ ⎟ ++ − + −⎝ ⎠ ⎪ ⎪⎩ ⎭

M

{ }
2 2 1

( , , ) ( 1) [ ( , ) ( , )]
(2 )! (2 1)!

i i
i i

i M
t tu x y t L f x y g x y

i i

+

= − +
+

                                            (18) 

where 

4 2y x yx
M x y x y

n nnDL L L L L
h h h hρ ρ ρ ρ∇

⎧ ⎫
= − − −⎨ ⎬
⎩ ⎭

                                      (19) 

4( ) ( ) ( ) ( 2 )y xyi i i i i i i i ix
M x y xy

n nnDL L L L L
h h h hρ ρ ρ ρ∇

⎧ ⎫
= + − + − + −⎨ ⎬
⎩ ⎭

  (20) 

1i i
P P PL L L −=                                                                                                        (21) 

Operator PL  can be every operator according up relations. 
In fact, ),(),,( yxgyxf in order in series are initial conditions or initial displacement 
and velocity of plate and then we can be written as: 

( , , 0) ( , )u x y f x y=                                                                                                     (22) 

( , , 0) ( , )u x y g x y
t

∂
=

∂
                                                                                                 (23) 

It should be noted that the above functions ),(),,( yxgyxf  satisfy the boundary 
conditions of the problem. On the other hand, the general solution of the 
homogeneous equation is also a sum of the ),,( tyxui terms. In addition, if all 

),,( tyxui  functions satisfy the boundary conditions, then one may state that the sum 
of them also satisfies the boundary conditions. As shown in Eq. (18), ),,( tyxui  
functions are determined by applying the ( 1)i i

ML− operator to the 
functions ),(),,( yxgyxf . This may lead to ),,( tyxui  function which either are zero 
or do not satisfy the boundary conditions at all. To prevent this difficulty, the 
functions ),(),,( yxgyxf are expanded in terms of the known orthogonal function 

),...,(),,( 21 yxyx φφ  as a generalization of the Fourier series 
expansion. ),...,(),,( 21 yxyx φφ can be selected to satisfy the boundary conditions 
before and after applying ( 1)i i

ML−  operator (see Eq. (32)). As a result, the functions 
),(),,( yxgyxf become 

1 1

( , ) ( , )k j k j
k j

f x y a x yφ
∞ ∞

= =

= ∑ ∑                                                           (24) 
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1 1

( , ) ( , )k j k j
k j

g x y b x yφ
∞ ∞

= =

= ∑ ∑                                                           (25) 

Where the coefficients kjkj ba , are given by the following relations: 

0 0

( , ) ( , )
a b

k j k j
x y

a f x y x y d y d xφ
= =

= ∫ ∫                                                      (26) 

0 0

( , ) ( , )
a b

k j k j
x y

b g x y x y d y d xφ
= =

= ∫ ∫                                                       (27) 

 The best set of functions for the generalized Fourier series expansion in the case of 
our physical problem is the set of eigenfunctions of the following self–adjoint system:  

( , ) ( , )M k j k j k jL x y x yφ λ φ=                                                                             (28) 
Previous studies indicate that the eigenvalue problem defined in Eq. (28) yields an 
infinite set of real eigenvalues and eigenfunctions ( , ( , ))k j k j x yλ φ .These 
eigenfunctions constitute the basis for the infinite–dimensional Hilbert space. 
Therefore, every function ),( yxh with continuous ( , )ML h x y which satisfies the 
boundary conditions of the system that can be expanded in an absolutely and 
uniformly convergent series in the eigenfunctions. Due to homogeneity of the 
eigenvalue problem, only the shape of the eigenfunctions is unique and the amplitude 
is arbitrary. According to Eq. (28), we can normalize the eigenfunctions using mass 
and stiffness operators as follows: 

0 0

0
( , ) ( , )

1

a b

l h k j
x y

l h k j
x y x y d y d x

l h k j
φ φ

= =

≠⎧
= ⎨ =⎩∫ ∫                            (29) 

 

0 0

0
( , ) . ( , )

a b

l h M k j
k jx y

l h k j
x y L x y d y d x

l h k j
φ φ

λ
= =

≠⎧⎪= ⎨ =⎪⎩
∫ ∫       (30) 

 
Eqs.(37) lead also to 

M kj kj kjL φ λ φ=                                                                                                          (31) 
And finally we obtain  

( )i i
M k j k j k jL φ λ φ=                                                                                               (32) 

Using Eqs. (22) and (23) and substituting Eqs.(24) and (25) into Eq. (18) and 
embedding the result into Eq. (12) yields:  

4

0

2 2 1

1

( , , ) ( , , ) ( , ) ( , )

( ) ( )1 ( , ) ( , )
(2 )! (2 1)!( ) ( 2 )

i
i

i i i ii i i
x x

i i i i
i y y xy xy

u x y t u x y t f x y t g x y

D L n L t tf x y g x y
h i in L n Lρ

∞

=

∞ +
∇

=

= = + +

⎧ ⎫+ − + ⎡ ⎤⎛ ⎞ ⎪ ⎪− +⎨ ⎬⎢ ⎥⎜ ⎟ +− + −⎝ ⎠ ⎣ ⎦⎪ ⎪⎩ ⎭

∑

∑
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{ }
1 1 1 1

2 2 1

1 1 1 1 1

( , ) ( , )

( 1) ( , ) ( , )
(2 )! (2 1)!

kj kj kj kj
k j k j

i i
i i

M kj kj kj kj
i k j k j

a x y t b x y

t tL a x y b x y
i i

φ φ

φ φ

∞ ∞ ∞ ∞

= = = =

∞ ∞ ∞ ∞ ∞+

= = = = =

= + +

⎡ ⎤
− +⎢ ⎥

+⎢ ⎥⎣ ⎦

∑∑ ∑∑

∑ ∑∑ ∑∑
  

2 2 1

1 1 0 0

2 2 1

0 0

( ) ( ) ( ) ( )
( 1) ( 1) ( , )

(2 )! (2 1)!

( ) ( )
( 1) ( 1)

(2 )! (2 1)!

i i i i
kj kji i

kj kj kj
k j i i

i i
kj kjkji i

kj
i ikj

t t
a b x y

i i

t tb
a

i i

λ λ
φ

λ λ
φ

λ

+∞ ∞ ∞ ∞

= = = =

+∞ ∞

= =

⎡ ⎤⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎢ ⎥= − + −⎨ ⎬ ⎨ ⎬
+⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦

⎡ ⎤⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎢ ⎥= − + −⎨ ⎬ ⎨ ⎬
+⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦

∑∑ ∑ ∑

∑ ∑
1 1

( , )kj
k j

x y
∞ ∞

= =
∑∑

 

1 1

( , , ) cos( ) sin( ) ( , )kj
kj kj kj kj

k j kj

b
u x y t a t t x yλ λ φ

λ

∞ ∞

= =

⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦

∑∑                                      (33) 

 
3.2. Inhomogeneous problem 
 
Neglecting the first two terms on the right–hand side of Eq. (10) and introducing 
the tL 1−  operator on both sides of Eq. (6), the particular solution of the 
inhomogeneous equation can be written as  

4
1( , , ) ( 1) 2 ( , , )y xyx
t x y xy

n nnDv x y t L L L L L v x y t
h h h hρ ρ ρ ρ

−
∇

⎡ ⎤
= − − − −⎢ ⎥

⎣ ⎦
 

11 ( , , )t zL P x y t
hρ

−+                                                                               (34) 

A similar procedure adopted in the previous section can be used to decompose the 
solution by an infinite sum of component expressed in a series form by 

0

( , , ) ( , , )i
i

v x y t v x y t
∞

=

= ∑                                                                                             (35) 

And ),,( tyxvi can be determined in a similar recurrent procedure. Substitution of Eq. 
(35) into both side of Eq. (34) gives 

4
1

0 0

1( , , ) ( 2 ) ( , , )i t x x y y xy xy i
i i

v x y t L D L n L n L n L v x y t
hρ

∞ ∞
−

∇
= =

⎧ ⎫⎡ ⎤⎛ ⎞ ⎪ ⎪= − − − −⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠ ⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑
11 ( , , )t zL P x y t

hρ
−+                                                                 (36) 

The use of the decomposition method results in 
1

0
1( , , ) ( , , )t zv x y t L P x y t
hρ

−=                                                                                 (37) 
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and for ),,( tyxvi , the recurrent relation becomes 

4
1

1
1( , , ) 2 ( , , ) 1i t x x y y xy xy iv x y t L D L n L n L n L v x y t i
hρ

−
−∇

⎛ ⎞ ⎡ ⎤= − − − − ≥⎜ ⎟ ⎣ ⎦⎝ ⎠
                 (38) 

For, expanding ),,( tyxvi  in a similar way as used for Eqs. (24) and (25), we obtain 

1 1

1 ( , , ) ( , )z k j k j
k j

P x y t N x y
h

φ
ρ

∞ ∞

= =

= ∑ ∑                                                            (39) 

Where the coefficients )( tN kj are provided by the following relation: 

0 0

1( ) ( , , ) ( , )
a b

k j z k j
x y

N t P x y t x y d y d x
h

φ
ρ

= =

= ∫ ∫                                       (40) 

 
Using Eqs. (32), (37) and (39), we can rewrite Eq. (38) as follows: 

4

1

1 1

1 1
( )

( ) ( )
( , , ) ( 1) ( , ) ( ) ( )

( ) ( 2 ) i

i i i ix
x

i i
i k j t k j

y xyi i i ik j
I ty xy

nD L L
h h

v x y t x y L N t
n n

L L
h h

ρ ρ
φ

ρ ρ +

∇∞ ∞
− +

= =

⎡ ⎤+ −⎢ ⎥
⎢ ⎥= −
⎢ ⎥
+ − + −⎢ ⎥
⎣ ⎦

∑∑ 1442443

 

1

1 1

1 1 ( )

( 1) ( , ) ( ) ( ) 0

i

i i i
M kj t k j

k j I t

L x y L N t iφ

+

∞ ∞
− +

= =

⎡ ⎤= − ≥⎣ ⎦∑∑ 1442443
   

1

1 1

1 1
( )

( 1) ( ) ( , ) ( ) ( ) 0

i

i i i
kj kj t kj

k j
I t

x y L N t iλ φ

+

∞ ∞
− +

= =

= − ≥∑∑ 1442443
                                   (41) 

In order to find ( , , )iv x y t , we need to evaluate )()( 11 tNL kj
i

t
+− . For this purpose, 

)(1 tI is written as: 

1
1

0 0 0 0

( ) ( ) ( ) ( ) ( )( )
t t t t

t kj kj kj kjI t L N t N d d N d d N t d
τ

σ

σ σ τ σ τ σ σ σ σ−= = = = −∫∫ ∫∫ ∫         (42) 

 
And using the same approach for )(2 tI leads to 

1 2 1
2 1( ) ( ) ( ) ( )t kj tI t L N t L I t− −= =  

1
0

( )( )
t

I t dσ σ σ= −∫  

0 0

( ) ( )( )
t

kjt N d d
σ

σ τ σ τ τ σ= − −∫ ∫  

0 0

( )( )( )
t

kjN t d d
σ

τ σ τ σ τ σ= − −∫ ∫  
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0

( )( )( )
t t

kjN t d d
τ

τ σ τ σ σ τ= − −∫ ∫  

0

( ) ( )( )
t t

k jN t d d
τ

τ σ τ σ σ τ= − −∫ ∫  

3 3

0 0

( ) ( )( ) ( )
3! 3!

t t

kj kj
t tN d N dτ στ τ σ σ− −

= =∫ ∫                                  (43) 

Therefore one can write, for )(1 tI i+ , 
2 1

1 1
1

0

( )( ) ( ) ( ) ( )
(2 1)!

t i
i

i t kj kj
tI t L N t N d

i
σσ σ

+
− +

+
−

= =
+∫                                                 (44) 

Consequently, the final form of the particular solution of the inhomogeneous equation 
using Eqs. (35), (41) and (44), is as follows: 

1

1 1

1 1
( )

2 1

1 1 1 0

( , , ) ( 1) ( ) ( , ) ( ) ( ) 0

( )( , , ) ( 1) ( ) ( , ) ( )
(2 1)!

i

i i i
i k j k j t k j

k j
I t

t i
i i

k j k j k j
i k j

v x y t x y L N t i

tv x y t x y N d
i

λ φ

σλ φ σ σ

+

∞ ∞
− +

= =

∞ ∞ ∞ +

= = =

= − ≥

⎧ ⎫⎡ ⎤−⎪ ⎪= − ⎢ ⎥⎨ ⎬
+⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑∑

∑∑∑ ∫

1442443

                      

2 1
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3.3. General solution of differential equation of lateral motion of thin plate 
  
General solution of the plate equation that is inhomogeneous differential equation is 
the sum of the solution of the homogeneous problem given by Eq. (33) and solution 
of the inhomogeneous problem given by Eq. (45).  
Therefore the final solution can be written as 

( )1 1

0

cos( ) sin( )

( , , ) ( , )
1( ) ( ) sin ( )

k j
k j k j k j

k j
k jt

k j
k j k j

k j

b
a t t

w x y t x y
N t d

ω ω
ω

φ
σ σ ω σ

ω

∞ ∞

= =

⎡ ⎤
+ +⎢ ⎥

⎢ ⎥= ⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

∑∑
∫

               (46) 

where 
( )k j k jω λ=                                                                                                        (47) 
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and , 1, 2 , 3, ...k j = the fundamental mode of flexural vibration is a single sine 
wave in the X  and Y directions, respectively, and k jω is the k j th mode natural 
frequency of the plate. 
 
 
4. Example 
 
The accuracy of the decomposition method is examined by two cases of plate. The 
results are then compared with known exact solutions. 
 
4.1. Simply supported rectangular plate without lateral and in-plane loadings 
 
As a first case, a rectangular plate is considered with constant D  is plate bending 
stiffness, ρ  is the plate material density and h  is the plate thickness, which is simply 
supported at each four edges. The corresponding differential equation of this case is  

2
4

2

( , , ). ( , , ) 0w x y tD w x y t h
t

ρ ∂
∇ + =

∂
                                                  (48) 

With the boundary conditions in this case are [1, 2, 3] 
2

2
(0 , , )( 0 , , ) 0 0w y tw x y t
x

∂
= = =

∂
                                                            (49) 

2

2
( , , )( , , ) 0 0w a y tw x a y t
x

∂
= = =

∂
                                                            (50) 

2

2
( , 0 , )( , 0 , ) 0 0w x tw x y t
y

∂
= = =

∂
                                                          (51) 

2

2
( , , )( , , ) 0 0w x b tw x y b t
y

∂
= = =

∂
                                                           (52) 

According the Eqs. (29), (30) and (32), the solution in this case, first the generalized 
Fourier series expansion functions are determined that these functions satisfy the 
boundary conditions before and after applying the ML  operator. For this case we 
obtain:   

4M
DL L
hρ ∇

=                                                                                                             (53) 

kj
2 k .x j .y(x, y) sin( ) sin( )

a bab
π πφ =                                                                             (54) 

Finally in this case to determined the natural frequency using Eqs. (30), (47), (53) and 
(54) we obtained: 
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2 2 2[( ) ( ) ]k j k j
k j D
a b h

ω λ π
ρ

= = +                                                             (55) 

That this solution for natural frequency is exactly the same as the solution of Ref. [1, 
2]. 
 
 
4.2. Simply supported plate under in-plane loading 
 
As a second case, the constants and boundary conditions are similar to previous case 
for a rectangular plate, but in this case we have in-plane loading in parallel 
to x direction. The corresponding differential equation of this case is  

2 2
4

2 2

( , , ). ( , , ) [ ] 0xnw x y t wD w x y t h
t h x

ρ
ρ

∂ ∂
∇ + + =

∂ ∂
                       (56) 

In this case, we have a orthogonal function similar to previous case:  

kj
2 k .x j .y(x, y) sin( )sin( )

a bab
π πφ =                                                                             (57) 

But operator ML  change to this form: 

4
i x

M x
nDL L L

h hρ ρ∇
= −                                                                                              (58) 

Finally in this case to determined the natural frequency using Eqs. (30), (47), (58) and 
(57) we obtained: 

2 2 2 2[( ) ( ) ] ( )x
k j k j

nD k j k
h a b D a

π π πω λ
ρ

⎧ ⎫= = + +⎨ ⎬
⎩ ⎭

                            (59) 

That this solution for natural frequency is exactly the same as the solution of Ref. [1, 
2]. 
 
 
 
5. Conclusions 
 

In this letter Adomian decomposition method has been successfully used to obtain 
the plates equation. The results obtained by decomposition method are in excellent 
agreement with classical method. But using the Adomian decomposition method is 
based upon the orthogonal functions, so developing the method for different 
applications is not easy and finding these orthogonal functions are also difficult. For 
example in free end of plate or fixed end of plate finding the orthogonal functions 
that satisfied the boundary conditions are difficult but this possible. 
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