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Solution of Blasius Equation by Decomposition
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Abstract

The Blasius equation is a well-known third-order nonlinear ordinary
differential equation, which arises in certain boundary layer problems in the fluid

dynamics. In this paper we will construct a decomposition technique defined by

ulll :_luu”
2

and a differential operator defined by

d

dx
to obtain a solution as a converging infinite series.
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1. Introduction

The Blasius differential equation arises in the theory of fluid boundary layer
mechanics, and in general must be solved numerically as reported in [1], [3], [6] and
[7]. In the study of Prandtl boundary layer problems relevant to the motion of an
incompressible viscous fluid, solutions of self-similar form naturally give rise to
such equations as the Blasius equation. It describes the steady two-dimensional
boundary layer that forms on a semi-infinite plate which is held parallel to a constant
unidirectional flow u [2]. Concerning the Blasius equation, many researchers have
been attempted and much progress has been made so far [4] and [5].

We have been inspired by the recent work of Abbasbandy [1] to come up with a
modified decomposition technique to solve the Blasius equation and our solution is
consistent with the solution obtained and discussed by Abbasbandy, S [1], Liao, S.J.,
[5] and Ishimura, Naoyuki [4].

2. The Decomposition Method

Blasius equation u” +%uu" =0 (D)
u(x=0)=0 (1a)
u'(x=0)=0 (1b)
u'(x=o)=1 (1c)

We use method of decomposition

1 14
u=-=uu
2

Define L= di therefore 2
X

Lu = —luLzu
2

or U=C, +CyX+C,X° —%LsuLzu (3)
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Here Uy, =C, +C,X+CyX° (4)

Applying B.C.’s (1a) and (1b) we get ¢, =c, =0

S Uy = Cx? =X’ (52)
and L2u, = 2lcx (5b)
=u,L’u, = 2Ic’x? (5¢)
AO 0 0
I 5
, :_%LaAO :_%klczz'T’:, K, =2 (63)
1, ,2%°
L2y, =3k 2 3 (6b)

1, ,2x* 1 2x°
= 4

:cxz—zklc 2 _Ekl ? 2lc
I 121
:c3.—1x5 klé+k1£
2 3 5!
1 s
= =50k, (6c)
1 _ 1 51x®
u, = _EL A :2—2c3k2 o (7a)
Iy6
L2, =2i2c3k2 5‘(; (7b)
A, =u,L’u, +u,L%u, +u,L’u,
1y6 5 3 8
_cxz.ikzc3 oI —lk1 2 X 1czklx—+ik2c3 LI
22 6 2 5 2 3 22 8!
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1
:2—2('.:4X8k3
Lo, 1o, 8t
Ua =5 A =5k =
2s 1, 8
Lu™= 227 % g

A, =u,L’u, +u,L%u, +u,L?u, +u,Ll’u,

=cx? '(_%k3C4 8!Xg)+(_1klc2 2x° .izkzca 5Ix®
2 o 2 52 6l
_ 1 5 a8 2! 5 51 21
g g g gk g g
:_Zizcsxllk‘l
_ 1 -3 _ 1 5 1]_|X14
=gt A=y
1 110%™
2 _ & A5
Hue= gty

By deduction we get A,
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A, =u,Ll’u, +u,L’u, +u,Ll?u, +u,L’u, +u,L’u,

1l s 1n 2! 8 5! 5l
<o g kb gt g
:2_14(:6)(14k5

In general,

(7c)
(8a)
(8b)
—iz ,c° 51x° .lczk1 2x° —i3k3c4 gix” 2lc
2 8 2 3 2 1
!
+ K, &.2!}
11
(8c)
(9a)
(9b)
12l 121
rhok, o 2 102
1 3 141
(9c)
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ek 2 o @Gi-1!3(n-i)-1]},
Kna = k“{sn T 3n@En+ 1)@+ 2)} 2 kko S ) R

After simplification we get:

ok (3n+1)(3n+2)+2+1“*1. . ki!<nfi . (11)
3nEBn+1)@Bn+2) 94FiIEBI+D)Bi+2)(n—1)

and the solution u,, is given by,

n 1 3n+2
u, = 1 knc“”& n>1 (12)
2 (3n+2)!
Here k0=1,k1=2,k2=1+—:£=ﬂ (13)
3 345 345 30
u, = cx’ (14)
1
and c== 15
5 (15)
the total solution, ~ u=>"u, (16)
n=0
In summary:
3 2
For the Blasius equation: d—L;+1ud—zJ =0
dx* 2 dx
The complete solution is given by,
u=>y u,
n=0

where u, =cx* with ¢ :%
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1 n X3n+2
and u, :(——j k,c" ; n>1
2 3n(3n+1)(3n +2)
and
n-1
k. (3n+1)(3n+2)+2+12_ _ kikn_i _n»
3nEBn+1)@Bn+2) 94FiIBI+D(Bi+2)(n—1)

with k, =1, k, =2 and K, =%

The velocity field is u'=>"u;

n=0

1 n X3n+l
u’ :(—— ke ——u—
2 3n(3n+1)
Remark: The solution obtained above is consistent with the solutions given in [1]
and [3] both numerically and analytically.
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