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Abstract

In this work, we determine conditions for planar systems of the form{
dx
dt = P5 (x, y) + xR6 (x, y)
dy
dt = Q5 (x, y) + yR6 (x, y)

S (a, b, c, u, v, w)

where
P5 (x, y) = ax5 + bx4y + cx3y2 + ux2y3 + vxy4 + wy5,

Q5 (x, y) = −6wx5 +ax4y +(b − 11w) x3y2 + cx2y3 +(u − 6w) xy4 +
vy5,

R6 (x, y) = x6 + 3x4y2 + 3x2y4 + y6,

and where a, b, c, u, v and w are real constants, to possess non-
algebraic limit cycles. Moreover we proof that this non-algebraic limit
cycle, when it exists it can be explicitly given.

This is done as an application of former theorems gives description of
the existence of the non-algebraic limit cycles of the family of systems:{

dx
dt = Pn (x, y) + xRn (x, y) ,
dy
dt = Qn (x, y) + yRn (x, y) ,

where Pn (x, y) , Qn (x, y) and Rn (x, y) are homogenous polynomials
of degree n, n and m respectively with n < m and n is odd, m is even.
The tool for proving our result is based on methods developed in [1] and
[2].
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1 Introduction

An important problem of the qualitative theory of differential equations is to

determine the limit cycles of a system of the form

{
dx
dt

= X (x, y)
dy
dt

= Y (x, y)
(1)

where X (x, y) and Y (x, y) are coprime polynomials. A limit cycle of system

(1) is an isolated periodic orbit and it is said to be algebraic if it is contained

in the zero set of an algebraic curve.

We usually only ask for the number of such limit cycles, but their location

as orbits of the system is also an interesting problem. And an even more

difficult problem is to give an explicit expression of them. We are able to solve

this last problem for a given system of the form (1). Until recently, the only

limit cycles known in an explicit way were algebraic. In [1],[2] and [3] examples

of explicit limit cycles which are not algebraic are given. Limit cycles of planar

polynomial differential systems are not, in general, algebraic. For instance, the

limit cycle appearing in van der Pol’s system is not algebraic as it is proved in

[4].

In this work, we shall be essentially concerned with a planar polynomial

system of the form

{
dx
dt

= Pn (x, y) + xRm (x, y) ,
dy
dt

= Qn (x, y) + yRm (x, y) ,
(2)

where Pn (x, y) , Qn (x, y) and Rn (x, y) are homogenous polynomials of de-

gree n, n and m respectively with n < m and n is odd, m is even.

it is a fact that system (2) has at most one limit cycle. system (2) has,

from hypothesis of Pn and Qn and using the Euler formula, that F (x, y) =

yPn (x, y)−xQ (x, y) as an algebraic solution with cofactor (n + 1) Rm + ∂Pn

∂x
+

∂Qn

∂y
. Notice that this algebraic solution is formed by a product (complex

or real) invariant straight lines though the origin. Moreover if F (x, y) is an

invariant algebraic solution of degree l of the system (2), then the homogeneous

part of maximum degree of its cofactor is lRm (x, y), for more details, see

[1]and [2]. We apply these properties to determine conditions of the parameters

a, b, c, u, v and w for the planar systems{
dx
dt

= P5 (x, y) + xR6 (x, y)
dy
dt

= Q5 (x, y) + yR6 (x, y)
S (a, b, c, u, v, w)

where
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P5 (x, y) = ax5 + bx4y + cx3y2 + ux2y3 + vxy4 + wy5,

Q5 (x, y) = −6wx5 + ax4y + (b − 11w)x3y2 + cx2y3 + (u − 6w)xy4 + vy5,

R6 (x, y) = x6 + 3x4y2 + 3x2y4 + y6,

in order to possess non-algebraic limit cycles. The existence of non-algebraic

limit cycle of a such system with P3, Q3 and R4 has been studied in [1] and[2].

To prepare the demonstration of our result, one needs some preliminaries.

Lemma 1 . Assume that system (2) has an algebraic solution F (x, y), then

the corresponding cofactor K (x, y) is in the form

K (x, y) =

⎡
⎣m−2

2∑
j=0

K2j (x, y)

⎤
⎦+ lRm (x, y) (3)

where K2j (x, y) is homogeneous polynomial of degree 2j and l is the degree

of F .

for the proof see ( [1], Lemma 1).

Definition 1 . For system (2), real or complex numbers αk for which

yPn (x, y) − xQn (x, y) =
n+1∏
k=1

(y − αkx)

are called invariant slopes of the system.

The following lemma concerns with system (2), giving condition of the

algebraiticity of the limit cycles, if exists (see [1]).

Lemma 2 . For l �= 0, if the expression

C0 exp

∫ [∑m−2
2

j=0 K2j (1, αk) s2j
]

+ lRm (1, αk) sm

Pn (1, αk) sn + Rm (1, αk) sm+1
ds (4)

for all invariant slopes αk, are not polynomials, then the limit cycle, if

exists, is non-algebraic.

For the proof see [1, Theorem 1] and [2, Lemma 2.4].
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2 Main result

We proof the following result:

Theorem 3 . If a < 0, (a − c + v) > 0, (c − 2v) > 0,and w > 0, then the

planar differential system{
dx
dt

= P5 (x, y) + xR6 (x, y)
dy
dt

= Q5 (x, y) + yR6 (x, y)
S (a, b, c, u, v, w)

where

P5 (x, y) = ax5 + bx4y + cx3y2 + ux2y3 + vxy4 + wy5,

Q5 (x, y) = −6wx5 + ax4y + (b − 11w)x3y2 + cx2y3 + (u − 6w)xy4 + vy5,

R6 (x, y) = x6 + 3x4y2 + 3x2y4 + y6,

has exactly one limit cycle.

Proof.

System S (a, b, c, u, v, w) can be written in polar coordinates (r, θ) defined

by x = r cos θ, y = r sin θ, as

{
r′ = σ (θ) r5 + r7

θ′ = − (2 cos4 θ + 3 cos2 θ + 1)wr4 (5)

where

σ (θ) = (a − c + v) cos4 θ + (c − 2v) cos2 θ

+ (cos θ sin θ) ((b − w − u) cos2 θ + u − 5w) + v

System (5) can be written as

dr
dθ

= −((a−c+v)(cos4 θ)+(c−2v)(cos2 θ)+(cos θ sin θ)((cos2 θ)(b−w−u)+u−5w)+v)
(2 cos4 θ+3 cos2 θ+1)w

r

− 1
(2 cos4 θ+3cos2 θ+1)w

r3
(6)

which is a Bernoulli equation. By introducing the change of variables ρ =
1
r2 , we obtain the linear differential equation

dρ

dθ
= f (θ) ρ + g (θ)

where

f (θ) = 2
((a−c+v)(cos4 θ)+(c−2v)(cos2 θ)+(cos θ sin θ)((cos2 θ)(b−w−u)+u−5w)+v)

(2 cos4 θ+3 cos2 θ+1)w
,

g (θ) = 2 1
(2 cos4 θ+3 cos2 θ+1)w

.

Notice that system S (a, b, c, u, v, w) has a periodic solution if and only if

equation (6) has a strictly positive 2π-periodic solution. The solution satisfying

the initial condition ρ (0) = ρ0 > 0 is given by
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ρ (θ, ρ0) =
[
exp
(∫ θ

0
f (s) ds

)] [
ρ0 +

∫ θ

0

(
g (s) exp

(− ∫ s

0
f (ξ) dξ

))
ds
]

=

exp
((∫ θ

0
f (s) ds

)) [
ρ0 +

∫ θ

0

(
2 (a−b+c) cos4 s+(b−2c) cos2 s+c

(1+4λ)(cos2 s+1)
exp
((− ∫ s

0
f (ξ) dξ

)))
ds
]

The condition of the periodic solution of period 2π starting at ρ = ρ0 > 0

is given by the equation ρ (2π) = ρ (0). This implies

ρ0 =
exp(

� 2π
0

f(s)ds)
1−exp(

� 2π
0 f(s)ds)

∫ 2π

0

(
g (s) exp

(− ∫ s

0
f (ξ)dξ

))
ds,

recall that ρ0 = r−2
0 where r0 > 0 is the intersection of periodic solution

with the positive x−axis. So the existence of such r0, and consequently the

existence of the periodic solution, needs ρ0 to be strictly positive.

We have

∫ 2π

0
f (s) ds =∫ 2π

0

(
2
((a−c+v)(cos4 θ)+(c−2v)(cos2 θ)+(cos θ sin θ)((cos2 θ)(b−w−u)+u−5w)+v)

(2 cos4 θ+3 cos2 θ+1)w

)
dθ =

∫ 2π

0

(
2

(a−c+v)(cos4 θ)+(c−2v)(cos2 θ)+v

(2 cos4 θ+3 cos2 θ+1)w

)
dθ,

or a < 0, (a − c + v) > 0, (c − 2v) > 0,and w > 0 so

∫ 2π

0
f (s) ds <

∫ 2π

0

(
2 a

(2 cos4 θ+3 cos2 θ+1)w

)
dθ < 0.

Consequently, we have

0 < exp
(∫ 2π

0
f (s) ds

)
< 1,

and

exp(
� 2π
0 f(s)ds)

1−exp(
� 2π
0

f(s)ds)
> 0.

On the other hand, we have from hypothesis of the theorem that w > 0 so

∫ 2π

0

(
g (θ) exp

(
− ∫ θ

0
f (s) ds

))
dθ

=
∫ 2π

0

(
2 1

(2 cos4 θ+3 cos2 θ+1)w
exp
(
− ∫ θ

0
f (s) ds

))
dθ > 0,

and by consequence one has

ρ0 =
exp(

� 2π
0 f(s)ds)

1−exp(
� 2π
0

f(s)ds)

∫ 2π

0

(
g (s) exp

(− ∫ s

0
f (ξ) dξ

))
ds > 0
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Hence the strictly positive 2π-periodic solution of equation (6) does exist.

In order to prove that this periodic solution is an isolated periodic orbit,see

for instance [5], it is sufficient to that the poincare return map
∏

(ρ0) =

ρ (2π, u0), has d
�

du0
(ρ0) �= 1 for all ρ0 and this is already satisfied, because

d
�

dρ0
(ρ0) = exp

(∫ 2π

0
f (s) ds

)
< 1 for all ρ0�

Even if the explicit expression of the limit cycle of system S (a, b, c, u, v, w)

is found, is not an easy task to decide whether this curve is algebraic or not

unless we make other investigation.

3 Algebraic solution

Recall (see [2]) that a real or complex polynomial F (x, y) is an algebraic solu-

tion of a real polynomial system{
dx
dt

= X (x, y)
dy
dt

= Y (x, y)

if

X (x, y) ∂F
∂y

(x, y) + Y (x, y) ∂F
∂y

(x, y) = K (x, y)F (x, y)

for some polynomial K(x, y), called the cofactor of F (x, y). Notice that

when F (x, y) is real, the curve F (x, y) = 0 is invariant under the flow of the

differential system. Observe also that the degree of the cofactor is one less

than the degree of the vector field. A limit cycle is called algebraic if it is an

oval of a real algebraic solution.

It is not difficult to see that system S (a, b, c, u, v, w) has an algebraic solu-

tion.

Lemma 4 System S (a, b, c, u, v, w) has

F (x, y) = (x2 + y2) (2x2 + y2) (3x2 + y2) as an algebraic solution with co-

factor K (x, y) = 6ax4 − 22x3wy + 6x3by + 6cy2x2 − 24xwy3 + 6xuy3 + 6vy4 +

6 (x6 + 3x4y2 + 3x2y4 + y6)

Proof. . If we put

P5 (x, y) = (ax5 + bx4y + cx3y2 + ux2y3 + vxy4 + wy5) ,

Q5 (x, y) = (−6wx5 + ax4y + (b − 11w)x3y2 + cx2y3 + (u − 6w)xy4 + vy5)

R6 (x, y) = (x6 + 3x4y2 + 3x2y4 + y6)
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immediately we have

(P5 (x, y) + xR6 (x, y)) d
dx

((x2 + y2) (2x2 + y2) (3x2 + y2))

+ (Q5 (x, y) + yR6 (x, y)) d
dy

((x2 + y2) (2x2 + y2) (3x2 + y2)) =

((x2 + y2) (2x2 + y2) (3x2 + y2)) K (x, y),

it is what one wants to show�.

4 A non-algebraic limit cycles

This section is devoted to prove that the limit cycles of the parametrized

systems S (a, b, c, λ) is not algebraic. Indeed, we will prove that the only

algebraic solutions of the system S (a, b, c, λ) are the ones given in the above

Lemma.

Lemma 5 . If (a − 2c + 4v) (b − 2u + 4w) �= 0, then system S (a, b, c, u, v, w)

has only three algebraic solutions x2 + y2 = 0, 2x2 + y2 = 0 and 3x2 + y2 = 0.

Proof. . These three curves coincide with the six complex lines y = (±) ix, y =

(±)
√

2ix and y = (±)
√

3ix. We apply Lemma 3 .

Assume that the differential system S (a, b, c, u, v, w) has a real or complex

algebraic solution F (x, y) and that it does not contain any of the given six lines

as a factor. By using (Lemma 2.6 [2]) it is not restrictive to assume that F (x, y)

is real and that its cofactor is an even function, i.e., K(−x,−y) = K(x, y).

Since the degree of the system S (a, b, c, u, v, w) is 7 we know that the degree

of K(x, y) is at most 6. By the above restrictions on K(x, y) and by using also

(Lemma 2.5 [2]) we can write it as the real polynomial

K(x, y) = d0 + d1x
2 + d2xy + d3y

2 + b4x
4 + b3x

3y + b2x
2y2 + b1xy3 + b0y

4 +

l (x6 + 3x4y2 + 3x2y4 + y6)

where l is the degree of the corresponding algebraic curve F (x, y) = 0. By

considering the invariant slopes α3,4 = (±)
√

2i ,and recalling that for system

S (a, b, c, u, v, w) we have m = 7, n = 5 the expression (4) will be

C0 exp
∫ x [

�2
j=0 K2j(1,(±)

√
2i)s2j]+lR6(1,(±)

√
2i)s6

P5(1,(±)
√

2i)s5+R6(1,(±)
√

2i)s6
ds = C0 exp

∫ x
(

ls6+γs4+δs2−d0

(s2+λ+iβ)s5

)
ds

where
λ = (−a + 2c − 4v)

β = −√
2 (b − 2u + 4w)

γ =
(−b4 − ib3

√
2 + 2b2 + 2ib1

√
2 − 4b0

)
δ =

(−d1 − id2

√
2 + 2d3

)
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C0 exp
∫ x
(

ls6+γs4+δs2−d0

(s2+λ+iβ)s5

)
ds = C0 exp

∫ x
(

(l−B)s
(s2+λ+iβ)

+ B
s

+ B3

s3 − d0

(λ+iβ)s5

)
ds

= C0 exp

⎛
⎜⎜⎜⎝

(l − B)
∫ x

(
−1

2
i

2s
β�

s2+λ
β

�2
+1

+ 1
4

4s(s2+λ)
(s2+λ)2+β2

)
ds

+
∫ x

(
B
s

+ B3

s3 +
− 1

λ+iβ
d0

s5

)
ds

⎞
⎟⎟⎟⎠

where
B = − δλ+iδβ−2iβγλ+β2γ−λ2γ+d0

λ3+3iλ2β−3β2λ−iβ3

B3 = d0+δλ+iδβ
λ2+2iλβ−β2

then

C0 exp
∫ x
(

ls6+γs4+δs2−d0

(s2+λ+iβ)s5

)
ds =

C0 exp

(
(l − B)

(
−1

2
i arctan

((
x2+λ

β

))
+ 1

4
ln
(
(x2 + λ)

2
+ β2

))
+B ln x − B3

2x2 + d0

4(λ+iβ)x4

)
,

now by forcing this expression to be a real polynomial with C0 an arbitrary

constant, we have among others conditions a first set of necessary conditions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d0 = 0

d0 + δλ + iδβ = 0

lλ3 − 3lβ2λ + δλ + β2γ − λ2γ = 0

3lλ2β − lβ3 + δβ − 2βγλ = 0.

One recalls that λ �= 0 and β �= 0 , we get that l = 0. This implies that

there is no algebraic solution except x2 +y2 = 0, 2x2 +y2 = 0,and 3x2 +y2 = 0

for the system S (a, b, c, u, v, w)�.

Theorem 6 . If a < 0, (a − c + v) > 0, (c − 2v) > 0,and w > 0, system

S (a, b, c, u, v, w) has exactly one limit cycle.

This limit cycle is non-algebraic if (a − 2c + 4v) (b − 2u + 4w) �= 0.

Proof. . The proof of the theorem follows immediately from the results of

Theorem 4 and Lemma 6.�

Remark 1 . In polar coordinates the expression of the limit cycle of system

S (a, b, c, u, v, w) is

1

r2
=

[ ∫ θ

0

(
2 (a−b+c) cos4 s+(b−2c) cos2 s+c

(1+4λ)(cos2 s+1)
exp
(− ∫ s

0
f (ξ) dξ

))
ds

+ 1
r2
0

]
exp

(∫ θ

0

f (s) ds

)
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where

f (θ) = 2
((a−c+v)(cos4 θ)+(c−2v)(cos2 θ)+(cos θ sin θ)((cos2 θ)(b−w−u)+u−5w)+v)

(2 cos4 θ+3 cos2 θ+1)w
,

g (θ) = 2 1
(2 cos4 θ+3 cos2 θ+1)w

.

1
r2
0

=
exp(

� 2π
0

f(s)ds)
1−exp(

� 2π
0 f(s)ds)

∫ 2π

0

(
g (s) exp

(− ∫ s

0
f (ξ) dξ

))
ds,

Remark 2 and it is not an easy task to elucidate this expression in cartesian

coordinates.

5 Examples

The following example is given to Illustrate our result.

Example 1 . Let’s consider the system{
dx
dt

= (−x5 − 6x3y2 + x2y3 − 4xy4 + y5) + xR6 (x, y)
dy
dt

= (−6x5 − x4y − 11x3y2 − 6x2y3 − 5xy4 − 4y5) + yR6 (x, y)

This system is of the form S (−1, 0,−6, 1,−4, 1). We have

a = −1 < 0, (a − c + v) = 1 > 0, (c − 2v) = 2 > 0,and w = 1 > 0.

So the first hypothesis of Theorem 7 is satisfied and hence the system has

exactly one limit cycle.

The second hypothesis is satisfied as well, (a − 2c + 4v) (b − 2u + 4w) =

−10 �= 0. Thus this limit cycle is non-algebraic.

Now we consider an other example.

Example 2 . Let’s consider the system

(b − 2u + 4w), Solution is : b = 2u − 4w = 2 − 4 = −2{
dx
dt

= (−x5 − 2x4y − 6x3y2 + x2y3 − 4xy4 + y5) + xR6 (x, y)
dy
dt

= (−6x5 − x4y − 13x3y2 − 6x2y3 − 5xy4 + vy5) + yR6 (x, y)

This system is of the form S (−1,−2,−6, 1,−4, 1). We have

a = −1 < 0, (a − c + v) = 1 > 0, (c − 2v) = 2 > 0,and w = 1 > 0.

So the first hypothesis of Theorem 7 is satisfied and hence the system has

exactly one limit cycle.

The second condition is not satisfied, because (b − 2u + 4w) = 0, it is why

one cannot say anything concerning the algebraiticity of this limit cycle.



622 A. Bendjeddou, R. Benterki and T. Salhi

References

[1]Al-Dosary, Khalil I. T. Non-algebraic limit cycles for parametrized planar

polynomial systems, Int. J. Math 18, No. 2, 179-189 (2007).

[2] A. Gasull, H. Giacomini and J. Torregrosa, Explicit non-algebraic limit

cycles for polynomial systems, J. Comput. Appl. Math. 200 (2007) 448-457.
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