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Abstract

In this paper, the convergence of negatively associated random fields
is investigated, two sufficiency conditions for the law of the logarithum
are obtained by the Rosenthal and maximal Rosenthal inequalities .
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1. Introduction

The notion of negatively associated (NA) was introduced by Joag-Dev and
Proschan in[3] as follows.

Definition 1.1. A field {X�, n ∈ Zd
+} is called negatively associated, if

cov(f(X�, i ∈ S), g(X�, j ∈ T )) ≤ 0 (1.1)

for each pair of disjoint subsets S, T in Zd
+, where f(X�, i ∈ S) and g(X�, j ∈

T ) are any pair of coordinate-wise increasing functions with Ef 2(X�, i ∈ S) <
∞ and Eg2(X�, j ∈ T ) < ∞.

1This work was supported by NSF of China under grant No.10771195 and NSF of Zhejiang
Province under grant No.Y607128.
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First we recall some notations . Let d be a positive integer, Zd
+ denote d−

dimensional lattice points, and points in Zd
+ are denoted by m, n etc. For n =

(n1, · · · , nd) ∈ Zd
+ , we define |n| =

∏d
i=1 ni , and n → ∞ is interpreted as ni →

∞, i = 1, 2, · · · , d. And also for t, s ∈ Zd
+ , δ ∈ Z+, let ts = (t1s1, . . . , tdsd) ,

t+s = (t1 + s1, . . . , td + sd) , tδ = (t1δ, . . . , tdδ) and t+ δ = (t1 + δ, . . . , td + δ).

Negatively associated is one of the most important concept in probabil-
ity theory. It can be used in multinomial statistical analysis and reliability
theory(see [1,3,4,14]).

In the case of d = 1, we refer to Newman [7] for the central limit theorem,
Matula [5]for the three series theorem, Roussas [10] for the Hoeffding inequal-
ity, Shao [12] for the Rosenth-type inequality and the Kolmogorov exponential
inequality, Shao and Su [13] for the law of the iterated logarithm.

In the case of d ≥ 2, Rossas [11] studies the central limit theorem for
weak stationary NA random fields, Zhang[15] investigated the limit theorem
for asymptotically negatively dependent random variables, Zhang and Wen
[16] obtained the weak convergence for a NA random fields with only finite
second moment as follows.

Theorem A.(see [16]) Let {X�, n ∈ Nd} be a field of stationary centered
NA random variables with 0 < EX2

� < ∞ .
If define

Wn(t) =
S[nt]√
|n|

, t ∈ [0, 1]d.

Then
ES2

�

|n| → σ2 < ∞, n → ∞

and

W� ⇒ σW, n → ∞
in the space D[0,1]d endowed with the Skorohod topology, where {W (t), t ∈ Rd

+}
is a d−dimensional standard winner process. If {X�, n ∈ Zd} is the extension
of {X�, n ∈ Nd}, then

σ2 = varX� +
∑

��=�,�∈Zd

cov(X�, X�).

A.Gut conjecture the following result in [2].

Theorem B. Let X and {Xn, n ≥ 1} are independent identical distribution
random variables, if EX2(lg |X |)−1+η < ∞ for some η > 0 and EX = 0, then

∑
n≥1

1

n
P (|Sn| ≥ ε(n lg n)

1
2 ) < ∞ (1.2)
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and ∑
n≥1

1

n
P ( max

1≤k≤n
|Sk| ≥ ε(n lg n)

1
2 ) < ∞ (1.3)

for any ε > 0. Conversely, (1.3) ⇒ (1.2) ⇒ EX2

lg |X| < ∞ and EX = 0.

Here lg x = max{1, log x}.
In this paper, we study the convergence of the law of the logarithm involving

negatively associated fields, and obtain the following results.

Theorem1.1. Let {X�, n ∈ Zd
+}(d ≥ 1) be a field of negatively associated

random variables with identical distribution and EX� = 0, if for any α > d,

there exists 0 < η ≤ 1, such that E[
X2

1

(lg |X1|)1−η ] < ∞, then

∑
�

1

|n|P (|S�| ≥ ε|n| 1
2 (lg |n|)α) < ∞ (1.4)

and ∑
�

1

|n|P (max
�≤�

|S�| ≥ ε|n| 1
2 (lg |n|)α) < ∞ (1.5)

for any ε > 0. Conversely, (1.5) ⇒ (1.4) ⇒ E[
X2

1

(lg |X1|)2α ] < ∞.

Theorem 1.2. Let {X�, n ∈ Zd
+}(d ≥ 1) be a field of negatively associated

random variables with identical distribution and EX� = 0, if for any α > d,

there exists 0 < η ≤ 1, such that E[
X2

1

(lg lg |X1|)1−η ] < ∞, then

∑
�

1

|n| lg |n|P (max
�≤�

|S�| ≥ ε|n| 1
2 (lg lg |n|)α) < ∞ (1.6)

for any ε > 0.

2. Lemmas and Proof of Theorems

In order to prove the main results of this article, we require to establish
and introduce some lemmas in this section.

Lemma 2.1.(see[10]) Let {X�, n ∈ Zd
+}(d ≥ 1) be a field of negatively asso-

ciated random variables with identical distribution and EX� = 0, then for all
p ≥ 2, there exists a positive constant C such that

E

∣∣∣∣∣∣
∑
�∈A

X�

∣∣∣∣∣∣
p

≤ C

⎡
⎢⎣
⎛
⎝∑
�∈A

EX2
�

⎞
⎠

p/2

+
∑
�∈A

E|X�|p
⎤
⎥⎦ (2.1)

and

E max
�≤�

|S�|p ≤ C

⎡
⎢⎣(E max

�≤�
|S�|

)p

+

⎛
⎝∑
�≤�

EX2
�

⎞
⎠

p/2

+
∑
�≤�

E|X�|p
⎤
⎥⎦ (2.2)
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for any A ∈ Zd
+ and n ∈ Zd

+.

Lemma 2.2. Let {X�, n ∈ Zd
+}(d ≥ 1) be a field of negatively associated

random variables with identical distribution and EX� = 0, then for all q ≥ 2,
there exists a positive constant C such that

E max
�≤�

|S�|q ≤ C

⎡
⎢⎣∑
�≤�

E|X�|q + (lg |n|)qd

⎛
⎝∑
�≤�

EX2
�

⎞
⎠

q/2
⎤
⎥⎦ (2.3)

Proof. We now estimate E max�≤� |S�| in (2.2). Taking p = 2 in (2.1) we get

E

⎛
⎝ ∑
�≤�≤�

|X�|
⎞
⎠

2

≤ C
∑

�≤�≤�
X2
� (2.4)

for 1 ≤ j ≤ m ≤ n.
(2.2) and (2.4) together with Móreicz[12, Theorem 8] lead to

E max
1≤�≤�

S2
� ≤ C

d∏
k=1

(lg nk)
2
∑
�≤�

EX2
� ≤ C(lg |n|)2d

∑
�≤�

EX2
�. (2.5)

(2.5) implies that

(E max
1≤�≤�

|S�|)q ≤ (E max
1≤�≤�

S2
�)

q/2 ≤ C(lg |n|)qd

⎛
⎝∑
�≤�

EX2
�

⎞
⎠

q/2

. (2.6)

Now Lemma 2.2 follows from (2.2) and (2.6).

Lemma 2.3. Let {X�, n ∈ Zd
+}(d ≥ 1) be a field of negatively associated

random variables with identical distribution, if P (max�≤� |X�| > a�) → 0 as
n → ∞ for a� > 0, then there exists a positive constant C such that

|n|P (|X1| > a�) ≤ CP (max
�≤�

|X�| > a�) (2.7)

for sufficient large n.

Proof. It is well-known that

P (max
�≤�

|X�| > a�) =
∑
�≤�

P (|X�| > a�, max
�≤��1

|X�| ≤ a�). (2.8)

From (2.8) and equidistribution of {X�, n ∈ Zd
+} we have

|n|P (|X1| > a�) = P (max
�≤�

|X�| > a�) +
∑
�≤�

P (|X�| > a�, max
�≤��1

|X�| > a�).

(2.9)
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By centering
∑

�≤� P (|X�| > a�, max�≤��1 |X�| > a�), we get

∑
�≤�

P (|X�| > a�, max
�≤��1

|X�| > a�)

≤ E
∑
�≤�

[I(|X�| > a�) − P (|X1| > a�)]I( max
1≤�≤�

|X�| > a�)

+|n|P (|X1| > a�)P ( max
1≤�≤�

|X�| > a�)

= I1 + I2. (2.10)

Now we estimate I1, by Cauchy-Schuwarz Theorem and taking p = 2 in
(2.1) we get

|I1| ≤
⎛
⎝var[

∑
�≤�

I(|X�| > a�)] · P ( max
1≤�≤�

|X�| > a�)

⎞
⎠

1/2

≤ (C|n|P (|X1| > a�) · P ( max
1≤�≤�

|X�| > a�))
1
2

≤ 1

4
|n|P (|X1| > a�) + CP ( max

1≤�≤�
|X�| > a�). (2.11)

The last inequality follows from the elementary inequality: (ab)
1
2 ≤ 1

4
a + b for

a > 0, b > 0.
Then (2.9)-(2.11) lead to

3

4
|n|P (|X1| > a�) ≤ 2CP ( max

1≤�≤�
|X�| > a�)+|n|P (|X1| > a�)P ( max

1≤�≤�
|X�| > a�).

(2.12)
Therefore (2.7) follows from the assumption P (max�≤� |X�| > a�) → 0 and

(2.12).

Lemma 2.4. Under the same assumption of Theorem 1.1. If 0 < β <
2α + η − 1, then

∑
�

1

|n|P (max
�≤�

|X�| > |n| 12 (lg |n|)α−β) < ∞. (2.13)

Proof. By the assumption of equidistribution and E[
X2

1

(lg |X1|)1−η ] < ∞ together

with simply computation, we have

∑
�

1

|n|P (max
�≤�

|X�| > |n| 12 (lg |n|)α−β)

≤∑
�

P (|X1| > |n| 12 (lg |n|)α−β)

≤∑
n

P

(
X2

1

(lg |X1|)1−η
>

|n|(lg |n|)2(α−β)

(lg(|n| 1
2 )(lg |n|)α−β)1−η

)
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≤∑
�

P

(
X2

1

(lg |X1|)1−η
≥ C|n|

)

≤ E

(
X2

1

(lg |X1|)1−η

)
< ∞.

Hence Lemma2.4 is true.

Lemma 2.5. Under the same assumption of Theorem 1.1. Let X��� =

X�I(|X�| < |n| 12 (lg |n|)α−β) and S��� =
∑

�≤� X���. If 0 < β < 2α + η − 1,
then ∑

�

1

|n|P ( max
1≤�≤�

|S���| > ε|n| 1
2 (lg |n|)α) < ∞ (2.14)

for any ε > 0.

Proof. We first proof that

|n| 12 (lg |n|)−α max
�≤�

|E ∑
�≤�

X���| → 0 (2.15)

as n → ∞.
EX� = 0 implies that

X��� = X�I(|X�| < |n| 12 (lg |n|)α−β) = X�I(|X�| > |n| 12 (lg |n|)α−β), (2.16)

this leads to

|n|− 1
2 (lg |n|)−α max

�≤�
|E ∑

�≤�
X���|

= |n|− 1
2 (lg |n|)−α|n|E

[
|X1|I(|X1| < |n| 12 (lg |n|)α−β)

]

≤ |n| 12 (lg |n|)−αE

[
X2

1

(lg |X1|)1−η
· |X1|−1

(lg |n|)η−1
I(|X1| < |n| 12 (lg |n|)α−β)

]

≤ C(lg |n|)β−2α+1−η. (2.17)

Now (2.15) follows from (2.17) and the assumption 0 < β < 2α + η − 1.
In order to prove (2.14), by (2.15) we only need to prove that

∑
�

1

|n|P
⎛
⎝ max

1≤�≤�
| ∑
1≤�≤�

X��� − ∑
1≤�≤�

EX���| ≥ ε|n| 1
2 (lg |n|)α

⎞
⎠ < ∞. (2.18)

Taking q ≥ 2 in Lemma 2.2, we get

∑
�

1

|n|P ( max
1≤�≤�

| ∑
1≤�≤�

X��� − ∑
1≤�≤�

EX���| ≥ ε|n| 1
2 (lg |n|)α)

≤∑
�

εC
1

|n| · |n|− q
2 (lg |n|)−αq[

∑
�≤�

E|X���|q + (lg |n|)qd(
∑
�≤�

E|X���|2)
q
2 ]
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=
∑
�

C|n|−1− q
2 (lg |n|)−αq

∑
�≤�

E|X���|q

+
∑
�

C|n|−1− q
2 (lg |n|)−αq+qd(

∑
�≤�

E|X���|2)
q
2

= I3 + I4. (2.19)

Next we estimate I3 and I4,

I3 ≤ ∑
�

C|n|− q
2 (lg |n|)−αqE[|X1|qI(|X1| < |n| 12 (lg |n|)α−β)]

≤ ∑
�

C|n|− q
2 (lg |n|)−αqE

[
X2

1

(lg |X1|)1−η
· Xq−2

1

(lg |n|)η−1
I(|X1| < |n| 12 (lg |n|)α−β)

]

≤ ∑
�

C|n|− q
2 (lg |n|)−αq|n| q−2

2 (lg |n|)1−η+(q−2)(α−β)

≤ ∑
�

C
1

|n|(lg |n|)−αq+1−η+(q−2)(α−β). (2.20)

Now (2.20) together with the assumption 0 < β < 2α + η − 1 and q ≥ 2
lead to I3 < ∞.

I4 ≤ ∑
�

C|n|−1− q
2 (lg |n|)−αq+qd|n| q

2 (E|X���|2)
q
2

=
∑
�

C
1

|n|(lg |n|)−αq+qd
(
EX2

1I(|X1| < |n| 12 (lg |n|)α−β)
) q

2

=
∑
�

C
1

|n|(lg |n|)−αq+qd

(
E

X2
1

(lg |X1|)1−η
· (lg |X1|)1−ηI(|X1| < |n| 12 (lg |n|)α−β)

) q
2

≤ ∑
�

C
1

|n|(lg |n|)−αq+qd(lg |n|) q
2
(1−η)

=
∑
�

C
1

|n|(lg |n|)−αq+qd+ q
2
(1−η). (2.21)

The assumption α > d implies that there exists 0 < η ≤ 1, such that
1−η
2

< α − d, this and (2.21) lead to I4 < ∞.
Hence (2.14) follows from (2.19)-(2.21).

Proof of Theorem1.1. It is obvious that (1.5) ⇒ (1.4), so we only need

to prove (1.5). Recall that X��� = X�I(|X�| < |n| 12 (lg |n|)α−β), S��� =∑
�≤� X��� and 0 < β < 2α + η − 1, it is easy to see that

∑
�

1

|n|P ( max
1≤�≤�

|Sk| ≥ ε|n| 1
2 (lg |n|)α)

=
∑
�

1

n|P ( max
1≤�≤�

|S�| ≥ ε|n| 1
2 (lg |n|)α, max

�≤�
|X�| > |n| 12 (lg |n|)α−β)
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+
∑
�

1

|n|P ( max
1≤�≤�

|S�| ≥ ε|n| 1
2 (lg |n|)α, max

�≤�
|X�| ≤ |n| 12 (lg |n|)α−β)

≤∑
�

1

|n|P (max
�≤�

|X�| > |n| 12 (lg |n|)α−β)

+
∑
�

1

|n|P ( max
1≤�≤�

|S���| ≥ ε|n| 1
2 (lg |n|)α). (2.22)

Now (1.5) follows from Lemma 2.4, Lemma 2.5 and (2.22).
Conversely, X� ≤ |S�| − |S��1| and (1.5) yield that

∑
�

1

|n|P ( max
1≤�≤�

|X�| ≥ ε|n| 1
2 (lg |n|)α) < ∞, (2.23)

this implies
P ( max

1≤�≤�
|X�| ≥ ε|n| 1

2 (lg |n|)α) → 0. (2.24)

By Lemma 2.3 and (2.24) we get

|n|P (|X1| > ε|n| 1
2 (lg |n|)α) ≤ CP (max

�≤�
|X�| > ε|n| 1

2 (lg |n|)) (2.25)

for large n.
Now (2.23) and (2.25) lead to

∑
�

P (|X1| ≥ ε|n| 1
2 (lg |n|)) < ∞, (2.26)

that is

E

[
X2

1

(lg |X1|)2α

]
< ∞.

This complete the proof the Theorem1.1. Making use of the parallel method
as in proof of Theorem 1.1, we can prove Theorem 1.2.
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