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Abstract

In this paper, we give some results of the oscillations criteria of the solution
for some higher - order equations with deviating arguments , and note of the
impulsive hyperbolic equations.We get some new conclusions, which generalize
the results in [4] and [5].
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1 Introduction and Lemma

Recently, the oscillation of solutions for higher-order partial differential
equations with deviating arguments is widely usually discussed (see [2]-[4]etc),
Aside from their intrinsic interest, oscillation of solutions is very important in the
domain of physics(this things are interesting with some example). In this paper,
we consider a more generalized higher —order equation

Now in the direction of [2], our conclusions extend and complete the previous
results in [1]-[5] .

Let Q be a bounded domain of R having sufficiently smooth boundary

oQ ,and n be an even positive integer number , (x,t) € Qx[0,0) AG, Let
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P,(x,t) == a, () Au, (x,t) +Db;, (t)A%u, (x,t) +c, (t)A’u, (x,t) .We consider the
oscillation of solutions of systems:

o"u, (x,t) N o"u, (x,1)
ot" ot

=Py (1) + P (x,t = p (1))
—i p; (X, u; (X, t=o(t)),i=12,---,m *)

(where P,(x, t- 5, (1) )= Y[, (DA +b, (DA +, (DA Tu,(x , t= p, (V) , 7

k=1

denotes the derivative in outward normal direction on 0Q, and.u, (x,t)is defined

82

2

N
to be real function ,and A=Y A = A(A), A’ = A(N?),--- .Let g, (xt) be

i=1

a  non-negative continuous function in 0Qx[0,) , and satisfying two

conditions:
S g, (0w, (0) =0, P4 1 g, (1) =0,
‘Mzé‘—(x’t) +g, (0 U (D =0, (1) €0Qx[0,0), (i=12,+-,m) (@Q,)
Y
and

u (x,t) =0, Au, (x,t) =0, A’u, (x,t) =0, (X, t) € dQx[0,0) (i =12,---,m).(Q,)
By the definition and some prescribe in [2] , we assume that it
satisfies (H):
(G,) o, p, €C([0,x),[0,)) ,and !im(t—a(t)) = oo,

lim(t—p, (1)) =0,k =12+,

(G,) Py (%, ) C(G,R), p; (x, 1)> 0,p, (h=min p, (x.t) p, ®=sup |p(x.1).

xeG xeG

QW=min {p, (- D p,® 120, i=12,m;j=12,-m

j=1, j#i
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(G,) a;,a, €C([0,x),[0,0)),k =12,---,s.
We will give two theorems to extend some results which are similar to in [2].

Remark If we take p (t), ¢, (t) =0 in (*),then we get theorem 1 in [2],and

From the last part of proof of theorem 1 in [2],we have the following two lemmas
(lemma 1 and lemma2).

Now we list following lemma (by V; (t) :IQZi(x,t)dx, and V ()=>V;(t))
i=1

Lemmal If
dn dn—l
e .z, (x,t)dx)+w( [ Z,(x ) <py O [ Z(xt-o®)dx+
iﬁ.(t)jgzj(x,t o)X t2t,i =12, m. 1)

then
VO 0)+V O (0)+Q()V(t-o(t)) <0, t>t, .

Proof From V , (t) :.[in (x,t)dx, and V (t)= Zvi (t) ,and the last part of proof
i=1

of theorem 1 in [2] ,it is easy to get it, So the proof of the lemma is omitted.

Lemma 2 If
VO +V OV 0)+QM)V (t-o(t) <0, txt (2)
then fQ(t)dt<oo

Proof It is as same as the last part of proof of theorem 2 in [2]
In the following part, we will give out oscillation criteria of theorems for

system (*)-(Q,).
2 Several theorems

Theorem 1 If fOQ(t)dt =, t,> 0 then all solutions of the system (*)-(Q,)

are oscillationin G .
Proof We suppose to the contrary there exists a non-oscillation solution
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u(x,t) = (u,(x,1),u,(x,t),...,u, (x,t) ) of the system (*)-( Q,) for some
0<t,<t,|u;(x,t)>0.Let & =signu,(x,t),i=12,---,mand Z, (x, )=5, u;(x,t).

Then we have Z, (x, t)>0, where (X ,t)e Qx[t,,») .

From condition (G 1), we easily know that there exists t, >t, such that when

t>t,, we have Z,(x,t)>0,Z,(x, t- p, (t)) >0 ,Z, (X, t-o(t)) >0. where (X,

t)EQX[tl,OO)’i :1721"'$m; k=1,2,"-,S.

Integrating both side of (*) for x overQ, we have that

n-1

({Qu(x,t)dx) ¥ :t”‘l ([uexdx)= [ Pxbax + [ Pt p ()dx

n

dt"

-leij(x,t)jg u;(x,t-o(t)dx txt, i=12-,m. Thatis
<

dn dn—l
2 ([, 2 0o ([ 20 [P+ [ POt = p, (020
i Pt uxt-o)dx, t2t,, i=12,m. 3)

Similar to the proof of theorem 1 , by Green identity and boundary value

conditions (Q, ),we have that

jQ&zi (x,t)dx = j .

2
INZ,(X1) 4 =[_ g,(xt) Z,(x)ds <0, and
oy @

oN°Z,(x,t= p, (D)

jQASZi(th_pk (t))dX:LQ on

= [/ (xt=p, (O)Z;(x.t - p, (B)ds <0.

OAZ, (X, 1)

ngzzi (x,t)dx = j I

:-J:‘Q g; (x,t)Z; (x,t)ds < 0,and also that
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A8Z, (Xt = py (1)) 4o
on

ngzzi (X,t— p, (t))dx= jQ
=[_ 0/ (xt=p (0)Z, (- p, (1))ds <0.

and J'QAZi(x,t)dx:J' Mds— J‘mgi(x,t)zi(x,t)dsso, i=12,---,m

J, 82,00t p = [, A2,

= [ 9,06t= p (Z(xt - p, (B)ds <0.
Thus from above stating and combing conditions (G, ), (3) holds. Now by lemma

1 and lemma 2, we have I:OQ(t)dt < oo, which is contradictory to the condition of

theorem .Then this theorem is proved.

Corollary If the differential inequality (2) has no eventually positive solution,

then all solution of (*)-(Q,) are oscillation in G (the same as corollary 2 in [2] ).
It is well known that the first eigenvalue A, of the problem
Ap+Ap=0iIn Q, =0 on 0Q

IS positive and the corresponding eigenfunction ¢ is positive inQ).

Lemma 3 (see the proof of theorem 2 in [2] ) Assume that

d ™D

I U Z; (%, t)€0(X)dX)

<p oy O] Z,t-o®)e0d+ DB O[ Z (t-o®)e()dx, t2t,, (3

J L

Then V , ™ (®)+V , "D ®)+QM)V (x,t — o(t)) <0, t>t,
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Theorem 2 If fQ(t)dt =oo,t, > 0, then all solutions of the systems (*)-(Q,)

are oscillation in G.
Proof . Suppose to the contrary .Then there exists a non-oscillation solution :

u(x,t) = (u (x,t),u,(x,t),---,u, (x,t)) of system (*)-(Q,) in the domain

Qx[t,,+o) for some t, >0.For convenience and simplicity, we may take as

0 <t, <t, [u(xt) >0, (i=12--m ) and Z, (x, 1) =& u(xt),

and o, =signu;, (x,t) . Then we have Z, (x,t) >0. From (G, ) there exists t, > t, ,such

that when t>t,, we have Z, (x, t)>0, Z, (X, t- p, (t))>0,i =1,2,---,m
k=12,---,5. (X, t)e Qx[t,,o).

Multiplying both sides of (*) by ¢(x), and integrating for xonQ, we get

n-1

dt"?

n

dt"

JLuxto0oax) + S([uoeeos) = [RxOes

jQ P, (x,t— p, (t))@(X)dx - i jQ P, (X, )u; (X, t— o ())p(x)dx, t=t i=12,-,m

Therefore, we have that

)

=a, (1) AZ, (X Dp()dx+--+ ¢ O] AZ,(x p(x)dx

+3 a, ] Z, (- 0, O)p(dx +-+ 3, O], AZ(xt - p, Op(x)dx

z;ﬁ— J, P DZ;(x,t = o ®)p(0dx 21,

j=1
From Green identity and boundary value conditions (Q, ) we obtain that

jg AZ. (X, D)p(x)dx =- 4, jin (X, )p(x)dx < 0,-++, <0,
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[ AZ; (xt - p, O)p(x)dx <0,
and
(22, (x,t=p, )p(X)dx 0.+, [ AZ;(x,t - o O)p(x)dx <O,

t>t,i=12,---,m.
Then (3)’ holds .By lemma 3 and lemma 2, we havefQ(t)dt<oo, which is

contradictory to the condition of the theorem.Then all solutions of (*),(Q,) are

oscillation inG.The proof of theorem 2 is therefore completed .

3 Some Note of Several Oscillation Criteria

We may extend the results of the impulsive hyperbolic equations for (2r+1)
order case by using some definitions and some stating results in [3] .When r=0 or
r=1 we will give out some results in [3]-[4] respectively , which are is also new

things for this direction .
In this section, let Q also be a bounded domain in R"with a piecewise

smooth boundary 0Q , and PC(R,,R,)={x(t):R, »> R,,x(t) is piecewise
continuous for te R, ,t = t,, x(t; ), x(t;)existand x(t.) = x(t; ),k =1,2,--},

limt, =0,0<t <t, <---<t, < ,etC.

k—a0

We make it satisfy following conditions:
(H,)
a(t),a,(t) e PC(R,,R,), 4(t) e PC*(R,,R,), (i=12,---,m); o(t), p;(t) e PC
(R,R.),and limo(t) =limp;(t) =0, and 1:QxR xR >R, f e PC(G,R).
(H,) c(xt,&En)ePC(GxRxR,R),  c(xt,& )= pt)h(E) for  all

(x,t,&,meGxR, xR, t=t, where p(t)ePC(R,,R,) and that his

continuous ,positive and convex function in R,
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We assume that they are left continuous, at the moments of impulse the
following relations u(x,t,)=u(xt,) ,and u(xt;)=u(xt)+1(xt,u(xt.)),

are satisfied.
We consider the systems:

m

st_zz[u + jz_;/li (tu(x,t—7,)]

=a(t)A’u +Zk:aj (A u(x, p; (1)) —C(xt,u(x,t),u(x, o)) + f(xt),

j=1

(x,t) e Qx(0,0) =G,t #t,.

u(x,t))—u(x,t) =I(x,tu),t=t k=22 4)
with boundary condition:
2 2r
6—u=w, o =y, oA :%'m’aA "=y, on aQxR,.t=t,, (B)
oy oy - oy oy

Theorem 3 Assume that (H,)—(H,) hold, and satisfy (A) for any function
ue PC(Q2xR,,R,)and constant «, >0 those

jQ (X, t, u(x,t))dX < & Lu(x,tk)dx,k =12,
hold. .
If u(x,t) is a positive solution of the problem (4)-(B) in the domain
Qx[t,,) forsome t, >0, then the impulsive differential inequalities of neutral

type

[W(t)=i/1i(t)W(t—Ti)]"+ PORW(e®) <H (@), (xt)eQx[tyx), t+t, ,

W) < L+ e W(t),k =12, ()

have an eventually positive solution

W (t) =ﬁj‘gu(x,t)dx
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where H(O) = o A0V (D) + 28, O (o, O+ 030

t=t,,
Proof Let u(x,t) be a positive solution of problem (4)-(B) in the domain
Qx[t,,+oo) for some t., >0.
For t=t,, itfollowsfrom (H,) thatthereexistsa t, >t, such that
u(x,t—7;)>0, u(x, p;(t)) >0, u(x,o(t)) >0 in Qx[t;,),i=12---,m

j=12,- k.

Thus , we obtain that

6—[u + Zl (t) u(x,t—z,)] < a(t)A’**u +Za (HA™u(x, p; (1))

=1

— p@)hu(x,o(t)) + f(xt), (x,t) e Qx[t,,o),t =#t,. (6)
From condition (B), Green identity and Jensen’s inequality, it follows that

j Audx = J' —ds— LQ‘/’dS j APudx = J. %ds— I w,ds - J.QAz”ludx:

20 l//2rds ;

j Au(x, p; (t))dx = j aiu(x, pj(t))dszj w(x, p; (1))ds ,and by similar
Q oQ 7/ 0Q

calculating this integration we have that
[A (%, o, (0)dx = [y, (.0, (D).

Therefore integrating (6) for x over Q, we obtain

gt—zz[ IQudx + iZZ:;ti (t)jQu(x,t —17;)dx]
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<a(t) jQAz”ludx + ila @ jQ AU, p; ()dX — p(t) jQ h(u(x, o(t)))dx +

jQ f (x,t)dx

<a(0] v 85+ 228, 0], (o, 008 ~pOBNGE [ u(x.o0))
[ Foondx tet, 2t

where |Q] = jgdx .Set W (t) = ﬁfgu(x,t)dx , Thus we have
WO+ D4, OWE-7)}"+ POMW ()}

< ﬁ{fm[a(t)wzr (x1t) + Z a; (thy,, (X, p; (t))}1ds + IQ f (x,t)dx}

=H(t), (x,t) € Qx[t,,0),t £t,, )

For t=t,, by (4)wehave (k=12
[ WOet) —ut))p0)dx = [ 106, u(xt))e()dx < o, [ u(x,t)p(x)dx,
So [ u(xt))e()dx < (L+e,) [ u(x e(x)dx, (k =1.2,---) (8)
Hence the inequalities (7)-(8) imply that the function W (t) is a positive solution

of the impulsive differential inequality of neutral type in (4) for t>t,. Therefore
this ends the proof .

Remark. When r=0 we get the theorem 2.3 in[5] ,andwhen r=1thatisa
sixth-order case .

Theorem 4 Assume that same as theorem3 that (H,)—-(H,)and (A)hold,

and that
(A" c(x,t,-¢,—n)=—-c(xt,,&n) forall (x,t,&,7)eGxRxR, t=t,,
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[(xt,,—u(xt)) =-1(xt,u(xt)), t=t, (k=12,---), and both the

impulsive differential inequalities of neutral type (4) and

[V({®)+ iﬂi OV (t=7)]" +(2) " aVv () + (/Io)z”lzaj (tV (p; ()

+p(Oh(V (o(t)) <-F(1), t=t,

V()< A+ V(L) k=12, (8%)
have no eventually positive solution. Then there every nonzero solution of the
problem (4)-(B,) is Oscillation in the domain G=QxR, .

Proof The proof is similar to the theorem 2 in [4], so we omit it.
Remark When r=1 we get the theorems 1-2 of [3] ,and When r=0 we get the
theorem 2.2 of [5]. There is taking r =2,3,---, then now we have more results.

4 Some examples

Example 1 We consider that system (5)-(5)’:

o°u, (x,1) . o°u, (x,t)
ot ot°

=(A° + A’ + 4A)u, (X, 1) +%Aul(x,t —37”)

—3u,(x,t - 37) - (g)uz(x,t ~37) (9)

o°u, (x,t) . 0°u,(x,1) 1 37
gtﬁ + (;5 :(A3+A2+4A)u2(x,t)+EAu2(x,t—7)
3 b
—(—E)Ul(X,t—ﬂ')-3U2(X,t—ﬂ') 9)
where (x,t) € (0,7) x[0,). The boundary value condition :

9
OX

2 2
2y =0, u,0.1) :aiui(ﬂ,t) ~0,t>0,i=12.
X

(0,t) =
u: (0.9 OX 0 NG

Letn=6,N =1,m = 2,5 =1.a,(t) = 4, a, () =%,pl(t) =377Z,0'(t) -



712 Chen Ning

N |-

Py (X 1) =3, p, (X, 1) = gv Py (X, 1) = —g, P (X, 1) =3 a,(t) =4, ay(t) =

Q=(0,7), and Q(t):%.
It satisfy all condition of theorem 1, then all solution .of this system are

oscillation on (0, 7)x[0,) (In fact, we have that u,(x,t) = cosxsint,

u, (x,t) =cos x cost are oscillation solution of the system (9)-(9)”).
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