
Applied Mathematical Sciences, Vol. 3, 2009, no. 17, 813 - 824

The Cardinality of a Sphere

Relative to an Edit Distance

Othman Echi

Department of Mathematics, University Tunis-El Manar
Faculty of Sciences of Tunis

“Campus Universitaire” 2092 Tunis, Tunisia
othechi@yahoo.com

Abstract. Let Σ be an alphabet (a finite set). We denote by Σ∗ the set
consisting of all finite words (or strings) that can be made from the letters
(or phonemes). The set of all n-letter words over Σ will be denoted by Σn.
Let w be an n-letter word in Σn. This paper deals with the cardinality of
the sphere SH(w, p) := {u ∈ Σn | H(w, u) = p} of center w and radius p
(p ∈ N

∗) relatively to the Hamming distance H on Σn. A new distance T is
defined on the language Σ∗ and the cardinality of the corresponding sphere
ST(w, p) := {u ∈ Σn | T(w, u) = p} is also computed.

These cardinalities are showed to satisfy some curious recurrence relations.
These recurrence relations incite us to introduce new types of binomial coeffi-
cients and binomial formula.
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Introduction

Let Σ be a finite set (usually called an alphabet). We denote by Σ∗ the set
consisting of all finite words (or strings) that can be made from the letters (or
phonemes, following the linguistic terminology). A word does not have to be
meaningful in any language.

A word over an alphabet Σ is an element w = (a1, . . . , an) of the cartesian
product Σn, the number n is called the length of w (we denote by l(w) := n);
ai is called the ith letter of the word. We write simply w = a1a2 . . . an.

It is also convenient to include in Σ∗ an empty word denoted by ε, and
defined to be the word with no letters (we say that ε is of length 0, l(ε) = 0).
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Two words w, w
′
are said to be equal if they have the same length, and for

each i, the ith letter of w is the ith letter of w
′
.

The set of all n-letter words over Σ will be denoted by Σn. When we use the
alphabet Σ = {0, 1}, then Σ∗ is the set of all possible binary words. Binary
words are extremely important in storing data into computers.

Let Σ be an alphabet; then any subset of Σ∗ is called a language over Σ.
For example the set of all English (resp. French) words over the alphabet
Σ = {a, b, c, . . . , x, y, z} is a language over Σ called the English (resp. French)
language.

The language Σ∗ will be called the improper language over Σ.

0.1. Hamming distance. Richard Hamming is one of the founders of mod-
ern coding theory [5]. His research has included work in the areas of coding
theory, numerical methods, statistics and digital filtering. Hamming defined
the distance between the bit strings x = x1x2 . . . xn and y = y1y2 . . . yn as the
number of positions in which these strings differ; we denote by H(x, y) this
distance (thus the hamming distance between two strings equals the number
of changes in individual letters needed to change one of the strings into the
other).

Many codes (for instance, ASCII code) have the property that each character
is given a code of the same length. Such a character code is called a fixed length
character code. For codes with fixed length character, there is an important
type of decoding, namely the nearest neighbor decoding. This type of decoding
is based on Hamming distance. It is also known that nearest neighbor decoding
gives us the most likely codeword sent, so that it is also maximum likelihood
decoding.

The Hamming distance is popular in the Knowledge Representation commu-
nity; however, the assumption that it measures only the distance between two
strings with the same length is extremely compelling and gives the Hamming
distance very little flexibility.

0.2. Edit Distance. The Edit distance(or the Levenshtein distance) between
two strings x = x1 . . . xn and y = y1 . . . ym is the minimum number of “er-
rors” (edit operations) needed to transform x into y, where possible operations
are:

• Insert a character:
insert(x, i, a) = x1x2 . . . , xiaxi+1 . . . xn.

• Delete a character:
delete(x, i) = x1x2 . . . xi−1xi+1 . . . xn.

• Modify a character:
modify(x, i, a) = x1x2 . . . xi−1axi+1 . . . xn.

The Edit distance between the strings x and y will be denoted by Ed(x, y).
When you run a spell checker on a text, and it finds a word not in the

dictionary, it normally proposes a choice of possible corrections.
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If it finds “stell” it might suggest steal, steel, stele, sell, shell, spell, stall,
still, stull and swell. As part of the heuristic used to propose alternatives,
words that are “close” to the misspelled word are proposed. The suggestions
or propositions are based on the Edit distance.

Edit distance is extensively used in computational biology to explore which
DNA sequences are likely mutations of one another (see Waterman 1989 [12],
Waterman 1995 [13], Crochemore and Gusfield 1994 [2], Farach- Colton 1998 [3]).

Dialectology, is the study of how language varies geographically. It is one of
the oldest branches of linguistics; the early works date from the 19th century
(see Petyt (1980) [7]).

Levenshtein distance is also employed in Linguistics and especially in Di-
alectology (see for instance the application of Levenshtein distance to speech
recognition Veldhuijzen van Zanten et al. 1999 [10]). Other researchers have
used variants of Levenshtein distance to diagnose potentially pathological pro-
nunciation deviation (see Connolly 1997 [1]).

0.3. A new distance. We introduce, here, a new distance defined on the
language Σ∗ over an alphabet Σ.

Let us make some notations:

– If w = w1 . . . wn ∈ Σn, then for i ≤ n, we denote by [w]i the word
w1 . . . wi.

– If u, v ∈ Σ∗, then we denote by H(u, v) the Hamming distance between
[u]i and [v]i, where i = min{l(u), l(v)}

Constructing a distance is always interesting; as said “When you can mea-
sure, [. . . ] you know something” -Lord Kelvin-

Definition 0.1. Let Σ be an alphabet. We define the mapping

T : Σ∗ × Σ∗ −→ N

which takes the pair (u, v) to T(u, v), where

T(u, v) = H(u, v) + |l(u) − l(v)|.

with N = {0, 1, 2, 3 . . . }.

We will prove in the next section that T is a distance (a metric) on Σ∗.
This distance may also be useful in dialectology and pathological pronunci-

ation deviation.

In this paper, we compute the cardinalities of the spheres SH(w, p) and
ST(w, p) of center w and radius p (p ∈ N

∗) relatively to the metrics H and
T respectively. These cardinalities are showed to satisfy some curious recur-
rence relations. These recurrence relations incite us to introduce new types of
binomial coefficients and binomial formula.
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1. The metric T

The following notion is interesting since it links integer valued metrics on
Σ∗ and the Hamming distance.

Definition 1.1. Let Σ be an alphabet. A metric δ : Σ∗ ×Σ∗ −→ N is said
to be compatible with the Hamming distance, if for any two strings with the
same length u, v in Σ∗, we have δ(u, v) = H(u, v).

Example 1.2. The Edit distance is not compatible with the Hamming dis-
tance. Indeed, if we let Σ := {0, 1, 2} and u = 012, v = 120, then H(u, v) = 3.
Let us make the following edit operations:

– insert(u, 3, 0) = 0120 := u1,
– delete(u1, 1) = 120 = v.
Thus, Ed(u, v) = 2.

Firstly, it is worth noting that “T is a metric” do not follows immediately
from the fact that “H is a metric”. Indeed, the expression H(u, v) does not
satisfy the triangle inequality nor the axiom of separation. For the triangle
inequality, take for example Σ = {0, 1} and u = 001, v = 0001 and w = 00;
then we have

1 = H(u, v) ≤ H(u, w) + H(w, v) = 0 + 0.

Proposition 1.3. Let Σ be an alphabet. Then the following properties hold:

(i) T(u, v) ≥ 0, for all u, v ∈ Σ∗.
(ii) T(u, v) = 0 if and only if u = v.

(iii) T(u, v) = T(v, u), for all u, v ∈ Σ∗.
(iv) T(u, v) ≤ T(u, w) + T(w, v), for all u, v, w ∈ Σ∗.
That is to say T is a metric on the improper language Σ∗.

Proof. Only (iv) needs to be shown.
It will be continent to denote mu,v and Mu,v respectively the numbers

min{l(u), l(v)} and max{l(u), l(v)}, for u, v ∈ Σ∗. Since T is symmetric (state-
ment (iii)), we may suppose without loss of generality, that l(u) ≤ l(v).

First, remark that T(u, v) = |A|, where

A = {i ∈ N
∗ | 1 ≤ i ≤ mu,v and ui �= vi} ∪ {i ∈ N

∗ | mu,v < i ≤ Mu,v}.
Consider the following sets

B = {i ∈ N
∗ | 1 ≤ i ≤ mu,w and ui �= wi} ∪ {i ∈ N

∗ | mu,w < i ≤ Mu,v}
and

C = {i ∈ N
∗ | 1 ≤ i ≤ mv,w and vi �= wi} ∪ {i ∈ N

∗ | mv,w < i ≤ Mv,w}.
By discussing three cases, namely l(w) ≤ l(u), l(u) < l(w) ≤ l(v) and

l(v) < l(w), one may prove easily that A ⊆ B ∪ C; and thus |A| ≤ |B| + |C|,
which gives immediately T(u, v) ≤ T(u, w) + T(w, v), proving that T is a
metric on the improper language Σ∗.
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Remark 1.4. It is easily seen that T is compatible with the Hamming
distance and that for each u, v ∈ Σ∗, we have Ed(u, v) ≤ T(u, v) (we may have
Ed(u, v) < T(u, v); take for instance u = ab and v = b; then Ed(u, v) = 1 and
T(u, v) = 2).

Question 1.5. Let Σ be an alphabet and δ an integer valued metric on Σ∗

which is compatible with the Hamming distance. Is T ≤ δ?

2. Spheres in the Improper Language

Notations 2.1. Let Σ be an alphabet of size k. Let w be an n-letter word
of Σ∗. Then we denote by;

– SH(Σ∗, w, p) = {v ∈ Σn | H(w, v) = p}, where p ∈ N;
– ST(Σ∗, w, p) = {v ∈ Σ∗ | T(w, v) = p};
– SEd(Σ

∗, w, p) = {v ∈ Σ∗ | Ed(w, v) = p};
– The cardinality of SH(Σ∗, w, p) (resp. ST(Σ∗, w, p), resp. SEd(Σ

∗, w, p))
will be denoted by H(n, k, p) (resp. T(n, k, p), resp. Ed(n, k, p)).

The following result compute the cardinality H(n, k, p) and T(n, k, p). Let
us first fix some notations:

For n, p ∈ N, we set

(
n

p

)
:=

n!

p!(n − p)!
if p ≤ n and

(
n

p

)
= 0, if p > n.

Theorem 2.2. For each n, k, p ∈ N, we have:

(1) H(n, k, p) = (k − 1)p

(
n

p

)
.

(2)

T(n, k, p) =
n∑

i=0

H(n, k, i)kp−i = kp−n(2k − 1)n;

if p > n; and

T(n, k, p) =

p∑
i=0

H(n, k, i)kp−i +
n∑

i=n−p

H(i, k, i − (n − p))

=

p∑
i=0

(k − 1)ikp−i

(
n

i

)
+

p∑
i=0

(k − 1)i

(
i + n − p

i

)

if p ≤ n.

Proof. (1) Let I be the set of subsets E of {1, . . . , n} with cardinality p;
for such a subset, we may write in a unique way E = {e1, e2, . . . , ep}, with
e1 < e2 < . . . < ep.

Let w = w1 . . . wn be an n-letter word of Σ∗, we denote by SH(w, k, p) the
sphere of center w and radius p of the improper language Σ∗ relatively to the
Hamming distance. If p > n, then SH(w, k, p) is empty.

Now, suppose that p ≤ n. Consider the map

Φ : ∪[{E} × (Σ \ {we1}) × . . . × (Σ \ {wep}) : E ∈ I] −→ SH(w, k, p)
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defined by Φ(ϕ, λ1, . . . , λp) is the word l1l2 . . . ln, where li = wi whenever
i ∈ {1, . . . , n}\E and li = λi, for i ∈ E.

Clearly, H(w, Φ(E, λ1, . . . , λp)) = p; this is to say Φ(E, λ1, . . . , λp) ∈ SH(w, k, p).
On the other hand, it is easily seen that Φ is a bijective map.

Thus,

H(n, k, p) =
∑
E∈I

(k − 1)p = |I|(k − 1)p = (k − 1)p

(
n

p

)
.

(2) Suppose that p > n. Then any word of ST(w, k, p) is divided into two
words u ∈ SH(w, k, i) and v ∈ Σp−i. More precisely the following mapping is
clearly a bijection.

γ :
n⋃

i=0

(SH(w, k, i) × Σp−i) −→ ST(w, k, p)

(u, v) 	−→ uv

where uv is the concatenation of the two words u, v.
Thus,

T(n, k, p) =
n∑

i=0

kp−i H(n, k, i) =
n∑

i=0

(k − 1)ikp−i

(
n

i

)

= kp−n(
n∑

i=0

(k − 1)ikn−i

(
n

i

)
) = kp−n(2k − 1)n.

Now, suppose that p ≤ n
Let us write ST(w, k, p) = (ST(w, k, p) ∩ Γn) ∪ (ST(w, k, p) ∩ Σ>n), where

Γn = Σ0 ∪ . . . ∪ Σn and Σ>n = ∪[Σi : i ≥ n + 1]
Thus T(n, k, p) = |ST(w, k, p) ∩ Γn| + |ST(w, k, p) ∩ Γ>n|
By using a similar argument as in (1), we see easily that

| ST(w, k, p) ∩ Γ>n |=
p∑

i=0

H(n, k, i)kp−i.

For the other cardinality, it suffices to remark that ST(w, k, p)∩ Γn is equal
to the disjoint union

n⋃
i=n−p

SH([w]i, k, i − (n − p))

where [w]i = w1 . . . wi. Hence

|ST(w, k, p) ∩ Γn| =

n∑
i=n−p

H(i, k, i − (n − p))
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=
n∑

i=n−p

(k − 1)i−(n−p)

(
i

n − p

)

=

p∑
i=0

(k − 1)i

(
i + (n − p)

i

)

Therefore,

T(n, k, p) =

p∑
i=0

(k − 1)ikp−i

(
n

i

)
+

p∑
i=0

(k − 1)i

(
i + n − p

i

)
.

A well known recurrence relation(Pascal’s triangle) of the double sequence

(

(
n

p

)
, n, p ∈ N) is the following:

(
n

p

)
=

(
n − 1

p

)
+

(
n − 1

p − 1

)

for n, p ≥ 1. This yields immediately the following recurrence relation for the
cardinality H(n, k, p):

H(n, k, p) = H(n − 1, k, p) + (k − 1) H(n − 1, k, p − 1)

for n, p ≥ 1 and k ∈ N.
We begin by solving the above recurrence relation under some reasonable

initial conditions.

Proposition 2.3. Let (R, +,×) be a unitary commutative ring and

U : N × (N \ {0}) × N −→ R

be a triple sequence of elements of R satisfying the following properties:

(1) If p > n, then U(n, k, p) = 0, for each k ∈ N \ {0}.
(2) There exists λ ∈ R such that U(n, k, 0) = λ, for each (n, k) ∈ N×(N\{0}).
(3) U satisfies the following recurrence relation:

U(n, k, p) = U(n − 1, k, p) + (k − 1)U(n − 1, k, p − 1)

for n, p ≥ 1 and k ∈ N \ {0}.
Then

U(n, k, p) = λ H(n, k, p) = λ(k − 1)p

(
n

p

)
,

for k �= 1 or p �= 0.

Proof. We use induction(on the integer p). Let P(p) be the following proposi-
tion that involves p;

P(p): “ for each integer 0 ≤ i ≤ p and each integers n, k such that k > 1,

we have U(n, k, i) = λ(k − 1)i

(
n

i

)
”.
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Since U(n, k, 0) = λ, P(0) is true. Suppose P(p) is true and compute
U(n, k, p + 1).

By the recurrence relation (3), we have

U(n, k, p + 1) = U(n − 1, k, p + 1) + (k − 1)U(n − 1, k, p).

But, induction hypothesis, gives

U(n − 1, k, p) = λ(k − 1)p

(
n − 1

p

)
.

Thus, by a trivial iteration, we get

U(n, k, p + 1) = λ(k − 1)p+1
n−1∑
i=p

(
i

p

)
.

On the other hand, we have
n−1∑
i=p

(
i

p

)
=

(
n

p + 1

)
. Therefore,

U(n, k, p + 1) = λ(k − 1)p+1

(
n

p + 1

)
,

finishing the induction.

Corollary 2.4. The cardinality H(n, k, p) is characterized by the following
properties:

(i) H(n, k, 0) = 1, for k > 1.
(ii) If p > n, then H(n, k, p) = 0 for each k > 1.

(iii) H(n, k, p) = H(n − 1, k, p) + (k − 1) H(n − 1, k, p − 1), for n, p ≥ 1 and
k > 1.

Question 2.5. Compute the cardinality Ed(n, k, p).

3. Binomial Coefficients and Binomial Formula

The classical binomial formula (or Newton formula) in an arbitrary ring with
1 where the elements x, y satisfy the commutation relation xy = yx is

(x + y)n =

n∑
k=0

(
n

k

)
ykxn−k,

where

(
n

p

)
:=

n!

p!(n − p)!
, for n ≥ p and

(
n

p

)
= 0, otherwise.

An important generalization first given by Schützenberger [9] is:

(x + y)n =
n∑

k=0

(q; q)n

(q; q)k(q; q)n−k

ykxn−k,

where x, y satisfy the commutation relation xy = qyx, q a scalar, and (a; q)k :=
(1 − a) . . . (1 − aqk−1) if k = 1, 2, . . . , and (a; q)0 = 1.
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Motivated by some applications in quantum group theory and non-commutative
geometry, several authors have considered more general commutation relations.
For instance, Rosengren considered the relation xy = ax2 + qyx + by2 in [8]
and found a nice binomial formula.

Over the years, several generalization of classical binomial coefficients and
binomial formula have been done.

Our goal in this paper is the generalization of Newton formula in a more
general setting (see Definition 3.2).

Motivated by the recurrence relation in Corollary 2.4(iii), we introduce a
new type of binomial coefficients.

Definition 3.1. Let (R, +,×) be a commutative unitary ring and
f : N×N −→ R be a double sequence of elements of R. We say that (f(n, p))
are T -binomial coefficients if the following properties hold:

(i) f(n, 0) = 1, for each n ∈ N;
(ii) f(n, p) = 0, for each p > n;

(iii) there exist α, β ∈ R such that

f(n, p) = f(n − 1, p) + (α + pβ)f(n − 1, p − 1),

for each n, p ≥ 1.

We denote by T p
(α,β)n := f(n, p) and if there is no ambiguity, this will be

denoted by T p
n .

Let n, p ∈ N.

Set Ap
n :=

n

(n − p)
, for n ≥ p and Ap

n = 0, otherwise. Then we have the well

known recurrence relations:

Ap
n = Ap

n−1 + pAp−1
n−1

for n, p ≥ 1; and “Pascal’s formula”:

(
n

p

)
=

(
n − 1

p

)
+

(
n − 1

p − 1

)

for n, p ≥ 1.

It is easily seen that the double sequences (Ap
n) and (

(
n

p

)
) are T -binomial

coefficients.
The following definition is a generalization of the well known binomial for-

mula in a more general setting.

Definition 3.2. Let R be a ring and (E, +, .,×) be an R-algebra with
unit element 1. Let (Fn, n ∈ N) be a sequence of elements of E. We say
that (Fn, n ∈ N) is a Newton formula if there exists a binary operation 	 :
E × E −→ E such that the following properties hold:

(1) (Fn, n ∈ N) is iterated under 	 (i.e.; Fn+1 = F1 	 Fn for each n ∈ N).
(2) f 	 1 = f , for each f ∈ E.
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(3) f 	 (g + h) = f 	 g + f 	 h, for each f, g, h ∈ S.
(4) f 	 (λg) = λ(f 	 g), for each f, g ∈ S and each λ ∈ R.

[Such operation 	 will be called a compatible binary operation with the struc-
ture of R-algebra on E”.]

We will, simply, write Fn = (F1)
�n.

In connection with T -binomial coefficients and Newton binomial formula,
we introduce the following

Definition 3.3. Let R be a commutative ring and x, y be two indetermi-
nates over R. We call T -binomial formula each sequence (Fn(x, y), n ∈ N) in
R[x, y], such that

Fn(x, y) =

n∑
i=0

T i
nxiyn−i,

where (T i
n) are T -binomial coefficients.

The main goal of this section is to compute T -binomial coefficients and show
that each T -binomial formula is a Newton formula in the sense of Definition 3.2.

Proposition 3.4. Let (R, +,×) be a commutative unitary ring and (T p
n , n, p ∈

N) be a double sequence of elements of R such that T 0
n = 1, for each n ∈ N

and T p
n = 0, for each p > n. Then the following statements are equivalent:

(i) (T p
n ) are T -binomial coefficients;

(ii) there exist α, β in R such that T p
n = (

p∏
i=1

(α + iβ))

(
n

p

)
, for each n ∈ N

and p ∈ N \ {0}.
Proof. (ii) =⇒ (i). Straightforward.

(i) =⇒ (ii). We use induction on k ∈ N \ {0}.
– If k = 1, then T 1

n satisfies the recurrence relation:

T 1
n = T 1

n−1 + (α + β)T 0
n−1 = T 1

n−1 + (α + β).

Thus, clearly, T 1
n = n(α + β) = (α + β)

(
n

1

)
.

– Suppose that T l
n = (

l∏
i=1

(α + iβ))

(
n

l

)
, for 1 ≤ l ≤ k; and let us compute

T k+1
n .
By induction hypothesis, we have

T k+1
n = T k+1

n−1 + (

k+1∏
i=1

(α + iβ))

(
n − 1

k

)
,

which gives immediately

T k+1
n =

n−1∑
j=k

(
k+1∏
i=1

(α + iβ))

(
j

k

)
= (

k+1∏
i=1

(α + iβ))

(
n

k + 1

)
,
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finishing the induction.

It will be interesting to give analogous properties of classical binomial coeffi-
cients for the new type introduced here. This is not our purpose in the present
paper.

Theorem 3.5. Let R be a commutative ring and x, y be two indeterminates
over R. Let T p

n be T -binomial coefficients and (Fn(x, y), n ∈ N \ {0}) be a T -
binomial formula; with

Fn(x, y) =

n∑
i=0

T i
nxiyn−i.

We define the operation 	 : R[x, y]×R[x, y] −→ R[x, y], by f 	g = fg+βx2 ∂g

∂x
.

Then, for each n ∈ N \ {0}, we have Fn = (F1)
�n; accordingly each T -

binomial formula is a Newton formula in the R-algebra (R[x, y], +, .,×).

Proof. Let us write Fn(x, y) =
n∑

i=0

T i
nxiyn−i, where (T i

n) are T -binomial coeffi-

cients. There exist α, β ∈ R such that

T k
n = T k

n−1 + (α + kβ)T k−1
n−1 ,

for each n, k ≥ 1. Then, for n ∈ N
∗, we have

Fn(x, y) =

n∑
k=0

T k
n xkyn−k = yn +

n∑
k=1

T k
n−1x

kyn−k +

n∑
k=1

(α + kβ)T k−1
n−1 xkyn−k

= yn + y(

n−1∑
k=1

T k
n−1x

ky(n−1)−k) + α

n∑
k=1

T k−1
n−1 xkyn−k + β

n∑
k=1

kT k−1
n−1 xkyn−k

= yn+y(Fn−1(x, y)−yn−1)+α

n−1∑
k=0

T k
n−1x

k+1y(n−1)−k+β

n−1∑
k=0

(k+1)T k
n−1x

k+1y(n−1)−k

= yFn−1(x, y) + αxFn−1(x, y) + βxFn−1(x, y) + βx2∂Fn−1

∂x
(x, y)

= (y + (α + β)x)Fn−1(x, y) + βx2 ∂Fn−1

∂x
(x, y)

= F1(x, y).Fn−1(x, y) + βx2∂Fn−1

∂x
(x, y).

If we define 	 : R[x, y] × R[x, y] −→ R[x, y], by f 	 g = fg + βx2 ∂g

∂x
,

then clearly, 	 is a binary operation which is compatible with the structure
of R-algebra on (R[x, y], +, .,×); and we have Fn = (F1)

�n, for each n ∈ N
∗.

Therefore, (Fn, n ∈ N) is a binomial formula.
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