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Abstract

Based on the goodness of fit approach, a new test is presented for
testing exponentiality versus decreasing (increasing) variance remaining
life distribution DVRL (IVRL). The percentiles of these test are tab-
ulated for sample sizes n=5(1)6(2)50. It is shown that the proposed
test is simple, has high relative efficiency for some commonly used al-
ternatives and enjoys a good power. An example in medical science is
considered as a practical application of the proposed test.
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1 Introduction

The variance residual life (VRL) distributions are useful in many areas

including biometry, actuarial science and reliability. Let T denote the life time

of an equipment distribution function F (x), survival function F = 1−F , mean

life μ =
∫ ∞
0 F (u)du and variance life σ2 = var(T ) both assumed finite. The

mean residual life (MRL) and the variance residual life (VRL) are defined as

the following:

μ(t) = E{T − t|T ≥ t} =

∫ ∞
t F (u)du

F (t)
, t ≥ 0, (1.1)

and

σ2(t) = var{T − t|T ≥ t} = var{T |T ≥ t}. (1.2)
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Consider E[U2/t] = − ∫ ∞
0 u2dF (u/t), integrating by parts, one have

σ2(t) =
2

F (t)

∫ ∞

t

∫ ∞

y
F (x)dxdy − μ2(t), (1.3)

let ν(y) =
∫ ∞
y F (x)dx and Γ(t) =

∫ ∞
t ν(y)dy, then (1.1) and (1.3) become as

the following:

μ(t) =
ν(t)

F (t)
, (1.4)

and

σ2(t) =
2

F (t)

∫ ∞

t
ν(y)dy =

2Γ(t)

F (t)
− μ2(t). (1.5)

or

σ2(t) =
2F (t)Γ(t) − μ2(t)

F
2
(t)

. (1.6)

A distribution function F is said to be a decreasing (increasing ) variance

residual life DVRL (IVRL) if σ2(t) is nondecreasing (nondecreasing) function

of t ( i.e.dσ2(t)
dt

≤ (≥)0). Differentiating (1.4) and (1.5) with respect to t, we

have
dμ(t)

dt
= −1 + ν(t)μ(t). (1.7)

dσ2(t)

dt
=

2f(t)Γ(t)

F
2
(t)

− 2ν(t)

F (t)
− 2μ(t)

dμ(t)

dt
. (1.8)

Using (1.4) and (1.7) in (1.8), we obtain

dσ2(t)

dt
= r(t)[σ2(t) − μ2(t)],

where r(t) = f(t)

F (t)
. Since r(t) is nonnegative for all t, let us recall that F (t)

is DVRL (IVRL) if σ2(t) ≤ (≥)μ2(t), by using (1.16) this implies that F (t) is

DVRL (IVRL) if

2F (t)Γ(t) ≤ (≥) 2ν2(t).

Now, we have the following definition

Definition (1.1): A life distribution F , with F (0) = 0 and its survival func-

tion F is said to have DVRL (IVRL) class of life distributions if

F (t)Γ(t) ≤ (≥)ν2(t). (1.9)

Launcer (1987), Gupta (1987), Gupta et al (1987), Kanjo (1996) and Gupta

and Kirmani (2000) are studied characterization of this class and used it to
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find better bounds on moments and survival function. The null distribution

for DVRL(IVRL) is the exponential. Thus we often encounter testing H0 : A

life distribution is exponential versus H1 : It is DVRL (IVRL) and not expo-

nential. This testing problem was investigated by Kanwar and Madhu (1991),

Fango(1996) and recently by Abu-Youssef (2004, 2007). However in contrast

to goodness of fit problems, where the test statistics is based on a measure

of departure from H0 that depends on both H0 and H1. Most tests of life

testing setting included those refereed above did not use the null distribution

in devising the test statistics, which resulted in test statistics that are often

difficult to work with require programming to evaluate.

Recently Ahmad et al(2001), El-Bassiouny and El-Wasel (2003) and Abu-

Youssef(2007) were used a new methodology for testing by incorporating both

H0 and H1 in devising the test statistics for testing H0 against the alternative

the life distribution is IFR, NBUC, HNBUE and DMRL classes of life dis-

tributions. They obtained very simple statistics that are not asymptotically

equivalent in distribution and efficiency to classical procedure but also better

in finite sample behaviors. Our goal in this paper is to use similar methodol-

ogy to obtain a very simple statistics for testing H0 against H1. The thread

that connects most work mentioned here is that a measure of departure from

H0, which is strictly positive under H1 and is zero under H0. Then, a sample

version of this measure is used as test statistics and its properties are stud-

ied. In section 2, we propose a test statistic, based on the goodness of fit

approach, for testing H0: F is exponential against H1: F is DVRL (IVRL)

and not exponential. We then present Monte Carlo null distribution critical

points for sample sizes n = 5(1)6(2)50. In section 3 we calculate the efficiency

of the test statistic for some common alternatives and compared them to other

procedures. In section 4 we give simulated values of the power estimates of the

test. Finally an application in medical science was introduced in section 5.

2 Testing DVRL (IVRL) class of life distribu-

tion

The test presented have depends on a sample X1, X2, . . . , Xn from a pop-

ulation with distribution F . We wish to test the null hypothesis H0 : F is

exponential with mean μ against H1 : F is DVRL (IVRL) class of life distri-

bution and not exponential, using the inequality(1.9), one used the following
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as a measure of departure from H0 in favor of H1:

δv =
∫ ∞

0
[ν2(t) − F (t)Γ(t)]dt. (2.1)

But ∫ ∞

0
ν2(y)dy =

∫ ∞

0
x2ν(x)dF (x) +

2

3
x2F (x)dF (x). (2.2)

and

∫ ∞

0
F (x)Γ(x)dx =

∫ ∞

0
xΓ(x)dF (x) +

1

2

∫ ∞

0
x2ν(x)dF (x)

+
1

3
x3F (x)dF (x). (2.3)

Then, from (2.2) and (2.3), the measure in (2.1) becomes as the following:

δv =
∫ ∞

0
[
x2

2
ν(t) +

x3

3
F (t) − xΓ(t)]dF (t). (2.4)

Note that under H0 : δv = 0, while under H1 : δv > (<)0

Denote X(1), X(2), . . . , X(n) be the corresponding ordered sample and if Fn =
i
n
, xε(Xi, X(i+1)]) is the empirical distribution function, then F̂n = 1

n

∑n
j=1 I(Xj >

x) is empirical survival function, where i = 1, 2, ..., n. and the empirical func-

tions of δv and Γn(x) are ν̂n(x) = 1
n

∑n
j=1(Xj − x)I(Xj > x) and Γ̂n(x) =

1
2n

∑n
j=1(Xj − x)2I(Xj > x) respectively, whereas

I(Xj > x) =

{
1 Xj > x

0 otherwise

In a similar fashion, if F0 denote the exponential distribution, we can take in

place of (2.1 ) or (2.4) the following measure of departure from H0

δv1 =
∫ ∞

0
[
x2

2
ν(t) +

x3

3
F (t) − xΓ(t)]dF0(t), (2.5)

for testing the hypothesis that H0: F is exponential versus H1: F is DVRL

(IVRL) class of life distribution and not exponential. With out loss of gener-

ality we take μ = 1 and thus F0(x) = 1− e−x. In order to derive an expression

for ˆδv1n , we need the following theorem.

Theorem 2.1. Let T be a variable with distribution function F . Then

δv1 = −4 + E[3X − 1

2
X2 + e−X(4 + X − 1

2
X2 − 1

3
X3)]. (2.6)
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Proof. Note that δv1 in (2.5) be written as the following:

δv1 =
∫ ∞

0

x2

2
ν(x)e−xdx +

∫ ∞

0

x3

3
F (x)e−xdx −

∫ ∞

0
xΓ(x)e−xdx

= I1 + I2 − I3 (2.7)

where I1 =
∫ ∞
0

x2

2
ν(x)e−xdx, I2 =

∫ ∞
0

x3

3
F (x)dx and I3 =

∫ ∞
0 xΓ(x)dx

But

I1 =
∫ ∞

0
E(X − x)I(X > x)

x2

2
e−xdx

= E
∫ X

0
(X − x)

x2

2
e−xdx

= −3 + E[X + (3 + 2X +
1

2
X2)e−X ], (2.8)

I2 =
∫ ∞

0

x3

3
EI(X > x)e−xdx

= E
∫ X

0

x3

3
e−xdx

= 2 + E[(−2 − 2X − X2 − 1

3
X3)e−X)], (2.9)

and

I3 =
1

2

∫ ∞

0
xE(X − x)2I(X > x)e−xdx

=
1

2
E

∫ X

0
x(X − x)2e−xdx

= 3 + E[−2X +
1

2
X2 − (3 + X)e−X ]. (2.10)

Using (2.8), (2.9) and (2.10) in (2.7), we get the result.

Note that: δv1 = 0 under H0, while it is positive under H1. Thus based on

a random sample X(1), X(2), . . . , X(n) from a distribution F . We wish to test

H0 against H1, we may be testing on its estimate. A direct empirical estimate

of δv1 is

δ̂v1n = −4 +
1

n

n∑
i=1

{
3Xi − 1

2
X2

i + e−Xi(4 + Xi − 1

2
X2

i − 1

3
X3

i )
}

. (2.11)

To make the test scale invariant, we take

Δ̂v1n =
δ̂v1n

X
3 (2.12)
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Theorem 3.1. As n → ∞,
√

n(Δ̂v1n − Δv1n) is asymptotically normal with

mean 0 and variance σ2 where σ2 is given in (2.13 ). Under H0:σ
2
0 = 0.27869.

Proof. Since Δ̂V 1n and
Δ̂V 1n

μ3 have the same limiting distribution, we use√
n(δ̂v1n − δv1n). Noting that δ̂V 1n is just an average, it is straightforward by

using the central limit theorem the result follows. For the variance

σ2 = E[−4 + 3X − 1

2
X2 + e−4X(4 + X − 1

2
X2 − 1

2
X3)]2. (2.13)

Under H0, Δv1 = 0 and

σ2
0 =

∫ ∞

0
[−4 + 3X − 1

2
X2 + e−X(4 + X − 1

2
X2 − 1

2
X3)]2]e−xdx = 0.27869.

Then the theorem is proved.

3 Monte carlo null distribution critical points

for Δ̂Fn test

In practice, simulated percentiles for small samples are commonly used

by applied statisticians and reliability analyst. we have simulated the upper

percentile points for 90%, 95%, 99%. Table (3.1) gives these percentile points

of statistic Δ̂v1n in (2.12) and the calculations are based on 5000 simulated

samples of sizes n = 5(1)6(2)50. The percentile values change slowly as n

increase.

Table 3.1 Critical Values of Δ̂v1n
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n 90% 95% 99%
5 .0209 .0704 .3085
6 .0209 .0715 .2614
8 .0219 .0643 .2191
10 .0206 .0546 .1553
12 .0215 .0553 .1398
14 .0207 .0517 .1358
16 .0203 .0504 .1196
18 .0222 .0529 .1135
20 .0222 .0503 .1113
22 .0200 .0438 .0930
24 .0200 .0423 .0890
26 .0194 .0427 .0950
28 .0202 .0410 .0841
30 .0196 .0408 .0824
32 .0204 .0424 .0847
34 .0190 .0380 .0796
36 .0194 .0372 .0853
38 .0187 .0375 .0775
40 .0208 .0382 .0731
42 .0191 .0389 .0776
44 .0208 .0391 .0728
46 .0183 .0351 .0716
48 .0182 .0375 .0666
50 .0176 .0361 .0649

To use the above test, calculate
√

nΔ̂v1n/σ2
0 and reject H0 if this exceeds the

normal variate value Z1−α.

4 Asymptotic relative efficiency ( Are)

We compare our test Δ̂v1nto tests Δ̂vn and Δ̂kvn presented by Abu-Youssef

(2004, 2007) for DVR classes of life distributions. The comparisons are achieved

by using Pitman asymptotic relative efficiency (PARE), which is defined as fol-

lows:

Let T1n and T2n be two statistics for testing Ho: Fθε{Fθx}, θn = θ + c√
n

with c

an arbitrary constant, then PARE of T1n relative to T2n is defined by

e(T1n , T2n) =
μ,

1(θo)

σ1(θo)
/
μ,

2(θo)

σ2(θo)
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where μ,
i(θo) = limn→∞ ∂

∂θ
E(Tin)→θo

and σ2
i (θo) = limn→∞ V arE(Tin), i = 1, 2.

Two of the most commonly used alternatives (cf. Hollander and Proschan

(1972)) are:

(i) Linear failure rate family : F̄1θ = e−x− θx2

2 , x > 0, θ > 0

(ii) Weibull family : F̄2θ = e−xθ
, x ≥ 0, θ > 0

The null hypothesis is at θ = 0 for linear failure rate and θ = 1 for Weibull

family. Direct calculations of PAE of Δ̂v1n , Δ̂vn and Δ̂kvn are summarized in

Table (4.1).

Table 4.1 PAE of Δ̂v1n , Δ̂vn and Δ̂kvn

Distribution Δ̂v1n Δ̂Vn Δ̂kvn

F1 (Linear failure rate) 1.54 0.91 0.94

F2 (Weibull) 0.74 1.83 1,89

The efficiencies in Table (4.1) show clearly our statistic (Δ̂v1n) performs better

than Δ̂vn for F1, also it performs better than Δ̂kvn for F1 .

In table 4.2 we give PARE’s of Δ̂v1n with respect to Δ̂vn and Δ̂kvn whose

PAE are mentioned in table 4.1.

Table 4.2 PARE of Δ̂v1n with respect to Δ̂vn and Δ̂kvn

Distribution eFi
(Δ̂v1n ,Δ̂vn) eFi

(Δ̂v1n ,Δ̂kvn)

F1 (Linear failure rate) 1.69 1.64

F2( Weibull) 0.40 0.39

It is clear from Table 4.2 that the statistic Δ̂v1n performs well for F 1 and it

is more efficient. Finally, the power of the test statistics Δ̂v1n is considered for

95% percentiles in Table 4.3 for two of the most commonly used alternatives

[see Hollander and Proschan (1975)], they are:

(i) Linear failure rate : F̄θ = e−x− θx2

2 , x > 0, θ > 0

ii) Weibull family : F̄3θ = e−xθ
, x ≥ 0, θ > 0

These distributions are reduced to exponential distribution for appropriate

values of θ .

Table 4.3 Power Estimate of Δ̂v1n
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Sample Size

Distribution θ n=10 n=20 n=30

F1 1 0.980 0.993 1.000

Linear failure 2 1.000 1.000 1.000

rate 3 1.000 1.000 1.000

F2 1 0.737 0.785 0.785

Weibull 2 0.845 0.880 0.888

3 0.939 0.974 0.983

5 Numerical Examples

Consider the data in Susarla and Van Ryzin (1978). These data represent

81 patients of melanoma. Of them 46 represent whole life time (non-censored

data) and the ordered values are: 13, 14, 19, 19, 20, 21, 23, 23, 25, 26, 26, 27,

27, 31, 32, 34, 34, 37, 38, 38, 40, 46, 50, 53, 54, 57, 58, 59, 60, 65, 65, 66, 70,

85, 90, 98, 102, 103, 110, 118, 124, 130, 136, 138, 141, 234.

Using equation (2.12), the value of test statistics, based on the above data

is Δ̂v1n = −0.0114. This value leads to Ho is not rejected at the significance

level α = 0.05 . See Table (3.1 ). Therefore the data has not DVR Property.
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