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Abstract

A perturbation procedure for the modes and cut-off frequencies of
cylindrical acoustic waveguides of arbitrary cross-section with a small
temperature gradient along the walls was presented in [1, 2]. In the
present paper, that work is extended to arbitrary wall temperature dis-
tributions (“warm waveguides”) as outlined in [3]. We utilize a physical
formulation due to DeSanto [4] which incorporates both an inhomoge-
neous sound speed and a density gradient. This physical model is altered
to include an axial velocity component [5]. The associated eigenvalue
problem [6] is then discretized via the Control Region Approximation
[7, 8] which is a finite difference procedure applicable on arbitrary com-
putational grids [9]. The resulting sparse generalized matrix eigenvalue
problem [10] is then solved numerically [11] using MATLAB c©. This
general computational procedure is then used to study the acoustical
effect of heating (or cooling) the walls of rectangular waveguides [12].
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1 Introduction

Modal propagation characteristics of cylindrical acoustic waveguides at con-
stant temperature have been investigated analytically for canonical duct cross-
sections such as rectangular and circular [6] and numerically for general simply-
connected cross-sections [7]. However, if there is a temperature variation across
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the duct, then these analyses are inadequate. This is due to the inhomogeneous
sound speed and density gradient induced by such a temperature distribution.

Such temperature variations occur in the exhaust systems of vehicles [13]
where the bottom portion of the waveguide is in direct contact with the ambient
atmosphere while the upper portion is either near or in contact with the body
of the vehicle which is, of course, at a different temperature. As we shall show
by our subsequent numerical analysis, such an induced temperature variation
across the waveguide can significantly alter the modal characteristics of the
exhaust system with a consequent modification in its overall effectiveness at
suppressing selected acoustic frequencies.

In ocean acoustics [14], both depth and range dependent sound speeds are
typically considered. Density gradients are usually ignored since the spatial
scale of such variations is much larger than the wavelength of the acoustic dis-
turbance. The same situation obtains in atmospheric propagation [15]. Unlike
such ocean and atmospheric waveguides, the ducts under consideration in this
paper are fully enclosed and hence density gradients must be accounted for.

For small perturbations of an isothermal ambient state, such an analysis
was performed in [1, 2]. In [3], a numerical procedure was outlined for the case
of arbitrary temperature distribution within the cross-section of the waveg-
uide. Full details of the analysis and approximations as well as a supporting
numerical example are provided in this paper.

The present study will commence with the formulation of a physical model
which includes both an inhomogeneous sound speed and a density gradient
across the duct. Uniform axial flow is also accomodated. The corresponding
mathematical model will involve a generalized Helmholtz operator whose eigen-
values (related to the cut-off frequencies) and eigenfunctions (modal shapes)
are to be determined. This continuous problem is discretized via the Con-
trol Region Approximation [7, 8, 9] (a finite difference procedure applicable to
general geometries) resulting in a generalized matrix eigenvalue problem.

The aforementioned generalized eigenvalues and eigenvectors are then ap-
proximated numerically. In turn, this permits the determination of the cut-off
frequency, dispersion curve and pressure distribution for each of the modes.
This procedure is illustrated for the case of a rectangular duct with a heated
wall. All numerical computations were performed using MATLAB c©.

2 Physical Model

With reference to Figure 1, we consider the acoustic pressure field within an
infinitely long, hard-walled, cylindrical duct of general cross-section, W. The
analysis of the modal propagation characteristics of such an acoustic waveg-
uide typically proceeds by assuming a constant temperature throughout the
undisturbed fluid.
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Figure 1: Acoustic Waveguide Cross-Section

However, in the present study, we permit a steady-state temperature vari-
ation throughout the waveguide cross-section (Figure 2). This temperature
variation is due to an applied temperature distribution along the walls of the
duct governed by the boundary value problem

ΔT = 0 in W; T = Tapplied on ∂W (1)

where, here as well as in the ensuing analysis, all differential operators are
transverse to the longitudinal axis of the waveguide.

This temperature variation across the duct will produce inhomogeneities
in the background fluid density

ρ̂(x, y) =
p̂

R · T (x, y)
(2)

and sound speed
c2(x, y) = γR · T (x, y), (3)

where γ is the ratio of specific heats, R is the universal gas constant and p̂ is
the ambient pressure (which is constant).

The self-consistent governing equations for the hard-walled acoustic pres-
sure wave with frequency ω and propagation constant β, ej(ωt−βz) · p(x, y), are
[4] (n is the direction normal to the waveguide wall):

ρ̂∇ · (1

ρ̂
∇p) −

[
∇ · (1

ρ̂
∇ρ̂)

]
p + (

ω2

c2
− β2)p = 0 in W;

∂p

∂n
= 0 on ∂W, (4)
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Figure 2: Temperature Profile

assuming that the fluid is at rest (the cut-off frequencies, corresponding to
β = 0, are unaltered by uniform flow down the duct [5]).

However, a uniform axial flow with velocity V will alter the dispersion
curves for the waveguide modes. In this event, the DeSanto model, Equation
(4) may be modified as follows [5]:

ρ̂∇ · (1

ρ̂
∇p) −

[
∇ · (1

ρ̂
∇ρ̂)

]
p +

[
(ω − V · β)2

c2
− β2

]
p = 0 in W. (5)

We next nondimensionalize the temperature so that the minimum scaled
temperature is unity:

t(x, y) :=
T (x, y)

Tmin
⇒ ρ̂(x, y) =

ρmax

t(x, y)
, c2(x, y) = c2

min · t(x, y). (6)

We then utilize Equation (6) to eliminate the density from Equation (5) which
results in the generalized Helmholtz boundary value problem for p(x, y):

∇ · (t∇p) − t
[
∇ ·

(
t∇

(
1

t

))]
p − β2tp = −Ω2p in W;

∂p

∂n
= 0 on ∂W, (7)

where

Ω2 :=
(

ω

cmin

− Mmax · β
)2

; Mmax :=
V

cmin

. (8)
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Figure 3: Dirichlet/Delaunay Tessellations

3 Control Region Approximation

The Control Region Approximation [7, 8] is a generalized finite difference pro-
cedure that accomodates arbitrary geometries [9]. It involves discretization of
conservation form expressions on Dirichlet/Delaunay tessellations (see below).
This permits a straightforward application of relevant boundary conditions.

The first stage in the Control Region Approximation is the tessellation
of the solution domain by Dirichlet regions associated with a pre-defined yet
arbitrary distribution of grid points. Denoting a generic grid point by Pi, we
define its Dirichlet region as

Di := {P : ||P − Pi|| < ||P − Pj||, ∀j �= i}. (9)

This is seen to be the convex polygon formed by the intersection of the
half-spaces defined by the perpendicular bisectors of the straight line segments
connecting Pi to Pj , ∀j �= i. It is the natural control region to associate with
Pi since it contains those and only those points which are closer to Pi than to
any other grid point Pj .

If we construct the Dirichlet region surrounding each of the grid points, we
obtain the Dirichlet tessellation of the plane which is shown dashed in Figure
3. There we have also connected by solid lines neighboring grid points which
share an edge of their respective Dirichlet regions. This construction tessellates
the convex hull of the grid points by so-called Delaunay triangles. The union
of these triangles is referred to as the Delaunay tessellation. The grid point
distribution is tailored so that the Delaunay triangle edges conform to ∂W. It
is essential to note that these two tessellations are dual to one another in the
sense that corresponding edges of each are orthogonal.



830 B. J. McCartin

Figure 4: Control Region Approximation

With reference to Figure 4, we will exploit this duality in order to approxi-
mate the Dirichlet problem, Equation (1), for the temperature distribution at
the point P0. We first reformulate the problem by integrating over the control
region, D, and applying the divergence theorem, resulting in:∮

∂D

∂T

∂ν
dσ = 0, (10)

where (ν, σ) are normal and tangential coordinates, respectively, around the
periphery of D. The normal temperature flux, ∂T

∂ν
, may now be approximated

by straightforward central differences [16] thereby yielding the Control Region
Approximation: ∑

m

τm (Tm − T0) = 0, (11)

where the index m ranges over the sides of D and τm := τ−
m+τ+

m. Equation (11)
for each interior grid point may be assembled in a (sparse) matrix equation
which can then be solved for T (x, y) (with specified boundary values) and ipso
facto for t(x, y).

It remains to discretize the homogeneous Neumann boundary value prob-
lem, Equation (7), for the acoustic pressure wave by the Control Region Ap-
proximation. For this purpose we first rewrite it in the integral form:∮

∂D
t
∂p

∂ν
dσ −

∫ ∫
D

t
[
∇ ·

(
t∇

(
1

t

))]
p dA − β2

∫ ∫
D

tp dA = −Ω2
∫ ∫

D
p dA.

(12)
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We then approximate each of the integral operators appearing in Equation
(12) as follows:

∮
∂D

t
∂p

∂ν
dσ ≈ ∑

m

τm
t0 + tm

2
(pm − p0), (13)

−
∫ ∫

D
t
[
∇ ·

(
t∇

(
1

t

))]
p dA ≈ −

[∑
m

τm
(tm − t0)

2

2tm

]
· p0, (14)

−β2
∫ ∫

D
tp dA ≈ −β2t0A0 · p0, (15)

∫ ∫
D

p dA ≈ A0 · p0, (16)

where A0 is the area of D (restricted to W, if necessary) and we have utilized
in Equation (14) the fact that

∑
m τm (tm − t0) = 0 implies that

t0
∑
m

τm
t0 + tm

2
·
(

1

tm
− 1

t0

)
=

∑
m

τm
(tm − t0)

2

2tm
. (17)

The hard boundary condition, ∂p
∂ν

= 0, is enforced by simply modifying any
τm in Equation (13) corresponding to boundary edges. Because Δt = 0, the
approximation of Equation (14) remains valid for boundary points provided
that the summation excludes the portion of ∂D lying on ∂W.

4 Generalized Eigenvalue Problem

Substitution of Equations (13-16) into Equation (12) yields the matrix gener-
alized eigenvalue problem [10]

Ap = λBp, (18)

with λ = −Ω2 and where A is sparse and symmetric while B is positive
and diagonal (its elements are precisely the areas of the Dirichlet polygons
restricted to W ). The reality of Ω is guaranteed by the following result.

Theorem 1 The matrix A appearing in Equation (18) is nonpositive semidef-
inite.

Proof: As A is comprised of the discrete operators of Equations (13-15), we
consider separately the effect of each component upon the spectrum of A.
By Gershgorin’s Circle Theorem [17], the matrix corresponding to Equation
(13) is nonpositive semidefinite (since the τm are nonnegative). By the Discrete
Maximum Principle [18], t is positive throughout W so long as it is so along ∂W
(which we have implicitly assumed throughout). Thus, adding the nonpositive
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diagonal matrices corresponding to Equations (14) and (15) only serves to push
the spectrum further to the left. Thus, A is seen to be nonpositive semidefinite.
�

In computing the generalized eigenvalues of Equation (18), λ, we benefit
greatly from the sparsity of A and the diagonality of B [11]. We may efficiently
sweep out the modal dispersion curves by the following numerical procedure.
Fix β ≥ 0 and find Ω =

√−λ from Equation (18). Then, obtain

ω

cmin
= Ω + Mmax · β (19)

from Equation (8) which may then be plotted versus β for any desired mode.

5 Numerical Example

a 

b 

Figure 5: Rectangular Waveguide Cross-Section

With reference to Figure 5, we next apply the above numerical procedure
to an analysis of the modal characteristics of the warmed rectangular duct
with cross-section W = [0, a] × [0, b]. The exact eigenvalue corresponding to
the (p, q)-mode with constant temperature is [12]:

Ω2
p,q = β2 +

(
pπ

a

)2

+
(

qπ

b

)2

. (20)
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Figure 6: (0, 0)-Mode (Hard Wall)
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Figure 7: (1, 0)-Mode (Hard Wall)
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Figure 8: (2, 0)-Mode (Hard Wall)
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Figure 9: (0, 1)-Mode (Hard Wall)
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Figure 10: Spectral Structure (Warm Rectangular Waveguide)

For this geometry and mesh, the Dirichlet regions are rectangles and the
Control Region Approximation reduces to the familiar central difference ap-
proximation [19]. Also, exact expressions are available for the eigenvalues and
eigenvectors of the discrete operator in the constant temperature case [20].

The lower wall is subjected to the parabolic temperature profile

Tapplied = 1 +
4(Tmax − 1)

a2
· x(a − x). (21)

while the other three walls are set to Tapplied = 1. We then solve ΔT = 0
by the procedure described above subject to this boundary condition for the
cross-sectional temperature profile, T (x, y), which is displayed in Figure 2.

Specifically, we set a = 10, b = 5, Tmax = 2 and V = 0 so that Ω = ω/cmin.
Utilizing 33 × 17 and 17 × 9 computational meshes followed by Richardson
extrapolation [16], we display the first four computed modes (corresponding
to the four smallest generalized eigenvalues) in Figures (6-9). In each figure, the
plot in the upper left corresponds to constant temperature, T = 1, while that
in the upper right corresponds to variable temperature with β = 0. The plots
in the lower left/right correspond to variable temperature with β = 0.5 / 1.0,
respectively. Figure 10 presents the dispersion relation corresponding to each
of these four modes. The dashed curves correspond to constant temperature
while the solid curves correspond to variable temperature. Of course, the cut-
off frequency for each mode corresponds to β = 0.

Collectively, these figures tell an intriguing tale. Firstly, the (0, 0)-mode is
no longer a plane wave in the presence of temperature variation. In addition, all
variable-temperature modes possess a cut-off frequency so that, unlike the case
of constant temperature, the duct cannot support any propagating modes at
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the lowest frequencies. Moreover, the presence of a temperature gradient alters
all of the cut-off frequencies. In sharp contrast to the constant temperature
case, the variable-temperature modal shapes are frequency dependent. Lastly,
the presence of a temperature gradient removes the modal degeneracy between
the (2, 0)- and (0, 1)-modes that is prominent for constant temperature.

6 Conclusion

The preceding sections have presented a physical model as well as a nu-
merical procedure for studying the modal characteristics of cylindrical acous-
tic waveguides in the presence of temperature gradients induced by an applied
temperature distribution along the walls of the duct. Rather than simply mak-
ing the sound speed spatially varying, as is done in atmospheric propagation
and underwater acoustics, we have been careful to utilize a self-consistent phys-
ical model (due to DeSanto [4]) which also includes density gradients since we
have dealt here with a fluid fully confined to a narrow region. Also, we have
extended DeSanto’s model to allow for uniform axial flow down the duct.

While previous work [1, 2] was restricted to small perturbations of a con-
stant temperature profile, the present paper allows arbitrary cross-sectional
temperature profiles. Moreover, the Control Region Approximation developed
herein permits waveguide cross-sections of arbitrary shape. We have presented
a detailed numerical example (utilizing MATLAB c©) intended to intimate the
broad possibilities offered by the resulting numerically computed cut-off fre-
quencies, dispersion curves and modal shapes.
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