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Abstract 
 

This paper presents reliability and availability analysis of a k-out-of-(M+S): G warm 
standby system with time varying failure and repair rates in presence of common-
cause failure. The system composed of two categories of components. One category 
of the components is of type 1 has M components and the other is of type 2 has S 
components. Type 1 have a lower failure rate. Markov method is used to obtain the 
system reliability and availability. A numerical example is given to illustrate the 
theoretical results obtained. Selective plots are shown to demonstrate the effects of 
common-cause failures, number of repairmen and number of components of type 1 
on system reliability and availability. 
 
Keywords: k-out-of-( M+S):G system,  time varying failure and repair rates, r 
repair facilities , generalized transition probability, availability, reliability 
 
 
 
1. Introduction 
 
      Standby systems often find applications in various industrial and other setups. 
The system reliability and availability are increased considerably by the use of this 
form of redundancy. However, the type of redundancy application is dictated by the 
circumstances under consideration and various other factors. The standby redundancy 
represents a situation with one unit operating and a number of on standby. In general, 
there are three types in standby, i.e. cold, hot and warm standby. Cold standby 
implies that the inactive components have a zero failure rate and cannot fail while in 
standby state. Hot standby implies that an inactive component has the same failure 
rate as when it is in operation. Warm standby is an intermediate case and it implies 
that an inactive component has a failure rate between that for the cold and hot 
standby. It is also called dormant failure in some papers. 
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In usual reliability and availability analysis of standby systems, the occurrence of 
common-cause failures is overlooked and only the general failures are considered. In 
recent years, it has been realized that in order to predict realistic reliability and 
availability of standby systems, the occurrence of common-cause failures must be 
considered. A common-cause failure is defined as any instance where multiple units 
or components fail due to a single cause. 
 
                  Here we study a general k-out-of-n: G warm standby system with time 
varying failure and repair rates subject to common-cause failure. Many articles 
concerning the reliability and availability of k-out-of-n warm standby systems have 
been published. Among them, 1-out-of-2 warm standby systems have been studied in 
detail by considering different conditions, such as those cases with or by considering 
general distributions [1], different types of repair facilities [2], correlated failures and 
repairs [3].  
 
                 An algorithm and its computer program for calculating fail-safe and fail-
danger probabilities of k-out-of-n: G system with non identical components is 
presented [4]. Goel et al. [5] analyzed a 1-out-of-3 warm standby system with two 
types of spare units a warm and a cold standby unit, and inspection. A general closed-
form equation was developed for system reliability of a k-out-of-n warm standby 
system where components in k-out-of-n: G standby systems were assumed to be 
statistically identical. In addition, as a general case, system availability of m-out-of-n: 
G warm standby system with identical components was studied [6].  
 
 
                 Zhang [7] dealt with a repairable standby system consisting of (N+1) units 
and a single repair facility, in which unit 1 has preemptive priority both in getting 
operation and in getting repaired. Chryssaphinou et al. [8] considered a 1-out-of-
(m+1) warm standby system with non-identical units. Zhang and Horigome [9] 
derived the availability of a specific warm standby system with two kinds of 
components where priority-standby for one kind of components applies. The 
reliability of a k-out-of-(m+w) warm standby system with m operating units, w warm 
standby and R repairmen in which the balking and reneging of units are considered is 
studied [10]. Zhang et al [11] studied systems with two categories of components 
named k-out-of-(M+N): G warm standby system. It is assumed that the failure and 
repair rates of each component in the system are constants.   
 
            The results mentioned above are limited to 1-out-of-n: G warm standby 
systems or a general m-out-of-n: G warm standby one with identical components or a 
specific system with two kinds of units or a general systems in which the failure and 
repair rates are assumed to be constant.  
 
            In the current paper we study the availability and reliability of a general k-out-
of-(M+S): G warm standby repairable system with time varying failure and repair 
rates in presence of common-cause failures. Such a system is composed of two 
categories of components, one of which is named type 1 and the other type 2. Type 1 
has M components and type 2 has S components. Here, type 1 components have 
priority of operation and repair over type 2, which means that type 1 components are 
desired to perform system function whenever available for use. Type 2 components 
operate if the number of type 1 in operation is not sufficient for the system to function 
normally. By using Markov model, the system state transition process can be clearly 
illustrated, and furthermore, the solutions of system availability and reliability are 
obtained based on this. Some special models are studied to illustrate the solutions of 
the system availability and reliability and the effect of common-cause failure on 
them. The system under consideration fails when there is either a common-cause 
failure or when there are only   (k-1) good components. 
 
Notations 
The following symbols are used in the current paper: 
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λ1(t), λ2(t)      time varying failure rates of [type 1, type 2] components in                       
              active mode     
 
 λ'1(t), λ'2(t)    time varying failure rates of [type 1, type 2] components in 
              inactive (standby) mode 
 
 λc          constant common-cause failure rate  
 
 μ1(t), μ2(t)   time varying repair rates of [type 1, type 2] components 
 
 r           number of repairmen 
 
(i, j)         represent the state of the system, where i and j represent   
            the number of failed components of type1 and type2 respectively 
 
P(i, j)(t)       probability that the system is in state (i, j) at time t 
 
P'(i, j)(t)            derivative of P(i, j)(t) 
 
A(t), R(t)         availability, reliability of system at time t 
 
 
2. Assumptions 
 
      In order to describe such a kind of systems clearly, the following assumptions are 
needed: 
1. Common-cause failure and other failures are statistically independent. 
2. Common-cause failure rates are constant. 
3. Common-cause failures can only occur in a system with more than one good unit. 
4. Common-cause failure rates are the same for the partially or fully operating 
system. 
5. Type 1 components are identical, and each of them has time varying operative 
failure rate and standby failure rate. 
6. Type 2 components are also identical, and each of them has time varying operative 
failure rate and standby failure rate, which different from type 1 components. 
7. Repair rates for types 1 and 2 components are different and time varying. 
8. The states of all components are statistically independent. 
9. There are r repair facilities applied to the system. 
10. When one component fails, it is instantaneously replaced by one of the standby 
components if there is one. 
11. When system fails, no failure will occur for other working components. 
 
 
 
3. The general model 
 
             The Markov state transition diagram is used in analyzing reliability and 
availability of the system. Here, we use the homogenous Markov model to analyze 
system state transition process. The system state transition diagram of a repairable 
standby redundant system with two categories of components and priority-standby for 
one kind can be expressed as one with two dimensions [11].  
 
           Where the system state is represented by (i, j) where i, j denotes the number of 
types 1 and 2 components in failure. Because type 1 components have priority in 
operation and repair, the state transition diagram can be obtained as shown in Figure 
(1). 
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Figure (1) the state transition diagram.  
   
 
      The state transition rates which are related to the state (i, j) shown in Figure (1) 
are given as follows: 
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(2)  
where 
           R is the number of good components of type 1 
           Q is the number of good components of type 2 
           g < i,  0 ≤ g ≤ M ,  and  h < j, 0 ≤ h ≤ S. 
          ),min().()( 1)1( rittjiij μμ =−→                              (3) 
   
                                                                     
        ),min().()( 2)1( irjttjiij −=−→ μμ                              (4)                 
 
    In addition, 0)()1( =−→ tjiijμ  when r ≤ i , 0)()1( =→− tijjiλ , when i=0,      

0)()1( =→− tijjiλ , when j=0,  and 

)()1( tijji →−λ = )()1( tijji →−λ = )()1( tjiij −→μ = )()1( tjiij −→μ =0, when (i+j) > M+S-k+1 . 
 
 
4. System availability and reliability 
 
        Based on Figure (1), we have the following differential equation: 

                Λ= )()(/ tPtP                            (5) 
                                                  

i-1,j 

i,j 

i+1,j 

i,j+1 i,j-1 
μ ij→i(j-1)(t) μ i(j+1)→ij(t) 

λi(j-1)→ij(t) λij→i(j+1)(t) 

λij→(i+1)j(t) μ (i+1)j→ij(t) 

λ(i-1)j→ij(t) μ ij→(i-1)j(t) 
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where 
   
   ))(),(,),(),(,),(),(()( ),())1(,()0,1(),0()1,0()0,0( tPtPtPtPtPtPtP SMSMS −= KK  
and Λ is the transition matrix rate of the system, which can be obtained for a specific 
system. 
Assume that the system is in state (0, 0) at time zero, the initial condition for equation 
(5) is: 
          1)(0)0(,1)0( ),()0,0( ≥+== jiforPP ji                 (6) 
Then the system availability is given by 

             ∑
−+≤+

=
kSMji

ji tPtA )()( ),(                        (7)                        

       Based on the above analysis, if all failure states of the system are regarded as 
absorbing states, we can solve equation (5) to obtain )(~

),( tP ji  under the following 
conditions 
      )()1( tjiij −→μ = )()1( tjiij −→μ =0 when (i+j) ≥ M+S-k+1. 
Then the system reliability is obtained as 

                ∑
−+≤+

=
kSMji

ji tPtR )(~)( ),(                  (8) 

              
5. Special case models 
 
Availability and reliability of 3-out-of-(4+2): G system 
 
The system state transition diagram for the model is shown in Figure (2) with two 
repair facilities applied. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (2) state transition diagram of 3-out-of-(4+2): G system 
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       Assuming that the repair rates follow Weibull distribution and the failure rates 
follow Gamma distribution and with the help of equation (5): 
                                   
       ))(),(),(),(),(),(),(),(()( )0,4()1,3()0,3()2,2()1,2()0,2()0,1()0,0( tPtPtPtPtPtPtPtPtP =  
and Λ is written as 
Λ= 
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(9) 
where 
E(t) = (3λ1(t) + λ'1(t) + λc),     C(t) = (2λ1(t) + λ2(t) + λ'2(t) + 2μ1(t) +2λc)          
B(t) = (3λ1(t) + λc + μ1(t)),     D(t) = (λ1(t) + 2λ2(t) + 2μ1(t)).  
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with the initial conditions 

]0,0,0,0,0,0,0,1[)]0(),0(),0(),0(),0(),0(),0(),0([ )0,4()1,3()0,3()2,2()1,2()0,2()0,1()0,0( =PPPPPPPP  
The system availability is given by 
   )()()()()()( )0,3()1,2()0,2()0,1()0,0( tPtPtPtPtPtA ++++=              (10) 
If all failure states of the system are regarded as absorbing states. 
Then the system reliability is obtained as 

)(~)(~)(~)(~)(~)( )0,3()1,2()0,2()0,1()0,0( tPtPtPtPtPtR ++++=                 (11)                      
For  
α1= α2= α3= α4= α5= 1, β1=4, β2=2, β3=5, β4=3, β5=1.2 and λc=0.25 
The system availability and reliability are illustrated in Figure (3) with numerical 
solutions based on Runge-Kutta method. 
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Figure (3) system reliability and availability versus time 
 
 
Now we will study the effect of the number of repairmen on system reliability using 
equation (9) for r=1 as ( )(  )(2 11 tt μμ →  ), and  r=2. 

 
 

Figure (4) system reliability for different values of r 
 
From figure (4) we deduced that the system reliability increases with corresponding 
increasing in number of system repairmen. 
        From the current model and with other two values for M; for example M=2, 
M=3 Assume that the failure and repair rates of the system in these cases follow 
Weibull distribution. Using the previous values of the parameters we find that the 
system reliability increases with corresponding increasing in numbers of components 
of type 1 as shown in the following figure. 

 
Figure (5) system reliability for different values of M 

 
6. Conclusion 
 
     A warm standby system with two types of components subjected to common-

cause failure is studied. The system transition diagram for this model is expressed as 

one with two dimensions. Markov method is used to obtain the system reliability and 

availability with numerical solution. In the future we hope that we can deal with 

warm standby systems with three types of components. 
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