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Abstract. Let E be a locally convex Hausdorff space and let E
′

be its

topological dual, endowed with the weak∗ topology σ
(
E

′
, E

)
. Let S be a

compact space and let us consider the space C
(
S, E

′)
of all continuous func-

tions f : S → E
′
, equipped with the uniform topology. In this paper, we prove

a simple integral representation theorem, by means of weak integrals against

a scalar measure on S, for a class of linear bounded operators T : C
(
S, E

′)
→ E

′
. When E = � is the Schwartz space on R

n (thus �′ is the space of tem-

pered distributions), we prove that bounded operators of this class preserve

the familiar operations of distribution theory, that is, the operations of deriva-

tion and Fourier transform. Also we give an application to weak sequential

convergence in this class of operators.

Mathematics Subject Classification: Primary 28C05, Secondary 46G12

Keywords: Bounded Operators, Weak integrals, Riesz Theorem

1. Introduction

Several extensions of the Riesz integral representation Theorem had been

proved for various bounded operators on function spaces. See references [2], [3],

[7], for the Banach space setting, and reference [4],[10], in the topological vector

space context. In this work we consider the case of linear bounded operators

T : C
(
S, E

′) → E
′
, where E

′
is the topological dual of a locally convex vector

space E, endowed with the weak∗ topology σ
(
E

′
, E

)
, and where C

(
S, E

′)
is

the space of continuous functions f : S → E
′
on the compact space S, equipped

with the uniform topology, (see below for more details). This consideration
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comes, in some respects, from the importance of the space C
(
S, E

′)
, as it is

a basic space in the study of certain stochastic processes describing dynamics

of infinite particle systems, see e.g [6], [8]. Then, extending the method used

by the author in [7], we show a weak integral representation theorem of the

Riesz type for linear bounded operators T : C
(
S, E

′) → E
′
, satisfying some

mild condition. This theorem is simple compared to those obtained elsewhere

with respect to operator valued measures([4],[10]). In the present setting the

representation is realized by an integral against a bounded scalar measure on

S of the following type:

∀f ∈ C
(
S, E

′)
, ∀ξ ∈ E : 〈Tf, ξ〉 =

∫
S
〈f (s) , ξ〉 μ (ds)

where μ is a bounded scalar measure which will be attached to the operator

T .

When E = � is the Schwartz space of rapidly decreasing functions on R
n, then

�′ is the space of tempered distributions, and we prove that bounded operators

of the preceding integral form preserve the familiar operations of distribution

theory, that is, the operations of derivation and Fourier transform.

Finally, we give a simple criterion of weak convergence for a sequence Tn of

representable operators, using their corresponding measures μn.

First let us make precise some notations and facts we shall use in the sequel.

E will be a locally convex Hausdorff space and E ′ its topological dual that

is the space of continuous functionals on E. We shall denote the elements of

E ′ by f, g, ...,and refer to the functional duality between E and E ′ by the

symbol:

f ∈ E ′, ξ ∈ E, 〈f, ξ〉(1)

that is the value of the functional f at the vector ξ.

It will be given to the space E ′ the weak∗ topology σ (E ′, E) , that is the

topology induced by the family of seminorms of the form:

p (f) = p (f ; x1, x2, ..., xn) = Sup
1≤j≤n

|〈f, xj〉|(2)

where {x1, x2, ..., xn} is an arbitrary finite system of elements in E.

On the other hand we consider on the space C(S, E ′) of continuous functions

f : S → E
′
the family of seminorms

f ∈ C (S, E ′) , p̃ (f) = Sup
t∈S

p (f (t))(3)

where p is given by (2) .
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Finally the space C (S) of scalar continuous functions on S will be equipped

with the uniform norm:

f ∈ C (S) , ‖f‖∞ = Sup
t∈S

|f (t)|(4)

The following proposition is well known. It gives a natural identification

between (E ′, σ (E ′, E)) and E :

1.1. Proposition: Every continuous linear functional on E ′ is of the form

f → 〈f, ξ〉(5)

for some (unique) ξ in E.

Also we shall need the following:

1.2. Proposition: (a) The transformations f → 〈f (•) , ξ〉 of C (S, E ′) into

C (S) are bounded.

(b) For each ξ 	= 0 in E, the transformation f → 〈f (•) , ξ〉 is onto.

Proof. (a) Indeed, by formulas (3) and (4) we have:

‖〈f (•) , ξ〉‖∞ = Sup
t∈S

|〈f (t) , ξ〉| = p̃ (f) , where we use (3) with p (f (t)) =

|〈f (t) , ξ〉| .
(b) Since ξ 	= 0, there exists a seminorm p on E such that p (ξ) 	= 0 and then by

the Hahn-Banach Theorem there is an α
′ ∈ E ′ with α

′
(ξ) = p (ξ) . It is clear

that we may assume α
′
(ξ) = 1. Now let h ∈ C (S) and define f : S → E ′ by

f(t) = h(t)α′; then f ∈ C (S, E ′) and we have 〈f (•) , ξ〉 = 〈h(•)α′, ξ〉 = h(•).

2. Weak integrals and bounded operators

In this section we will be concerned with bounded E ′−valued operators on

C (S, E ′) , to seek conditions under which such operators define a weak integral

on C (S, E ′) with respect to a scalar measure μ on S,BS . As we will see, a simple

condition does exist and is necessary and sufficient for a bounded operator

T : C (S, E ′) → E ′ to have a weak integral form. First, let us make precise

some notations and facts.

2.1. Definition. Let T : C (S, E ′) → E ′ be a linear operator. We say that T

defines a weak integral on C (S, E ′) if there exists a bounded signed measure μ

on the family BS of Borel sets of S such that, for every ξ ∈ E, we have:

∀f ∈ C (S, E ′) , 〈Tf, ξ〉 =

∫
S

〈f (t) , ξ〉 dμ (t)(6)
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In this case we call the vector Tf the weak integral of f .

For an elaborate construction of the weak integral and its properties, see ref-

erences [1] or [5] . A nice construction is given in [9 p.76].

The preceding definition immediately implies the following:

2.2. Proposition. Let T : C (S, E ′) → E ′ be a linear bounded operator and

assume that T defines a weak integral then we have: For ξ, η in E and f, g in

C (S, E ′) we have: 〈f (•) , ξ〉 = 〈g (•) , η〉 ⇒ 〈Tf, ξ〉 = 〈Tg, η〉 .

Proof. Obvious from (6) and scalar integration.

Although the above condition has a simple appearance, it turns out that it

will be sufficient for a bounded operator T : C (S, E ′) → E ′ to define a weak

integral with respect to a signed measure μ on S,BS.

2.3. Definition. Let L be the vector space of all bounded operators

T : C (S, E ′) → E ′.We define the class PE as the class of those operators T

in L which satisfy the following condition:

if ξ, η ∈ E, f, g ∈ C (S, E ′) then : 〈f (•) , ξ〉 = 〈g (•) , η〉 ⇒ 〈Tf, ξ〉 = 〈Tg, η〉
(P )

2.4. Proposition. If the space L is equipped with the simple convergence

topology then the class PE is a closed subspace of L.

Proof. Immediate.

We are now in a position to give the main result of the paper.

2.5. Theorem. For each operator T in the class PE , there exists a unique

signed bounded measure μ on S,BS such that 〈f (•) , ξ〉 is μ−integrable for

every f in C (S, E ′) and ξ in E, itand we have 〈Tf, ξ〉 =
∫

S
〈f (t) , ξ〉 dμ (t) .

Proof. We construct an intermediate bounded operator V, with scalar values,

acting on C(S) such that V 〈f (•) , ξ〉 = 〈Tf, ξ〉 for every ξ ∈ E. This is

easy by appealing to condition (P ) of T. Let h ∈ C(S) and ξ ∈ E, ξ 	= 0; by

proposition 1-2(b) there exists an f ∈ C(S, E ′) such that 〈f (•) , ξ〉 = h (•).
Now let us put V h = 〈Tf, ξ〉. V is well defined since by condition (P ) if

〈f (•) , ξ〉 = 〈g (•) , η〉 = h then we have 〈Tf, ξ〉 = 〈Tg, η〉 . It is clear that V is

linear and satisfies,

∀ξ ∈ E : V 〈f (•) , ξ〉 = 〈Tf, ξ〉(7)

We must show that V is bounded. Let (hn) be a sequence in C(S) such that

‖hn‖∞ → 0, n → ∞. For ξ 	= 0, write hn = 〈fn (•) , ξ〉where fn ∈ C(S, E ′),then

‖hn‖∞ = p̃(fn) → 0,where .p̃ is given by (3) . Since T is bounded we deduce
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that Tfn → 0 and then |V hn| = |〈Tfn, ξ〉| → 0. Consequently V ∈ C(S)∗, the

conjugate space of C(S). By the Riesz representation Theorem, there exists a

signed bounded measure μ on S,BS such that

∀h ∈ C(S); V h =

∫
s

hdμ(8)

By formula (7) we deduce :V 〈f (•) , ξ〉 =
∫

S
〈f, ξ〉 dμ = 〈Tf, ξ〉, that is∫

S
〈f, ξ〉 dμ = 〈Tf, ξ〉 for every ξ. But this is formula (6) of definition 2.1,

and shows that Tf is a weak integral as wanted.

2.6. Example. Let us fix s in S and consider the bounded operator

T : C (S, E ′) → E ′ given by Tf = f (s), f ∈ C (S, E ′) . Then it is easy to check

that T is in the class PE . Now we compute the scalar measure μ attached to

T, according to theorem 2.5. We have
∫

s
〈f, ξ〉 dμ = 〈Tf, ξ〉 = 〈f (s) , ξ〉, by

the nature of T. But 〈f (s) , ξ〉 is the value of the integral of the function

t → 〈f(t), ξ〉, with respect to the Dirac measure δs on the point s; that is

we have
∫

s
〈f(t), ξ〉 μ (dt) =

∫
s
〈f(t), ξ〉 δs (dt), for all f ∈ C (S, E ′) and all

ξ ∈ E. Now take h ∈ C (S) and ξ 	= 0 in E; by proposition1.2(b) there exists

f ∈ C (S, E ′) such that 〈f(t), ξ〉 = h (t) ∀t ∈ S and an application of the above

integrals gives
∫

s
h(t) μ (dt) =

∫
s
h(t) δs (dt). Since h is arbitrary in C (S), this

in turn gives μ = δs, by the classical Riesz Theorem.

As a second illustration of theorem 2.5, let us consider the space C([0, 1] ,�′),
where � is the Schwartz space of rapidly decreasing functions on R

n and �′

the space of tempered distributions (see [11]). To simplify matters we take

n = 1. Recall that we equipped �′ with the weak∗ topology.

First let us define S
′
= dS

dx
as the function t → dSt

dx
, where dSt

dx
is the usual

derivative of the distribution St. Let us observe that t → dSt

dx
is a continuous

function on [0, 1] into �′, by the convergence criteria in �′. Thus we put S
′
:

t → dSt

dx
, and we have S

′ ∈ C([0, 1] ,�′).
Likewise by using a similar device, we define the Fourier transform of S ∈

C([0, 1] ,�′) by Ŝ : t → Ŝt, where Ŝt has the meaning of Ŝt (ξ) = St

(
�

ξ

)
, where

�

ξ is the Fourier transform of the function ξ ∈ �. Since t → Ŝt is continuous

from [0, 1] into �′, this defines Ŝ as an element of C([0, 1] ,�′). With this data,

we have the following:

2.7. Proposition. Suppose that Λ : C([0, 1] ,�′) → �′ is an operator in the

class P�′ of definition 2.3; then we have:
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(ΛS)
′
= ΛS

′
(10)

and
∧

ΛS = ΛŜ(11)

Proof. According to theorem 2.5 we have:

S ∈ C([0, 1] ,�′), ξ ∈ �: 〈ΛS, ξ〉 =

∫
[0,1]

〈St, ξ〉 dμ (t)(12)

for some unique bounded measure μ on [0, 1] .

To see formula (10), we perform the following simple computation for ξ in

� : (ΛS)
′
(ξ) = dΛS

dx
(ξ) = − 〈

ΛS, ξ
′〉

, where ξ
′

= dξ
dx

. Then, citing (12), we

get − 〈
ΛS, ξ

′〉
= − ∫

[0,1]

〈
St, ξ

′〉
dμ (t) =

∫
[0,1]

〈
dSt

dx
, ξ

〉
dμ (t) , which is exactly

ΛS
′
(ξ) ; since ξ is arbitrary, this proves (10).

To see formula (11), let us compute the Fourier transform of the tempered

distribution ΛS. We have:
∧

ΛS (ξ) =

〈
ΛS,

�

ξ

〉
=

∫
[0,1]

〈
St,

�

ξ

〉
dμ (t) =

∫
[0,1]

〈
�

St, ξ

〉
dμ (t) ; but this last

integral is ΛŜ (ξ) by (12) and the definition of Ŝ. This proves formula (11).

3. Estimating the ξ−norm of T.

In the framework of theorem 2.5, let us define the ξ−norm ( ξ ∈ E ) of a

bounded operator T : C (S, E ′) → E ′ by:

‖T‖ξ = Sup {|〈Tf, ξ〉| : f ∈ C(S, E ′), ‖〈f (•) , ξ〉‖∞ ≤ 1. }(12)

Let us observe that if g ∈ E ′ and ξ ∈ E, then |〈g, ξ〉| is the value of the

seminorm |〈., ξ〉| on E ′ at the vector g. With this ingredients we have:

3.1. Proposition. Under the hypothesis of Theorem 2.5 we have:

‖T‖ξ = v (μ) , ξ ∈ E(13)

where v (μ) is the total variation of the scalar measure μ attached to the

bounded operator T.
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Proof. Consider the bounded functional V given in the proof of theorem 2.5.

Then by the Riesz Theorem we have ‖V ‖ = v (μ), and citing (7) gives V 〈f (•) , ξ〉 =

〈Tf, ξ〉, for ξ ∈ E and f ∈ C(S, E ′). It remains to check that:

‖V ‖ = Sup {|〈Tf, ξ〉| :), f ∈ C(S, E ′) ‖〈f (•) , ξ〉‖∞ ≤ 1. }(14)

Denoting by α the right hand side of (14) and taking into account the

definition

‖V ‖ = Sup {|V h| : h ∈ C(S), ‖h‖∞ ≤ 1. } it is clear that α ≤ ‖V ‖ . On the

other hand, for each ε > 0, there is an h ∈ C(S) such that ‖h‖∞ ≤ 1 and

‖V ‖−ε < |V h| . By proposition1.2(b), if ξ ∈ E, ξ 	= 0, there exists f ∈ C(S, E ′)
such that 〈f (•) , ξ〉 = h and thus ‖〈f (•) , ξ〉‖∞ = ‖h‖∞ ≤ 1. We have also

|V 〈f (•) , ξ〉| = |V h| ≤ α,by the nature of α. Consequently, by the choice of h,

we get ‖V ‖ − ε < |V h| ≤ α and since ε > 0 is arbitrary, we obtain ‖V ‖ ≤ α

which gives the equality ‖V ‖ = α and then, in view of (12), the validity of

(13) .

4. An Application.

4.1. Theorem. Let Tn be a sequence of bounded operators in the class PE

and let T : C(S, E ′) → E ′ be bounded. If Tn converges weakly to the operator

T , then T is in the class PE . Moreover, assume that μn and μ are respectively

the corresponding measures of Tn and T according to Theorem 2.5, then we

have:

∀h ∈ C(S), Lim
n

∫
S
h dμn =

∫
S
h dμ.

This means that the sequence of bounded measures μn converges weakly to the

bounded measure μ. On the other hand if μn converges weakly to μ then Tn

converges weakly to T.

Proof. The weak convergence of Tn means Lim
n

〈Tnf, ξ〉 = 〈Tf, ξ〉, for all f

in C(S, E ′) and all ξ in E, (see Proposition 1.1). From this it follows easily

that T is in the class PE . Now by Theorem 2.5, the preceding limit implies

Lim
n

∫
s
〈f (s) , ξ〉 dμn (s) =

∫
S
〈f (s) , ξ〉 dμ, for all f in C(S, E ′) and all ξ in E.

If h ∈ C(S), and ξ ∈ E, there exists by proposition1.2(b), an f in C(S, E ′) such

that h (s) = 〈f (s) , ξ〉 ∀s ∈ S; from this we deduce that Lim
n

∫
S
h dμn =

∫
S
h dμ

as wanted. The converse is clear.
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