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Abstract

Direct integration technique is used to study non conformally flat spatially
homogeneous rotating space-times according to their conformal vector fields. It is
shown that the above space-times do not admit proper conformal vector fields.
Conformal vector fields for the above space-times are homothetic vector fields. Here
we also discuss some well known examples of spatially homogeneous rotating space-
times according to their conformal vector fields.
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1. Introduction

There has been much interest in studying symmetry in general relativity but conformal
symmetry is ignored due to the lack of linearity property [1-4]. The conformal
symmetry which preserves the space-time structure up to a conformal factor carries
significant information and plays an important role in Einstein’s theory of general
relativity. It is therefore important to study conformal symmetry. In this paper we
investigate the conformal symmetry of non conformally flat spatially homogeneous
rotating space-times using direct integration technique. Here we also discuss the
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conformal symmetry of some well know spatially homogeneous rotating space-times
like; Reboucas, Som-Raychaudhuri, Hoenselaers-Vishveshwara, Godel-Friedmann and
Stationary Godel space-times.

Throughout M represents a four dimensional, connected, Hausdorff space-time
manifold with Lorentz metric g of signature (-, +, +, +). The curvature tensor

associated with g, through the Levi-Civita connection, is denoted in component form
by R%ca, the Ricci tensor components are R, =R‘a» and the Weyl tensor
components are C%uxq. The usual covariant, partial and Lie derivatives are denoted by a

semicolon, a comma and the symbol L, respectively. Round and square brackets

denote the usual symmetrization and skew-symmetrization, respectively. The space-
time M will be assumed non conformally flat in the sense that the Weyl tensor does
not vanish over any non empty open subset of M.

The covariant derivative of any vector field X on M can be decomposed as

X asb = %hab + Fab’ (1)

where h,(=h,,)=L,09, and F,(=-F,,) are symmetric and skew symmetric tensors
on M respectively. Such a vector field X is called conformal if the local
diffeomorphisms ¢, (for appropriate t) associated with X preserve the metric
structure up to a conformal factor i.e ¢°g,, =w g, where w is a no where zero

smooth function on M, called the conformal function of X and ¢, is a pulback map
on M [6]. This is equivalent to the condition that h,, satisfies
Ny =2 Qo
which in turn equievalent to

ane X“+ 05 X+ X =29 G, )
for some smooth conformal function v on M, then X s called a conformal vector
field. If y is some constant onM, X is homothetic (proper homothetic if y = 0)
while w =0 it is Killing. The vector field X is called proper conformal if it is not
homothetic while it is special conformal if the conformal function y satisfies the
condition ., =0.

2. Main Results

Consider spatially homogeneous rotating space-times with line element in the
usual coordinate system (t,r,4,z) (labeled by (x°,x*,x?,x?), respectively) given by
[5]

ds? = —dt? +dr? + A(r)d¢? + dz? +2 B(r)dtdg, (3)
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where A and B are no where zero functions of r only. The above space-times (3)

admit at least three linearly independent Killing vector fields which are 2 0 9 A

ot op' oz
vector field X is called conformal vector field if it satisfies equation (2). Writing (2)
explicitly and using equation (3) we get

X5-B(r)X5 =y(tr.¢2) 4)
X% —-X3+B(r)X2=0, (5)
Br(r) 1,10 1 0 A(r) 2 1o
28(r) Xy Koo 28(r) Xt 28(r) XotgXamvltr ) ©
X5—X§+B(r)X5=0, (7)
Xi=y(txy.2), ®)
B(r)X3+A(r)Xx2+X%=0, 9)
X3 +X% =0, (10)
Ar(r) 1 B(r) 0 2
2A(r)x +m X9+ X2 =wltxy z) (11)
X5 +B(r)X 5 +A(r)x3 =0 (12)
X5 =wltxy.2) (13)

Equations (8) and (13) give
X*t= Iy;(t, r.g,z)r + E'(t,¢4,2), X3:J'y/(t,r,¢,z)dz+ E2(t,r,9)
Equations (4), (5) and (7) give

K g B D) d) 57w, () < E )
K O B )25 n0) - 2 ) o

+B(NE*(t.r.¢)+ [w(t.r.g,2)dt+ E*(r. ¢, 2)
Thus we have the following system

A )

+B(r)E*(t,r,0)+ jy/(t, ré,z)dt+E*(r,¢,2),

X'= [yt g 2)dr+ E'(t 4, 2)

K g BP0 F v ) [+ )

X3 :Jw(t,r,qﬁ, z)dz+E2(t,r,¢),

(14)
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where E*(t,¢,2),E*(t,r,4),E*(t,r,¢),E*(r,¢,2) are functions of integration which will
be determined by solving the remaining equations. If one proceeds further after doing
some hard and lengthy calculation we get E'(t,¢,2)=F'(t,¢), E*(t,r,#)=c,, v =¢,
and E*(r,¢,z)=F?(r,¢), where F'(t,¢) and F?(r,#) are functions of integration and
c,,C, € R. Here we have y =c,, which means that the above space-times do not admit

proper conformal vector fields. Now we are looking for homothetic vector fields of the
above space-times if they exist. Substituting the above information in (14), we get the
following system

xo - B(r) FL(t,4)+ B(rE(t,r,¢)+ F2(r.¢)+c,t, X'=Fi(t,¢)+c,r,
B.(r) (15)
XZ:%(r)Ftl(t,¢)+ Et,r,¢), X®=c, +¢,z.
Differentiate (5) with respect to t and using (15) we get E*(t,r,¢)=F*(r,4), where

F3(r,¢) is a function of integration. Substituting this information in (15) we have

Fl(t @)+ B(r)F3(r,¢)+ F2(r,¢)+ct,  X'=F(t,¢)+c,r,
B,(r) (16)
2 _ 1 1 3 3 _
X 0 F(t,¢)+F2(r, ¢), X®=c, +¢,z.
Now differentiating (11) with respect to t and r and using (16) we get
A B
LRt ¢)=0 17

Equation (17) gives the following three possibilities:

l: Flt,¢ =0 and 7“fBr 0. Il: Flt,¢ #0 and | _AB: -

t( ) {A+Bz} ” t( ) A+B? 0

II: FXt,#)=0 and _AB. } =0.
t( ¢) |:A+Bz

We will consider each case in turn.

!

Case I: In this case we have Fl(t,#)=0 and {AA’BV } 0. Equation Fl(t,¢)=0=
+

BZ

F'(t,¢)=G"(¢), where G*(¢) is a function of integration. Thus (16) becomes
X =B(r)F3(r,¢)+ F*(r,¢)+c,t, X'=G(g)+c,r,
X2 =F3(r,¢), X®=c, +¢,2.
Differentiate (5) and (6) with respect to ¢, using (18) and then substituting back in (9)
and (11), we have the following information

(18)
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C2—C7

FZ(I’,¢)=C3¢$Br(I’)+¢(rBr—B)—C4B+C5, B(r):C C_GC (cs+c,r) e

C,—C;
A(r)=cy(c, +c,r) e, F3(r,¢)=c,¢+c,,  where  c,,C;,C,,Cq,Cq,Cr0C € R
(c, #¢c,,c, #0). Thus (18) becomes

X°%=c,t+c,, X'=c,r+c,, X’=c,¢+c,, X*=c,z+c,. (19)
The space-time in this case takes the form

[ C Cr—C;
ds? = —dt? +dr? +cy(c, +c,r)Cc, 'dg? +dz? +2 —°

(c,+¢c,r) o dtdg.

2 7
The above space-time admits four homothetic vector fields in which three are Killing
vector fields and one is proper homothetic vector field which is

X =(c,t, ¢,r +¢,, ¢, 4, ¢,z). (20)
Case II: In this case we have F'(t,¢)=0 and [ArBrz} —0 which implies that
A+B
AriBrz =c,, Where ¢, € R. If one proceeds further after some lengthy calculation one
A+B

finds that Ftl(t,¢)= 0 which gives contradiction to our assumption (here we assume
that F(t,¢) = 0). Hence this case does not exist.

!
r

Case I11: In this case we have Fl(t,¢)=0 and AB | _0. Equation [ AB._ 0>
A+B? A+ B?

AB _ a, where a e R. Here there exist two possibilities:

A+ B?
(P) a=0 Q) a=0

In (P) if one proceeds further one finds that A, (r)= 0 which implies that a =0 which
gives contradiction to our assumption that a = 0. Hence this sub case is not possible.
In (Q) there exist further two sub cases

(i) A(r)=0, B,(r)=0. (ii) A (r)=0 B,(r)=0.
In (i) if we proceed further we find that B(r): constant which gives contradiction to
our assumption that B, (r)= 0. Hence this sub case is not possible.
In (ii) we have A (r)=0 and B,(r)=0. Equation B,(r)=0= B(r)=b, where beR.
If one proceeds further one finds the solution of the equations from (4) to (13) as
follows

o 1 1
0 1 i T 2 1
X" =b C..C e _ZC11C13¢ _ECH C13¢:|+C16' X :C11¢+C12’
13714 (21)
c 1 1
2 11 —Cygf 2 3
X*=——@" ——C;;C;30" =7 C, C;3 §+Cy, X" =Cy.
C15Cyy 4 2
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where c;;,C;,,Cp3,Cpy, 51 Cre, Gy € R(Cyy # 0,0y, # 0). Here A(r)= (014 e’ —bz) In this
case conformal vector fields are Killing vector fields.

3. Examples

In this section we will discuss conformal vector fields of some spatially homogeneous
space-times. Here we will only present the results and calculation will be omitted. One
can easily reproduce the following results by using the general method, which is given
in section 2. These examples are as follows:

(1) Reboucas space-time

Here if we choose A(r)=—(1+3cosh®2r) and B(r)=2cosh2r, the
above space-time (3) becomes Reboucas space-time and takes the form [5]
ds? = —dt® + dr® — (1+3cosh?® 2r)d¢® + dz* +4cosh 2r dt d¢. (22)
For the above space-time conformal vector fields are
X ° = —2cosech2r[c., sin 24 — c,, C0S 24|+ Cy,
X! =y €OS 24 + Cy SiN 24, (23)
X ? = —coth 2r [c, Sin 2¢ — ¢4, €05 2¢]+ €y, X° =y,
where ¢,,,¢,,,Cy,C5,C5; € R. Here conformal vector fields are Killing vector fields.
(2) Som-Raychaudhuri space-time
In this case if we choose A(r)=r?(L-r?) and B(r)=r? the above
space-time (3) becomes Som-Raychaudhuri space-time and takes the form [5]
ds? = —dt® +dr® +r?(L-r?)d¢® + dz® +2r° dtdg. (24)
For the above space-time conformal vector fields are
X =r[Cy SiNg—Cy COSP+C y, X' = Cap COSP + Cyy SN,
2 1 H 3 (25)
X? = —=[c, sing -y cOSPl+Cyy, X3 =y,
r
where Cgg,Cq,Cy,Cyy,Cyp € R In this case conformal vector fields are Killing vector

fields.
(3) Hoenselaers-Vishveshwara space-time

Here if we choose  A(r)= —%(cosh r—1)(coshr-3) and

B(r) = (coshr —1) the above space-time (3) becomes Hoenselaers-Vishveshwara
space-time and takes the form [5]

ds? = —dt® +dr? —%(cosh r —1)(coshr —3)d¢? + dz? +2(coshr —1) dt d¢. (26)

For the above space-time conformal vector fields are
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X°® =2 (cothr —cosechr{c43 sini—c44 cos¢} + Cus

72 2

27
X1:c4scos%+c445in%, (27)
X 2 =—+/2 coth r{c43 sin%—c44 cos\%}+c4€, X% =c,,

where ¢,;,C,,,C,s,Cy,C,; € R. Here conformal vector fields are Killing vector fields.
(4) Godel-Friedmann space-time:
In this case if we choose A(r) =sinh?r(1—sinh®r) and B(r) = J2sinh?r the
above space-time (3) becomes Godel-Friedmann space-time and takes the form
ds? = —dt? + dr? +sinh? r(L—sinh? r)d¢? + dz? + 2+/2 sinh? r dt d . (28)
For the above space-time conformal vector fields are
X = /2[sinh 2r — tanh r cosh 2r|[c,; sin ¢ — ¢, COS @]+ Coy,
X' =C,5COSP+C,qSiNG, (29)
X ? = —2coth2r[c,, Sing —C,, cos@l+cy,, X* =c,,,
where C,,C,9,Cs,Cs;,Cs, € R. In this case conformal vector fields are Killing vector
fields.
(5) Stationary Godel Space-time:
Here, if we choose A(r) :—%e2ar and B(r)=e*, where a < R\{0}.

The above space-time (3) becomes stationary Godel space-time and takes the form
ds? = —dt? + dr? —%ezafdw T dz? 426" dtdg. (30)
For the above space-time conformal vector fields are
X0 :3053e’ar +Cgy, X' =Cgy +Cy,
a (31)
2 a, 2 _a 3
X =—053[2¢ +ge sinh ar}—c55 ag+Cy, X7 =Cg,
where C.,,Cs,,Cs,Cs6,Cs,Cs; € R. In this case conformal vector fields are Killing
vector fields.

References

[1] R. F. Bilyalov, conformal transformation groups in gravitational fields, Sov.
Physics, 8 (1964), 878.

[2] L. Defrise-Carter, conformal groups and conformally equivalent isometry groups,
Commun. Math. Physics, 40 (1975), 273-282.



876 G. Shabhir and A. Ali

[3] Michael Steller, conformal vector fields in space-time, Ann. Glob. Annal Geo, 29
(2006), 293-317.

[4] G. S. Hall and J. D. Steele, conformal vector fields in general relativity, J. Math.
Physics, 32 (1991), 1847-1853.

[5] K. D. Krori, P. Borgohain, P. K. Kar and Dipali Das (Kar), Exact scalar and spinor
solutions in some rotating universes, J. Math. Physics, 29 (1988), 1645-1649.

[6] R. M. Wald, General Relativity, the University of Chicago Press, 1984.

Received: October, 2008



