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Abstract

In this paper we investigate the vertex chromatic number, the edge
chromatic number, and the total chromatic number in Spider graphs.
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1 Introduction

A vertex coloring of a graph G is a labeling f : V (G) → T , where T is a non-

empty set. We usually refer T as the set of colors. f is proper vertex coloring

if the adjacent vertices have different labels. A graph G is k-vertex colorable

if it has a proper vertex coloring f : V (G) → T and |T | = k. The vertex

chromatic number χ(G) is the least k such that G is k-vertex colorable. An

edge coloring of a graph G is a labeling f : E(G) → T , where T is a non-empty

set. We usually refer T as the set of colors. f is proper edge coloring if the

adjacent edges have different labels. A graph G is k-edge colorable if it has a

proper edge coloring f : E(G) → T and |T | = k. The edge chromatic number

χ′(G) is the least k such that G is k-edge colorable, [3].

A total coloring of a graph G is a labeling f : V (G) ∪ E(G) → T , where

T is a non-empty set. We usually refer T as the set of colors. f is proper

total coloring if not only the adjacent vertices, and the adjacent edges have
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different labels, but also the label of any edge is different from the labels of its

two end-points. A graph G is k-total colorable if it has a proper total coloring

f : V (G) ∪ E(G) → T and |T | = k. The total chromatic number χt(G) is the

least k such that G is k-total colorable, [4].

It is well known that χ′(G) ≥ Δ(G), where Δ(G) is the maximum vertex

degree. Vizing theorem asserts that χ′(G) ≤ 1 + Δ(G).

Clearly, for any graph G, χt(G) ≥ 1+Δ(G). The Behzad-Vizing conjecture

claims that χt(G) ≤ 2 + Δ(G). This conjecture has benn verified for several

classes of graphs,[1,4,5].

A Spider is a tree with at most one vertex of degree more than two, called

the center of Spider (if no vertex of degree more than two, then any vertex

can be the center). A leg of a Spider is a path from the center to a vertex of

degree one. Thus, a star with k legs is a Spider of k legs, each of lenght 1, [2].

Let m ≥ 3 be an integer. We define the Spider graph Sm as the graph

obtained from a Spider T with m legs P1, P2, ..., Pm each of length at least

two, such that two vertex x, y of two different legs Pi and Pj are adjacent if

|i − j| ∈ {1, m − 1}, and d(x, o) = d(y, o) where o is the center of T .

In this paper we consider a subclass of Spider graphs. Let Sm be a spider

graph with legs P1, P2, ..., Pm. If any leg Pi has length n for i = 1, 2, ..., m, and

for any two vertices x, y of two different legs Pi and Pj with |i−j| ∈ {1, m−1},
we have vi is adjacent to vj, then we call the Spider graph, a complete Spider

graph, and denote it by Sm,n. In this paper we study the vertex coloring, the

edge-coloring and the total coloring in complete Spider graphs.

2 Results

Theorem 1 χ(Sm,n) = 3 if m is even, and χ(Sm,n) = 4 if m is odd.

Proof. Since Sm,n has triangles, we have χ(Sm,n) ≥ 3. Also if m is odd,

then the nearest cycle to the center is an odd cycle and therefore has chromatic

number 3. But the center is adjacent to all of those vertices. So χ(Sm,n) ≥ 4.

Let V (Pi) = {o, vi1, ..., vin}. Let C be the nearest cycle to the center.

If m is even, then we consider a 2-coloring f : V (C) → T , where T = {1, 2}.
We color the center by 3. For any vertex x in leg Pi if d(x, vi1) is even we color

x by the color of vi1, and if d(x, vi1) is odd we color x by the color of v(i+1)1.

So χ(Sm,n) = 3.
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If m is odd, then we consider a 3-coloring f : V (C) → T , where T =

{1, 2, 3}. We color the center by 4. For any vertex x in leg Pi if d(x, vi1) is

even we color x by the color of vi1, and if d(x, vi1) is odd we color x by the

color of v(i+1)1. So χ(Sm,n) = 4.

Theorem 2 χ′(Sm,n) = Δ(G).

Proof. First χ′(Sm,n) ≥ Δ(G). Let o be the center and let V (Pi) =

{o, vi1, ..., vin} for i = 1, 2, ..., m. We define an edge coloring as follows:

f(ovi1) = i for i = 1, 2, ..., m,

f(vi1v(i+1)1) = f(ovi+2), for i = 1, 2, ..., m, where the addition is calculated

in modulo m,

f(vikv(i+1)k) = f(vi1v(i+1)1) for i = 1, 2, ..., m, and k = 2, 3, ..., n.

Case 1. If m ≥ 4, then f(vi1vi2) = f(ov(i−1)1) for i = 1, 2, ..., m,

f(vikvi(k+1)) = f(ovi1) if k is odd, and f(vikvi(k+1)) = f(vi1vi2) if k is even.

Case 2. If m = 3, then f(vi1vi2) = 4 for i = 1, 2, ..., m,

f(vikvi(k+1)) = 4 if k is odd, and f(vikvi(k+1)) = f(ovi1) if k is even.

So we use Δ colors, and then χ′(Sm,n) ≤ Δ(G). Hence χ′(Sm,n) = Δ(G).

Theorem 3 For m = 3, 4, χt(Sm,n) = Δ(G) + 2.

Proof. Let m = 3. First we notice that χt(S3,n) ≥ 6. We define a

total coloring as follows: f(ovi1) = i for i = 1, 2, 3, f(v11v21) = f(v1kv2k) =

4,f(v21v31) = f(v2kv3k) = 5, f(v31v11) = f(v3kv1k) = 6, for k = 1, 2, .., n,

f(v1kv1(k+1)) = 3 if k is odd, f(v1kv1(k+1)) = 1 if k is even,

f(v2kv2(k+1)) = 1 if k is odd, f(v2kv2(k+1)) = 2 if k is even,

f(v3kv3(k+1)) = 2 if k is odd, f(v2kv2(k+1)) = 3 if k is even,

f(o) = 5, f(v11) = 2, f(v21) = 3, f(v31) = 1, f(v12) = 5, f(v22) = 6,

f(v32) = 4,

f(vik) = f(vi1) if k is odd, f(vik) = f(vi2) if k is even. Since we use 6

colors, then χt(S3,n) ≤ 6.

For m = 4, we first notice that χt(S4,n) ≥ 6. Now we define a total coloring

as follows:

f(ovi1) = i for i = 1, 2, 3, 4,

f(vi1vi2) = f(ov(i+1)1),
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For k = 1, 2, ..., n, f(vikv(i+1)k) = 5, if i is odd, f(vikv(i+1)k) = 6, if i is

even,

f(vikvi(k+1)) = f(ovi1) if k is even,

f(vikvi(k+1)) = f(vi1vi2) if k is odd,

f(o) = 5, f(vi1) = f(ov(i−1)1), for i = 1, 2, 3, 4, f(vi2) = f(ovi1), for i =

1, 2, 3, 4,

f(vik) = f(vi1) if k is odd, and f(vik) = f(vi2) if k is even,

f(v21v31) = f(v11v41) = 6. Then χt(S4,n) ≤ 6.

Theorem 4 For m ≥ 5, χt(Sm,n) = Δ(G) + 1.

Proof. First χt(Sm,n) ≥ Δ(G) + 1. Let o be the center and let V (Pi) =

{vi1, ..., vin} for i = 1, 2, ..., m. We define a total coloring as follows:

f(ovi1) = i for i = 1, 2, ..., m,

f(vi1v(i+1)1) = f(ovi+2), for i = 1, 2, ..., m, where the addition is calculated

in modulo m,

f(vikv(i+1)k) = f(vi1v(i+1)1) for i = 1, 2, ..., m, and k = 2, 3, ..., n.

f(vi1vi2) = f(ov(i−2)1) for i = 1, 2, ..., m, f(vi2vi3) = Δ(G) + 1 for i =

1, 2, ..., m,

f(vikvi(k+1)) = f(vi1vi2) if k is odd, and f(vikvi(k+1)) = f(vi2vi3) if k is even,

f(o) = Δ(G) + 1,

f(vi1) = f(ov(i−1)1) for i = 1, 2, ..., m,

f(vi2) = f(ovi1), for i = 1, 2, ..., m, where the addition is calculated in

modulo m,

f(vik) = f(vvi1) if k is odd, and f(vi2) if k is even.

So we use Δ(G) + 1 colors, then χt(Sm,n) ≤ Δ(G) + 1. Then χt(Sm,n) =

Δ(G) + 1.

By Theorem 2 and Theorem 4, we have:

Corollary 5 For any Spider graph Sm with m ≥ 5, χ′(Sm) = Δ(G) and

χt(Sm) = Δ(G) + 1.
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