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Abstract
In this paper, we suppose a method for analyzing sensitivity and

stability of all the decision making units, while inputs and outputs are
interval data. Therefore, for estimating radius of stability of a DMU;
firstly, we classify the decision making units then we obtain the radius
of stability for each classification. For analyzing the sensitivity and
estimating the radius of stability analogous of each DMU, a MOLP is
defined. Therefore, the interactive methods are used for finding the
efficient solution in which the comment of Decision Maker is important.
At the end numerical example has been solved by using the weighted-
sums of the target function and also the interactive method (STEM) in
MOLP problems.
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1 Introduction
Data envelopment analysis (DEA), introduced by Charnes et al. [1] (CCR)
and extended by Banker et.al. [2] (BCC), is a useful method to evaluate rela-
tive efficiency of multiple-inputs and outputs units based on observed data. Its
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goal is to classify the decision making units(DMU)into two classes:efficient or
inefficient ones. How ever, uncertainty such as a measurement error should be
incorporated in observed data. This indicated the necessity to assess the sensi-
tivity of classification in DEA. In the recent years, many DEA researchers have
studied the sensitivity of efficiency and inefficiency classification with respect
to perturbations in data [3], [4], [5], [6]. The original DEA models assume that
inputs and outputs are measured by exact values on a ratio scale.
Recently, Cooper et al. [7]addressed the problem of imprecise in DEA in its
general form. Imprecise data means that some data are known only to the ex-
tent that the true values lie within prescribe bounds while other data are known
only to satisfy certain ordinal relations. Jahanshahloo et.al. [8] discussion a
method for analyzing sensitivity and stability of all the decision making units,
while inputs and outputs are interval data. They consider proportional out-
put and input changes. In this paper we can easily consider non-proportional
changes. we discuss a technique for assessing the sensitivity of efficiency clas-
sification in DEA with interval data.
In this paper, a modified CCR model is suggested to sensitive the DMUs with
interval data. We develop several linear programming formulation for investi-
gating radius of stability for all DMUs with interval data. The possible data
perturbation for preserving the DMUs classification are computed from the
optimal values.
Interval DEA models are extended to interval data Nagano et al.[9]. Then
interval DEA for interval data can be extended to fuzzy data as well, since the
level sets of fuzzy data are interval data. Therefore, fuzzy efficiency for fuzzy
data can be obtained by interval DEA through the resolution identity Guo et
al. [10].
The current article proceeds as follows: In Section 2, we review DEA models
for dealing with interval data. Then, on the basis of these models, in Section
3, we propose some models for determining radius of stability for DMUs. In
Section 4, the sensitivity analysis and radius of stability via STEM algorithm
introduced. In Section 5, the sensitivity and stability analysis methods to
several data sets are introduced. A conclusion section summarize our main
results.

2 Preliminary Notes

Consider n DMUs with m inputs and s outputs. The input and output
vectors of DMUj (j = 1, . . . , n) are Xj = (x1j , . . . , xmj)

t, Yj = (y1j, . . . , ysj)
t,

respectively, where Xj ≥ 0, Xj �= 0, Yj ≥ 0, Yj �= 0. Unlike the classic DEA
model, we assume further that the levels of inputs and outputs are not known
exactly, the true input and output data known to lie within bounded interval
.i.e. xij ∈ [xL

ij , x
U
ij ] and yrj ∈ [yL

rj, y
U
rj] with upper and lower bounds of the
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intervals given as constants and assumed strictly positive. In this case, the
efficiency can be an interval. The upper bound of interval efficiency for DMUo

is obtained from the best viewpoints and the lower bound is obtained from
the worst viewpoint. The following model provides such an upper bound for
DMUo:

θU
o = min θ

s.t.

n∑
j=1,j �=o

λjx
U
ij + λox

L
io ≤ θxL

io, i = 1, . . . , m

n∑
j=1,j �=o

λjy
L
rj + λoy

U
ro ≥ yU

ro, r = 1, . . . , s

λj ≥ 0, j = 1, . . . , n.

(1)

We denote by θU
o the efficiency score attained by DMUo in model(1).

the model below provides a lower bound of The efficiency score for DMUo:

θL
o = min θ

s.t.

n∑
j=1,j �=o

λjx
L
ij + λox

U
io ≤ θxU

io, i = 1, . . . , m

n∑
j=1,j �=o

λjy
U
rj + λoy

L
ro ≥ yL

ro, r = 1, . . . , s

λj ≥ 0, j = 1, . . . , n.

(2)

The efficiency θL
o attained by DMUo in model (2) serves as a lower bound

of its possible efficiency scores. While considering (1) and (2), it is evident
that θL

o ≤ θU
o .

On the basis of the above efficiency score intervals, DMUs can be classified in
three subsets as follows:
E++ = {j ∈ J | θL

j = 1}, E+ = {j ∈ J | θL
j < 1 and θU

j = 1} and
E− = {j ∈ J | θU

j < 1}.

3 Sensitivity analysis in DEA with interval

data

Suppose that DMUs are evaluated by model (1) and model (2) are classified
in E++ , E+ and E−. Having identified efficient and inefficient DMUs in a
DEA analysis, one may want to know how sensitive these identification are
to possible variation in the data. We determine ”radius of stability”within
which data variations will not alter a DMU ,s classification from efficient to
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inefficient status or vice versa. We consider the radius of stability of DMUo

in three cases as follow.

3.1 Radius of stability for DMU in E++

In this case, we assume that DMUo is in E++, that is , θL
o = 1. it is obvious that

DMUo remains in E++ if its outputs increase or its inputs decrease. Our aim
is to find the scalers αi, (i = 1, . . . , m), βr, (r = 1, . . . , s), δi, (i = 1, . . . , m)
and ϕr, (r = 1, . . . , s) such that if we decrease rth upper bound of output
of DMUo by βr and increase ith lower bound of input of DMUo by αi then
θU

o = 1, also if we decrease rth lower bound of output of DMUo by ϕr and
increase ith upper bound of input of DMUo by δi then θL

o = 1, i.e. DMUo

remains in E++.
It has been assumed that βr,αi,ϕr and δi are scaler and non negative. Here we
consider the following cases:
(1) It is obvious if xL

io, (i = 1, . . . , m) are replace with xL
io − αi, (i = 1, . . . , m)

and yU
ro, (r = 1, . . . , s) are replace with yU

ro +βr, (r = 1, . . . , s) then θU
o = 1 and

if xU
io, (i = 1, . . . , m) are replace with xU

io − δi, (i = 1, . . . , m) , and yL
ro, (r =

1, . . . , s) are replace with yL
ro + ϕr, (r = 1, . . . , s) then θL

o = 1; consequently,
DMUo ∈ E++.
(2) If xL

io, (i = 1, . . . , m) are replace with xL
io + αi(i = 1, . . . , m) and yU

ro, (r =
1, . . . , s) are replace with yU

ro − βr, (r = 1, . . . , s) then it is possible for DMUo

not to be in the E++ . We are concerned with finding the largest value for
βr and αi such that DMUo ∈ E++. For this purpose, the following model is
proposed:

min {α1, . . . , αm, β1, . . . , βs}
s.t.

n∑
j=1

λjx
U
ij ≤ xL

io + αi, i = 1, . . . , m

n∑
j=1

λjy
L
rj ≥ yU

ro − βr, r = 1, . . . , s

0 ≤ αi ≤ xU
io − xL

io, i = 1, . . . , m
0 ≤ βr ≤ yU

ro − yL
ro, r = 1, . . . , s

λj ≥ 0, j = 1, . . . , n.

(3)

Model (3) is a MOLP. We solve model (3) through the method of Weighted-
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sums. We have:

min

m∑
i=1

Wiαi +

s∑
r=1

W
′
rβr

s.t.

n∑
j=1

λjx
U
ij ≤ xL

io + αi, i = 1, . . . , m

n∑
j=1

λjy
L
rj ≥ yU

ro − βr, r = 1, . . . , s

0 ≤ αi ≤ xU
io − xL

io, i = 1, . . . , m
0 ≤ βr ≤ yU

ro − yL
ro, r = 1, . . . , s

λj ≥ 0, j = 1, . . . , n

(4)

(3) If xU
io, (i = 1, . . . , m) are replace with xU

io + δi, (i = 1, . . . , m)and yL
ro, (r =

1, . . . , s) are replace with yL
ro −ϕr, (r = 1, . . . , s) then it is possible for DMUo

not to be in the E++ . We are concerned with finding the largest value for
ϕr and δi such that DMUo ∈ E++. For this purpose, the following model is
proposed:

min {δ1, . . . , δm, ϕ1, . . . , ϕs}
s.t.

n∑
j=1,j �=o

λjx
L
ij ≤ xU

io + δi, i = 1, . . . , m

n∑
j=1,j �=o

λjy
U
rj ≥ yL

ro − ϕr, r = 1, . . . , s

δi ≥ 0, i = 1, . . . , m
ϕr ≥ 0, r = 1, . . . , s
λj ≥ 0, j = 1, . . . , n.

(5)

We solve model (5) through the method of Weighted-sums. So we have:

min
m∑

i=1

Wiδi +
s∑

r=1

W
′
rϕr

s.t.

n∑
j=1,j �=o

λjx
L
ij ≤ xU

io + δi, i = 1, . . . , m

n∑
j=1,j �=o

λjy
U
rj ≥ yL

ro − ϕr, r = 1, . . . , s

δi ≥ 0, i = 1, . . . , m
ϕr ≥ 0, r = 1, . . . , s
λj ≥ 0, j = 1, . . . , n.

(6)
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Theorem 3.1. If DMUo ∈ E++ and (λ∗
1, . . . , λ∗

n, α∗
1, . . . , α∗

m, β∗
1 , . . . , β∗

s)
is an optimal Pareto solution of (3) then DMUo with inputs [xL

io + α∗
i , x

U
io]

(i = 1, . . . , m) and outputs [yL
ro, y

U
ro−β∗

r ], (r = 1, . . . , s) is in E++, i.e. θU
o = 1.

Proof. Suppose (λ̂, θU
o ) is optimal value of model(1)when evaluating DMUo

so we have

λ̂o(x
L
io + α∗

i ) +
n∑

j=1,j �=o

λ̂jx
U
ij ≤ θL

o (xL
io + α∗

i ), i = 1, . . . , m

λ̂o(y
U
ro − β∗

r ) +
n∑

j=1,j �=o

λ̂jy
L
rj ≥ yU

ro − β∗
r , r = 1, . . . , s.

Suppose θU
o < 1 then DMUo is inefficient so λ̂o = 0 we have:

n∑
j=1,j �=o

λ̂jx
U
ij < xL

io + α∗
i , i = 1, . . . , m

n∑
j=1,j �=o

λ̂jy
L
rj ≥ yU

ro − β∗
r , r = 1, . . . , s.

(7)

Exist εi > 0, (i = 1, . . . , m) such that :

n∑
j=1,j �=o

λ̂jx
U
ij ≤ xL

io + α∗
i − εi, i = 1, . . . , m

n∑
j=1,j �=o

λ̂jy
L
rj ≥ yU

ro − β∗
r , r = 1, . . . , s.

Let α̃i = α∗
i − εi obviously, (λ̂1, . . . , λ̂n, α̃1, . . . , α̃m, β∗

1 , . . . , β∗
s ) is a feasible

solution of model (3) we have α̃i < α∗
i for all i and β∗

r = β∗
r for all r, which is

a contradiction.

Theorem 3.2. If DMUo ∈ E++ and (λ∗
1, . . . , λ∗

n, δ
∗
1 , . . . , δ∗m, ϕ∗

1, . . . , ϕ∗
s) is

an optimal Pareto solution of (5) then DMUo with inputs [xL
io, x

U
io + δ∗i ], (i =

1, . . . , m) and outputs [yL
ro − ϕ∗

r, y
U
ro], (r = 1, . . . , s) is in E++, i.e. θL

o = 1.
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Proof. Suppose (λ̂, θL
o ) is an optimal value of model(2)when evaluating

DMUo so we have

λ̂o(x
U
io + δ∗i ) +

n∑
j=1,j �=o

λ̂jx
L
ij ≤ θL

o (xU
io + δ∗i ), i = 1, . . . , m

λ̂o(y
L
ro − ϕ∗

r) +

n∑
j=1,j �=o

λ̂jy
U
rj ≥ yL

ro − ϕ∗
r , r = 1, . . . , s.

(8)

Suppose θL
o < 1 then DMUo is inefficient so λ̂o = 0 we have:

n∑
j=1,j �=o

λ̂jx
L
ij < xU

io + δ∗i , i = 1, . . . , m

n∑
j=1,j �=o

λ̂jy
U
rj ≥ yL

ro − ϕ∗
r , r = 1, . . . , s.

(9)

Exist εi > 0, (i = 1, . . . , m) such that :

n∑
j=1,j �=o

λ̂jx
L
ij ≤ xU

io + δ∗i − εi, i = 1, . . . , m

n∑
j=1,j �=o

λ̂jy
U
rj ≥ yL

ro − ϕ∗
r , r = 1, . . . , s.

Let δ̃i = δ∗i − εi obviously, (λ̂1, . . . , λ̂n, δ̃1, . . . , δ̃m, ϕ∗
1, . . . , ϕ∗

s) is a feasible
solution of model (5) we have δ̃i < δ∗i for all i and ϕ∗

r = ϕ∗
r for all r, which is a

contradiction.

Theorem 3.3. If DMUo ∈ E++ and (λ∗
1, . . . , λ∗

n, α∗
1, . . . , α∗

m, β∗
1 , . . . , β∗

s)
is an optimal Pareto solution of (3) then for any αi, (i = 1, . . . , m) and βr, (r =
1, . . . , s), where αi ∈ [0, α∗

i ](i = 1, . . . , m) and βr ∈ [0, β∗
r ], (r = 1, . . . , s) if

xio ∈ [xL
io + αi, x

U
io], (i = 1, . . . , m) and yro ∈ [yL

ro, y
U
ro − βr]

(r = 1, . . . , s) then DMUo ∈ E++ i.e. θU
o = 1.

Proof.The proof is analogous with that of theorem (3.1) and is omitted .

Theorem 3.4. If DMUo ∈ E++ and (λ∗
1, . . . , λ∗

n, δ
∗
1 , . . . , δ∗m, ϕ∗

1, . . . , ϕ∗
s) is

an optimal Pareto solution of (5) then for any δi, (i = 1, . . . , m) and ϕr, (r =
1, . . . , s), where δi ∈ [0, δ∗i ], (i = 1, . . . , m) and ϕr ∈ [0, ϕ∗

r], (r = 1, . . . , s) if
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xio ∈ [xL
io, x

U
io + δi], (i = 1, . . . , m) and yro ∈ [yL

ro − ϕi, y
U
ro](r = 1, . . . , s) then

DMUo ∈ E++ i.e. θL
o = 1.

Proof. The proof is analogous with that of theorem (3.2) and is omitted.

3.2 Radius of stability for DMU in E+

In this case, we assume that DMUo is in E+, that is θL
o < 1 and θU

o = 1. Our
aim is to find the scalers αi, (i = 1, . . . , m), βr, (r = 1, . . . , s), δi, (i = 1, . . . , m)
and ϕr, (r = 1, . . . , s) such that if we decrease rth upper bound of output of
DMUo by βr and increase ith lower bound of input of DMUo by αi then
θU

o = 1, also if we increase rth lower bound of output of DMUo by ϕr and
decrease ith upper bound of input of DMUo by δi then θL

o < 1, i.e. DMUo

remains in E+.
It has been assumed that βr, αi, ϕr and δi are scaler and non negative. Here
we consider the following cases:
(1) It is obvious if xL

io, (i = 1, . . . , m) are replace with xL
io − αi, (i = 1, . . . , m)

and yU
ro, (r = 1, . . . , s) are replace with yU

ro + βr(r = 1, . . . , s) then θU
o = 1 and

if XU
o , Y L

o are fixed, then θL
o < 1; consequently,

DMUo ∈ E+.
(2)If xU

io, (i = 1, . . . , m) are replace with xU
io + δi, (i = 1, . . . , m)and yL

ro, (r =
1, . . . , s) are replace with yL

ro − ϕr(r = 1, . . . , s) then θL
o < 1 and if XL

o , Y U
o

are fixed, then θU
o = 1; consequently, DMUo ∈ E+.

(3) If xL
io, (i = 1, . . . , m) are replace with xL

io + αi(i = 1, . . . , m) and yU
ro, (r =

1, . . . , s) are replace with yU
ro − βr(r = 1, . . . , s) then it is possible for DMUo

not to be in the E+ . We are concerned with finding the largest value for
βr and αi such that DMUo ∈ E+. For this purpose, the following model is
proposed:

min {α1, . . . , αm, β1, . . . , βs}
s.t.

n∑
j=1

λjx
U
ij ≤ xL

io + αi, i = 1, . . . , m

n∑
j=1

λjy
L
rj ≥ yU

ro − βr, r = 1, . . . , s

0 ≤ αi ≤ xU
io − xL

io, i = 1, . . . , m
0 ≤ βr ≤ yU

ro − yL
ro, r = 1, . . . , s

λj ≥ 0, j = 1, . . . , n

(10)
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We solve model (13) through the method of Weighted-sums. We have:

min

m∑
i=1

Wiαi +

s∑
r=1

W
′
i βr

s.t.

n∑
j=1

λjx
U
ij ≤ xL

io + αi, i = 1, . . . , m

n∑
j=1

λjy
L
rj ≥ yU

ro − βr, r = 1, . . . , s

0 ≤ αi ≤ xU
io − xL

io, i = 1, . . . , m
0 ≤ βr ≤ yU

ro − yL
ro, r = 1, . . . , s

λj ≥ 0, j = 1, . . . , n

(11)

(4) If xU
io, (i = 1, . . . , m) are replace with xU

io − δi(i = 1, . . . , m) and yU
ro, (r =

1, . . . , s) are replace with yL
ro + ϕr(r = 1, . . . , s) then it is possible for DMUo

not to be in the E+. We are concerned with finding the largest value for ϕr and
δi such that DMUo ∈ E+. For this purpose, the following model is proposed:

max {δ1, . . . , δm, ϕ1, . . . , ϕs}
s.t.

n∑
j=1,j �=o

λjx
L
ij ≤ xU

io − δi, i = 1, . . . , m

n∑
j=1,j �=o

λjy
U
rj ≥ yL

ro + ϕr, r = 1, . . . , s

0 ≤ δi ≤ xU
io − xL

io, i = 1, . . . , m
0 ≤ ϕr ≤ yU

ro − yL
ro, r = 1, . . . , s

λj ≥ 0, j = 1, . . . , n.

(12)

We solve model (15) through the method of Weighted-sums. We have:

max
m∑

i=1

Wiδi +
s∑

r=1

W
′
i ϕr

s.t.

n∑
j=1,j �=o

λjx
L
ij ≤ xU

io − δi, i = 1, . . . , m

n∑
j=1,j �=o

λjy
U
rj ≥ yL

ro + ϕr, r = 1, . . . , s

0 ≤ δi ≤ xU
io − xL

io, i = 1, . . . , m
0 ≤ ϕr ≤ yU

ro − yL
ro, r = 1, . . . , s

λj ≥ 0, j = 1, . . . , n

(13)

Theorem 3.5. If DMUo ∈ E+ and (λ∗
1, . . . , λ∗

n, α
∗
1, . . . , α∗

m, β∗
1 , . . . , β∗

s ) is
an optimal Pareto solution of (13) then DMUo with inputs [xL

io + α∗
i , x

U
io], (i =

1, . . . , m) and outputs [yL
ro, y

U
ro − β∗

r ], (r = 1, . . . , s) is in E+, i.e. θU
o = 1.

Proof.The proof is analogous with that of theorem (3.1) and is omitted.
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Theorem 3.6. If DMUo ∈ E+ and (λ∗
1, . . . , λ∗

n, δ∗1, . . . , δ∗m, ϕ∗
1, . . . , ϕ∗

s) is
an optimal Pareto solution of (15) then DMUo with inputs [xL

io, x
U
io − δi], (δi <

δ∗i (i = 1, . . . , m)) and outputs [yL
ro + ϕr, y

U
ro], (ϕr < ϕ∗

r(r = 1, . . . , s)) is in E+,
i.e. θL

o < 1.
Proof.(λ∗

1, . . . , λ∗
n, δ∗1, . . . , δ∗m, ϕ∗

1, . . . , ϕ∗
s) is optimal value of objective func-

tion(15) so we have

n∑
j=1,j �=o

λ∗
jx

L
ij ≤ xU

io − δ∗i < xU
io − δi, i = 1, . . . , m

n∑
j=1,j �=o

λ∗
jy

U
rj ≥ yL

ro + ϕ∗
r > yL

ro + ϕr, r = 1, . . . , s.

So exist θ̂ where 0 < θ̂ < 1 such that

n∑
j=1,j �=o

λ∗
jx

L
ij ≤ θ̂(xU

io − δi), i = 1, . . . , m

n∑
j=1,j �=o

λ∗
jy

U
rj > yL

ro + ϕr, r = 1, . . . , s.

So (θ̂, λ∗) where λ∗
o = 0 is a feasible solution of model (2). Obviously

θL
o ≤ θ̂ < 1.

Theorem 3.7. If DMUo ∈ E+ and (λ∗
1, . . . , λ∗

n, α
∗
1, . . . , α∗

m, β∗
1 , . . . , β∗

s ) is
an optimal Pareto solution of (13) then for any αi, (i = 1, . . . , m) and βr, (r =
1, . . . , s), where αi ∈ [0, α∗

i ](i = 1, . . . , m) and βr ∈ [0, β∗
r ], (r = 1, . . . , s) if

xio ∈ [xL
io + αi, x

U
io], (i = 1, . . . , m) and yro ∈ [yL

ro, y
U
ro − βr]

(r = 1, . . . , s) then DMUo ∈ E+ i.e. θU
o = 1.

Proof.The proof is analogous with that of theorem (3.5) and is omitted.

shavad

3.3 Radius of stability for DMU in E−

In this case, we assume that DMUo is in E−. Our aim is to find the scalers
αi, (i = 1, . . . , m), βr, (r = 1, . . . , s), δi, (i = 1, . . . , m) and ϕr, (r = 1, . . . , s)
such that if we increase rth upper bound of output of DMUo by βr and decrease
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ith lower bound of input of DMUo by αi then θU
o < 1 , also if we increase rth

lower bound of output of DMUo by ϕr and decrease ith upper bound of input
of DMUo by δi then θL

o < 1 , i.e. DMUo remains in E−.
It has been assumed that βr, αi, ϕr and δi are scaler and non negative. Here
we consider the following cases:
(1) It is obvious if xL

io, (i = 1, . . . , m) are replace with xL
io + αi, (i = 1, . . . , m)

and yU
ro, (r = 1, . . . , s) are replace with yU

ro − βr, (r = 1, . . . , s) then θU
o < 1

and if xU
io, (i = 1, . . . , m) are replace with xU

io + δi(i = 1, . . . , m) and yL
ro, (r =

1, . . . , s) are replace with yL
ro − ϕr(r = 1, . . . , s) then θL

o < 1 consequently
DMUo is in E−.
(2)If xL

io, (i = 1, . . . , m) are replace with xL
io − αi, (i = 1, . . . , m) and yU

ro, (r =
1, . . . , s) are replace with yU

ro + βr, (r = 1, . . . , s) then it is possible for DMUo

not to be in the E− . We are concerned with finding the largest value for
βr and αi such that DMUo ∈ E−. For this purpose, the following model is
proposed:

max (α1, . . . , αm, β1, . . . , βs)

s.t.
n∑

j=1,j �=o

λjx
U
ij ≤ xL

io − αi, i = 1, . . . , m

n∑
j=1,j �=o

λjy
L
rj ≥ yU

ro + βr, r = 1, . . . , s

αi ≥ 0, i = 1, . . . , m
βr ≥ 0, r = 1, . . . , s
λj ≥ 0, j = 1, . . . , n

(14)

We solve model (19) through the method of Weighted-sums. We have:

max

m∑
i=1

Wiαi +

s∑
r=1

W
′
i βr

s.t.

n∑
j=1,j �=o

λjx
U
ij ≤ xL

io − αi, i = 1, . . . , m

n∑
j=1,j �=o

λjy
L
rj ≥ yU

ro + βr, r = 1, . . . , s

αi ≥ 0, i = 1, . . . , m
βr ≥ 0, r = 1, . . . , s
λj ≥ 0, j = 1, . . . , n

(15)

Theorem 3.8. If DMUo ∈ E− and (λ∗
1, . . . , λ∗

n, α
∗
1, . . . , α∗

m, β∗
1 , . . . , β∗

s ) is
an optimal Pareto solution of (19) For any αi, (i = 1, . . . , m) and βr, (r =
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1, . . . , s), where αi ∈ [0, α∗
i ), (i = 1, . . . , m) andβr ∈ [0, β∗

r ), (r = 1, . . . , s) if
xio ∈ [xL

io − αi, x
U
io], (i = 1, . . . , m) and

yro ∈ [yL
ro, y

U
ro + βr], (r = 1, . . . , s)then DMUo ∈ E−i.e. θU

o < 1.

Proof.(λ∗
1, . . . , λ∗

n, α∗
1, . . . , α∗

m, β∗
1 , . . . , β∗

s ) is optimal value of objective func-
tion(19) so we have

n∑
j=1,j �=o

λ∗
jx

U
ij ≤ xL

io − α∗
i < xL

io − αi, i = 1, . . . , m

n∑
j=1,j �=o

λ∗
jy

L
rj ≥ yU

ro + β∗
r > yU

ro + βr, r = 1, . . . , s.

So exist θ̂ where 0 < θ̂ < 1 such that

n∑
j=1,j �=o

λ∗
jx

U
ij ≤ θ̂(xL

io − αi), i = 1, . . . , m

n∑
j=1,j �=o

λ∗
jy

L
rj > yU

ro + βr, r = 1, . . . , s.

So (θ̂, λ∗) where λ∗
o = 0 is a feasible solution of model (1).Obviously

θU
o ≤ θ̂ < 1.

4 Another method for solving Sensitivity anal-

ysis models(MOLP),via STEM algorithm

For finding efficient solution of MOLP, the interactive methods are used ac-
cording to decision maker comment; therefore, the interactive methods are
argued such as SETEM, Z.W,... in [11].
In this paper, we solve the MOLPs which were obtained for estimating the
sensitivity analysis and radius of stability via STEM algorithm. so; we argue
about STEM algorithm for model (3) briefly as the following:
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step 1: By individually optimizing each objective function, construct a pay-
off table to obtain the ideal criterion vector z∗ ∈ Rm+s. Let z∗i = α∗

i , (i =
1, . . . , m) (ith Optimal value of ith objective function) , z∗m+i = β∗

i , (i =
1, . . . , s)((i+m)th Optimal value of (i+m)th objective function) , z∗ij = α∗

j , (j =
1, . . . , m) (jth Optimal value of ith objective function (i = 1, . . . , m))and
z∗m+ij = β∗

j , (j = 1, . . . , s)(jth Optimal value of (i+m)th objective function(i =
m + 1, . . . , m + s)) .
a payoff table is of the form

z∗1 z12 z1m+s

z21 z∗2 z2m+s

...
...

. . .
...

zm+s1 zm+s2 z∗m+s

Table 1. The payoff table.

Where the rows are the criterion vectors resulting from individually opti-
mizing each of the objective. The z∗i entries along the main diagonal form the
z∗ ideal criterion vector.
step 2: Let iteration counter h = 0 . let mi be the minimum value in the ith
column of the payoff table. Calculate πi values where

πi =

⎧⎨
⎩

z∗i −mi

z∗i
z∗i > 0

1 z∗i = 0.

step 3: Let S1 = S (S is feasible region of model (3)) and index set J∗ = ∅.
step4: Let h = h + 1 ,calculate ηh

i :

ηh
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

πi
m+s∑
i=1

πi

otherwise

0 i ∈ J∗.

step 5: Solve the weighted min max program

min γ
s.t. γ ≥ ηh

i (z∗i − αi), i = 1, . . . , m
γ ≥ ηh

i (z∗m+r − βr), r = 1, . . . , s
αi ∈ Sh i = 1, . . . , m
βr ∈ Sh r = 1, . . . , s
γ ≥ 0

(16)
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for decision space solution (αh
1 , . . . , αh

m, βh
1 , . . . , βh

s ).
Step 6: Let zh = (αh

1 , . . . , αh
m, βh

1 , . . . , βh
s ). compare zh with z∗.

Step 7: If all components of zh are satisfactory, stop with(zh, λ1, . . . , λn) as
the final solution. otherwise go to step 8.
step 8: Specify the index set J∗ of criterion values to be relaxed and specify
the amounts(Δj , j ∈ J∗) by which they are to be relaxed.
step 9: Form reduced feasible region

Sh+1 = {(λ1, . . . , λn, α1, . . . , αm, β1, . . . , βs) ∈ S | if j ∈ J∗ : zj ≥
zh

j − Δj; otherwise : zj ≥ zh
j }

then go to step 4.
All MOLP models can also be solved through STEM method which we have
explained it,s process.

5 Numerical example

Consider the interval data setting of Table 2 contains eight DMUs with two
inputs and one output and efficiency scores obtained by applying (1) and (2).

Input Output Efficiency Score
DMUj xL

1j xU
1j xL

2j xU
2j yL

j yU
j θL

j θU
j Classification

1 4 6 3 5 0.1 0.25 0.173 0.842 E−

2 7 9 0.5 2.5 0.1 0.5 0.0162 0.5714 E−

3 6 8 1 2 3.5 3.75 1 1 E++

4 4 4.25 2 2.5 3 3.25 0.8544 1 E+

5 2 2.5 4 4.75 2.5 3 1 1 E++

6 10 12 1 3 2 4 0.2481 1 E+

7 12 14 1 3 0.5 1 0.0548 0.5714 E−

8 10 12 1.5 3.5 0.25 0.75 0.03 0.2854 E−

Table 2. Data of numerical example.

Considering the data from Table 2 and using models in section 3, we cal-
culate the radius of stability for all DMUs as the following:
(i)Radius of stability E++

For determining radius of stability of DMU3 and DMU5 , we apply (3) and
(5)(because DMU3 and DMU5 are in E++) the data is as shown in Table 3.
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Weighted -sums method STEM method
DMUj α∗

1 α∗
2 β∗ δ∗1 δ∗2 ϕ∗ α∗

1 α∗
2 β∗ δ∗1 δ∗2 ϕ∗

3 2 1 0.25 0 0 0 2 1 0.25 0 0 0
5 0.5 0.75 0.5 0 0 0.4688 0.5 0.75 0.5 0 0 0

Table 3. The value of model(3)and model(5).

If xL
ij , for i = 1, 2 and j = 3, 5 are increased by α∗

i (i = 1, 2) and yU
j for j = 3, 5

are decreased by β∗, and apply (1), then θU
j = 1(j = 3, 5) and DMUj(j = 3, 5)

remains in E++. If xU
ij , for i = 1, 2 and j = 3, 5 are increased by δ∗i (i = 1, 2)

and yU
j for j = 3, 5 are decreased by ϕ∗ , and apply (2), then θL

j = 1(j = 3, 5)
and DMUj(j = 3, 5) remains in E++.

Input output Efficiency Input output Efficiency
DMUj xL

1 xL
2 yU θU xU

1 xU
2 yL θL

3 8 2 3.5 1 8 2 3.5 1
5 2.5 4.75 2.5 1 2.5 7.75 2 1

Table 4. the sensitivity analysis result.

Table 4 reports the sensitivity analysis result for DMU5 and DMU3.
(ii)Radius of stability E+.
For determining radius of stability of DMU4 and DMU6 ,we apply (13) and
(15)(because DMU4 and DMU6 are in E+) the data is as shown in Table 5
and 6.

Weighted-sums method STEM method
DMUj α∗

1 α∗
2 β∗ α∗

1 α∗
2 β∗

4 0.25 0.5 0.25 0.25 0.5 0.25
6 0 1.43 0 0 0.1285 0

Table 5. The value of model(13).

Weighted-sums method STEM method
DMUj δ∗1 δ∗2 ϕ∗ δ∗1 δ∗2 ϕ∗

4 0.25 0.5 0.1364 0.1765 0.5 0.1765
6 2 1.9333 2 1.9474 1.9474 1.9474

Table 6. The value of model(15).

If xL
ij , for i = 1, 2 and j = 4, 6 are increased by α∗

i (i = 1, 2) and yU
j

for j = 4, 6 are decreased by β∗, and apply (1), then θU
j = 1(j = 3, 5) and

DMUj(j = 4, 6) remains in E+. If xU
ij , for i = 1, 2 and j = 4, 6 are decreased

by δi (δi < δ∗i ) (i = 1, 2) and yU
j for j = 4, 6 are increased by ϕ (ϕ < ϕ∗), and

apply (2), then θL
j < 1(j = 4, 6) and DMUj(j = 4, 6)remains in E+.
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Input output Efficiency Input output Efficiency
DMUj xL

1 xL
2 yU θU xU

1 xU
2 yL θL

4 4.25 2.5 3 1 4.1 2.1 3.13 0.98
6 10 2.43 4 1 10.1 1.1 3.9 0.95

Table 7. the sensitivity analysis result.

Table 7, reports the sensitivity analysis result for DMU4 and DMU6. In this
case we assume δ1 = 0.24, δ2 = 0.4 and ϕ = 0.13 for DMU4 andδ1 = 1.9, δ2 =
1.9 and ϕ = 1.9 for DMU6 .
(iii)Radius of stability E− :
For determining radius of stability of DMUj (j = 1, 2, 7, 8) , we apply (19)
(because DMUj (j = 1, 2, 7, 8) are in E−) the data is as shown in Table 8.

Weighted-sums method STEM method
DMUj α∗

1 α∗
2 β∗ α∗

1 α∗
2 β∗

1 3.6458 2.7917 0 1.511 0.2583 2
2 6.2917 0.0333 0 5.5 0.0528 0.2135
7 10.5833 0.1667 0 9.5 0.039 0.3603
8 8.9375 0.875 0 7.5 0.1307 0.9343

Table 8. the value of model (19).

If xL
ij , for i = 1, 2 and j = 1, 2, 7, 8 are decreased by αi (αi < α∗

i ) (i = 1, 2)
and yU

j for j = 1, 2, 7, 8 are increased by β (β < β∗), and apply (1), then
θU

j < 1(j = 1, 2, 7, 8) and DMUj(j = 1, 2, 7, 8) remains in E−.

Input output Efficiency
DMUj xL

1 xL
2 yU θU

1 0.4 0.3 0.25 0.84
2 0.8 0.5 0.5 0.84
7 1.5 0.9 1 0.94
8 1.1 0.7 0.75 0.95

Table 9. the sensitivity analysis result.

Table 9, reports the sensitivity analysis result for DMUj (j = 1, 2, 7, 8). In
this case we assume α1 = 3.6, α2 = 2.7 and β = 0 for DMU1,α1 = 6.2, α2 = 0
and β = 0 for DMU2,α1 = 10.5, α2 = 0.1 ,β = 0, for DMU7 and α1 = 8.9,
α2 = 0.8 and β = 0 for DMU8.

6 conclusion

In this paper, for estimating the sensitivity analysis of DMUs in all the inputs
and outputs; while the inputs and outputs are interval data, aMOLP problem
will be suggested. We classify the DMUs then we obtained the radius of
stability for all the different classification. So, by using efficient solutions, the
sensitivity analysis can be obtained for inputs and outputs. In this case that
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we want to use comment of Decision Maker for finding an efficient solution of
MOLP, the STEM method which is an interactive method is used. But MOLP
problem have many methods for solving for this reason we can not find the
unique region. such a work with fuzzy data may be done and the model may
be extended.
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