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Abstract. The objective of a meta-analysis is usually to estimate the overall
treatment effect and make inferences about the difference between the efffects
of the two treatments. This article presents several forms of effect size esti-
mators and compares these effect size estimators and the variance of overall
treatment effect estimator within each group. as outcome measures, stan-
darized difference is considered. Four modes of effect size estimators are dis-
cussed. Effect size estimators by Glass, Hedges, The Maximum Likelihood,
and Shrunken Estimators of Effect Size are employed in this study. Finally,
with the help of a software the results of these four effect size estimators are
discussed. Estimators are illustrated using a comparison of the effectiveness of
amlodipine and placebo on work capacity.

Mathematics Subject Classifation: Primary 05C38, 15A15; Secondary
05A15, 15A18

Keywords: Meta-analysis, effect size estimator, fixed effects model, random
effects model



726 N. Yildiz, M. Akcil and M. Tez
1. INTRODUCTION

Meta-analysis was defined by Glass (1976) to be statistical analysis of large
collection of analysis results from individual studies for the purpose of inter-
preting the findings. Meta -analysis may be broadly defined as the quanti-
tative review and synthesis of the results of related but independent studies
[1-2]. Such analysis have become increasingly popular in medical research
where information about treatment efficiency is available from a number of
clinical trials with inconclusive or inconsistent results [3]. In terms of a se-
lected set of outcome measure for each chosen outcome measures, this paper
aims at comparing the effects of the two treatments. The goal is usually to es-
timate and make inferences about the difference between the effects of the two
treatments. There are three forms of data which are commonly encountered:
binary data, ordinal data, and normally distributed data. In meta-analysis of
studies which are measured on a continuous scale, there are two situations. In
the first situation, all of the eligible studies use the same measure of the effect.
Accordingly, absolute mean difference is used. As for the second situation,
if a different instrument and different scales as effect measure are used, then
standardized mean differences are employed [4]. In this paper the responses
can be considered to be approximately normally distributed. Therefore as
outcome measures standardized mean differences, commonly used effect size
estimators, are used [5].The aim of this paper is to estimate four forms of effect
size estimators and compare these effect size estimators and the variance of
overall treatment effect estimator within each group. Deriving an improved
tool for the part of the meta-analysis process in which no covariates are avail-
able for explaining the heterogeneity [6-8] of the study results is targeted. In
this study the results of commonly used methods for effect size estimator with
normal mean case can be very conservative. In the next section continuos data
type effect size estimators are presented; in the following section model types
in meta-analysis are presented; and examples to compare estimators are pre-
sented in the fourth section. In the last section the conclusions of comparing
effect size estimators are presented.

2. DATA TYPE

Outcomes have been categorized into one of three groups depending on the
type of data from which they are derived: binary data, ordinal data, and
normally distributed data

2.1. Binary Data. A binary variable takes one of two possible values com-
monly referred to as ”success or failure”, or patients ”alive or dead”, or ”dis-
eased/nondiseased”. A binary outcome is recorded for each patient. The
underlying model for the data recorded from one study is that patients in the
experimental group succeed with probability pp and patients in the control
group succeed with probability pc. When the response is a binary variable
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knowledge of the individual patient, data adds nothing to the summary shown
in Tablel
Tablel. data for a parallel group study with a binary outcome
Experimental Control

Outcome Group Group Total
Success (A live) b d b+d

Failure (Dead) a c a+c

Total ng nge N

For binary data there are three measures of treatment difference which are
Risk Difference, Relative Risk, and Odds Ratio. These measures of parameter
estimator and standard error are given Table 2.

Table 2. Study summaries, E denotes experimental group, C denotes control group, ¢; = 1 — p;

ng, and ng, denote the total number of treated and control patients, respectively; and a, b, c, and d

denote the number of observations in each of the cells defined by experimental and outcome

Risk Difference Relative Risk Odds Ratio
Pp(1—P,
Parameter RD = Pp — Po RR = Pr/Pc OR = ngl_ Pg;
. A s R _ PE;dc
Estimator d; = pg, — Po; Yi = PE, /Pc; wi = it
_ _ de; qac; _ 1 1 1
Standart S84, = Slog(r;) = \/("eiT-’Ei + noy Pci) Stog(w;) = /s T e +oo y

Error

2.2. Ordinal Data. Patients response one of m categories C, Cs, ..., C,,, which
are ordered in terms of desirability: C; is the best (), is the worst .The data
can be presented in the form of an m x 2 table as shown Table 3.
Table 3. Data for a parallel group study with an ordinal outcome
Number of patients

in category Experimental Control Total
Cy g, nc, 0
Cm Ng,, e, Ny
Total ng ne N

Two measures of treatment difference will be considered for ordinal data.
The first is a log odds ratio based on the proportional odds model; the second
model a log odds ratio based on the continuation ratio model.

2.3. Normally Distributed Data. A quantitative measurement on a con-
tinuous scale can often be treated as following a normal distribution. Data
from subjects in the experimental group Yg,,Yg,, ..., Yg, are modeled as be-
ing normally distributed with mean pr and common variance o2.Similarly the
control groups Y., Ye,, ..., Y,  are normally distributed with mean pc and

common variance o2, using N(u, 0?) to denote normally distributed with mean

i and variances o
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Yg, ~ N (pg,0?) 5 j=12,.,ng (1)

Yo, ~ N (ne,0%) =12, ,n¢ (2)

the combination of the results of k& controlled clinical trials or epidemiolog-
ical trials is given in Table 4 where in each study or trial an experimental
observation

is shown.
Table 4. Normally distributed data from the i.th study
i. study Treatment Overall
Er C*

Model = mean WE, Hc; i

standart deviation og, o¢, 0;
Data number ng, nc, N;

mean Ve Yo Y

standart deviation sg, s¢, s

* Experimental
** Control

An experimental group (E) is compared to a control group (C), as notations
those given by Whitehead and Whitehead are used [9].
Then absolute mean difference is defined as
0 = pp — pe (3)
the effect size is defined as
§ = hetc 0
Effect sizes are natural parameters for use in the synthesis of experimental
results. The hypothesis that there is no overall treatment effect for absolute
mean differences is tested. Y = pup —puc, for effect size ¢ = FE-EC the

hypotheses below are considered respectively.
Hy:0=0 and Hyp:0=0

2.3.1. Absolute difference between means. All of eligible studies use the same
measure of effect. For instance, all of the studies may measure the effect of
the intervention on blood pressure or serum cholesterol level. In this situation
as measure absolute mean difference is used. As outcome measures, abso-
lute difference between means which can be normally distributed responses is
formulated as - , )
Gi:YEi—YCiNN(H,Z—z+Z—$+72) i=1,2,...k (5)

if it is assumed that the variance of both experimental groups and control
groups has equal variances, the variance of Y; can be written as o?(1/ng +
1 / nc) +7 2.

where 72 is the variance of unexplained heterogeneity between the studies
and positive. If 72 = 0 then this model is called fixed effects model of meta-
analysis; otherwise the model is called random-effects model of meta-analysis
3, 5, 12].
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Effect Size Estimator. In certain situations there are several studies measuring
outcomes which are similar but not exactly the same, or the studies measure
the same end point but under different circumstances. One solution to this
problem is to create an outcome measure which does not depend on the scale
of measurements. The method of creating such a measure has been termed
as the method of "effect size”. In meta-analysis of studies where effect size is
measured on a continuous scale, all of eligible studies use different instruments
and thus different scales. In these situations effect size as measure can be used.

2.3.2. An Estimator of Effect Size Based on Standardized Mean Difference.
Effect sizes are natural parameters for use in the synthesis of experimental
results. There are several alternative point estimators of the effect size 4.
These estimators are based on the sample standardized mean difference but
differ by multicative constants that depend on the sample sizes involved. The
standardized difference § = #E-E< is estimated in each study by

g = be—pe (6)
where s is the pooled sample standard deviation,
_ [/e=1(p)’*+(nc-1)(sc)?

§= - nEE-i-nc—C2 - (7>

g represents the gain (or loss) as the fraction of the variability of the mea-
surements [13].
Unbiased Estimator of Effect Size. Unbiased estimator is described by Hedges
and Olkin. It is given by,

9" = (1 - 4]\?—9) g (8)

where N =ng +n¢ , ¢*is an approximation of the unbiased estimator of

the standardized difference between means (g) is proposed by hedges (Hedges).

As estimates of the variance of the optimal estimator for standardized differ-
ence ¢g*is proposed by Hedges and Olkin [10].

N o
var (%) = % + 43 (9)
where n = ngne, weight is given by
= *)2 -1
w; = <% 16 +%2> 0)

where 72 denotes an estimator of the between-study variance.
The Maximum Likelihood Estimator of the Effect Size. Maximum likelihood
estimates have the advantage of being consistent and asymptotically efficient.
The maximum likelihood estimator of § of § is given by

- e [ =\ a
and the variance of the maximum likelihood estimator is given by
var(§) = % || + 0 | @ ~ ey (12)
where J(m) is a constant .The constant J(m) is less than unity and ap-
proaches unity when m is large. Values for J(m) is given in Table 5 and an
approximate calculation is made using

J(m) =1—- 2=

(13)
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Table 5.Exact values of the bias correction factor
Jm) m J(m) m J(m) m J(m)
0,5642 15 0,9490 28 0,9729 41 0,9816
0,7236 16 0,9523 29 0,9739 42 0,9820
0,7979 17 0,9551 30 0,9748 43 0,9824
0,8408 18 0,9577 31 0,9756 44 0,9828
0,8686 19 0,9599 32 0,9764 45 0,9832
0,8882 20 0,9619 33 0,9771 46 0,9836
0,9027 21 0,9638 34 0,9778 47 0,9839
0,9139 22 0,9655 35 0,9784 48 0,9843
10 0,9228 23 0,9670 36 0,9790 49 0,9846
11 10,9300 24 0,9684 37 0,9796 50 0,9849
12 10,9359 25 0,9699 38 0,9801

13 10,9410 26 0,9708 39 0,9806

14 10,9453 27 0,9719 40 0,9811

@OO\]CDOT%QDMS

Shrunken Estimators of the Effect Size. The minimum variance unbiased esti-
mator need not be the minimum mean squared error estimator. The principle
in these shrunken estimates is that the increase in the bias term of the mean-
squared is more than compensated for the by reduction of the variance term
of mean-squared error [10]. The minimum variance unbiased estimator of ¢ is
dominated by shrunken estimator which is denoted by g and is given by

Ul & SR (14)
J(N—-2)
and the variance of the shrunken estimator is given by
SN (N—4y2_ 1 n* 2 n* 1
var(9) = (3= S wmr T 0 o~ Ty (15)

where n* = ng +ng — 2

3. MODEL TYPES

There are two models in meta-analysis. The first model is fixed effects
model which assumes that studies being modeled are homogeneous; namely
there are no differences in underlying study populations. The second model
is random effects model that assumes that the studies estimate different effect
sizes and take into account the extra variation implied in making this assump-
tion. These underlying effects are assumed to vary at random typically; the
distribution of such effects is assumed to be normally distributed. This model
includes two sources of variation: the between and within study variance [11].

3.1. FIXED EFFECTS MODEL. Fixed effects models for meta-analysis
according to which the modeled studies are homogeneous. There are no dif-
ferences in underlying study populations and in patient-selection criteria that
might affect response to therapy, and the therapies are applied in the same
way [12].
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let 0; be a sufficient statistics for the effect of interest. For large individual-
study sample sizes, the response and the individual study approximately have
normal distribution. Thus, the general fixed effects model is given by
0;=0+e¢ (16)
where 6 represents the mean of study effects, and ¢; is error terms and
realizations of normally distributed random variables with expected value 0
and variance denoted by o2, which might be shortened as follows:
0; ~ N (0,02) (17)
where o; is the standard deviation of the response. Let w; be the estimated
inverse variance of 0;, that is w; = 1/var(6;)

[12—13].
é*FEM = ZZWUZ (18>

where 6 is estimator of the overall fixed effect 6. Standard error is given by

se( Opmar) = \/Z: (19)

and an approximate 95 % confidence interval (CI) for # is given by
Oppy £1,96 [ (20)

S
3.2. RANDOM-EFFECTS MODEL. The random-effects model have been
advocated as a more conservative model. The random effects formulations
avoid homogeneity assumption. This approach assumes that based on the
studies different effect sizes are estimated and the extra variation implied in
making this assumption is taken into account. More specifically, this model
includes two sources of variation: the between and within study variance. In
the random effects model it is assumed that treatment difference parameters
in k studies (6, ..., 0)) are sample of independent observations from N (6, 72).
The general random effects model is given by

for i = 1,2, ..., k, where the v; are normally distributed random effects with
mean 0 and variance 72.

0, ~ N (0,02 + 72) (22)
where 72 is unknown and must be estimated from the data and 72 > 0 is
the true-between study variances. The parameters 72 is also named as the
variance of a random interaction of response by centres or studies. There are
several estimators for between study variance 72. Some of these estimators
are iterative, whereas other estimators are non iterative. As non iterative
estimator, Der-simonian Laird is a widely used estimator, and heterogeneity
variances estimation is estimated by this estimator. Therefore estimate of
treatment difference parameters may be written
0; ~ N (6, w7 +7?) (23)
where w; = 1/02, 7% is an estimate of 72. By setting

2
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-1

wt = (w;' + 77) (24)

0; ~ N (6, (w)™) (25)
A~k Zélw:‘
QREM = Z .

wy
where 0 is asymptotically unbiased for #, with variance approximately equal
to (w})~. The term (w}) 'as if it were the true variance of ; provides the

A (A
test statistics

(26)

g = 20 (27)

U* has a chi-squared distribution with one degree of freedom under null
hypothesis of no treatment difference (f = 0). The estimated component of
variance due to inter-study variation in effect size 72 is calculated as

2=0 if Q<k-1
and
P=Q-(k-1)/U if Q>k-1
where () is the heterogeneity test statistics defined as

Q=2 w <éz - é)Q (28)

the standard error is given by

se( Oppng) = \/Zi (29)

and an approximate 95 % confidence interval is given by
Oppy £1,96 [e—=— (30)

«

4. AN ILLUSTRATIVE EXAMPLE

In section 3 methods to illustrate as an example are given. The data set
given by Li et al is used [14] which is presented in Table 6. There are eight
randomized clinical trials. The effectiveness of a drug called amlodipine was
tested in the treatment of angina against placebo. The response variable was
the change in work capacity for each patient given as the ratio of the exercise
time after the patient received the intervention (drug or placebo) before pa-
tient received intervention. The logarithm of the changes are assumed to be
normally distributed.
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Table 6. Results of eight randomized controlled clinical trials comparing
the effectiveness of amlodipine and a placebo on work capacity
study

number Amlopidipine 10 mg(E)  Placebo (C)

nE; YEZ (SEi)Q ng; YCi (sci)Q

46 0,2316 0,2254 48 -0,0027 0,0007

30 0,2811 0,1441 26 0,027  0,1139

75 0,1894 0,1981 72 10,0443 10,4972
120,093 0,1389 12 0,2277 0,0488

32 0,1622 0,0961 34 0,0056 0,0955

31 0,1837 0,1246 31 0,0943 0,1734

27 0,6612 0,706 27 -0,0057 0,9891

46 0,1366 0,1211 47 -0,057 0,1291

Regarding the results in Table 6 we can see difference of treatment and
control group variance. For example in study 1 we have (sg,)° = 0,2254 and

(s¢,)? = 0,0007 similarly in study 3 (sg,)° = 0,1894 and(s¢,)” = 0,4972.
The results of in Table 3 there are difference treatment and control group.
Clearly we can say study 1, study3, study 5 there are difference between groups
so that equal variances assumptions is not convenient for this study.

Table 7.Estimates of effect size estimators and the corresponding variance estimates
in eight randomized controlled clinical trials [14]

QO | O O x| W N~

Study Glass Hedges Max.Lik Shrunken

number  (g) Var(g)  (g%) Var(g*) (9) Var(g)  (9) Var ()

1 0,7044  0,066361 0,6988  0,04521 0,7199  0,046977 0,7479 0,044

2 0, 7044 0,111951 0,6946 0,07623  0,7305 0,081391 0, 7800 0,072778
3 0,2472  0,029099 0,2459  0,02743  0,2506  0,028103 0,2568  0,026961
4 —0,4397 0,204315 —0,4245 0,17070 —0,4797 0,201203 —0,5654 0,152427
5 0,5059  0,078191 0,5000  0,62600 0,5218  0,066155 0,5514  0,060203
6 0,2316 0,068481 0,2287 0,06495  0,2393 0,068891 0,2539 0,062299
7 0,7244  0,117915 0,7141  0,07893 0,7522  0,084497 0,8053  0,075229
8 0,4022 0,050866 0, 3990 0,04387  0,4110 0,045618 0,4273 0,042696

The estimated outcome measures effect size estimator by Glass, unbiased ef-
fect size estimator (Hedges), the maximum likelihood estimator, and shrunken
estimators and corresponding variance estimation in each study are given Table
7. In study 4 it is observed that the results of estimate are negative. Accord-
ingly outcome measures yield results in favour of placebo where in all other
studies the drug is better one. The four effect size estimators were ordered
except for sign so that it can be easily seen that

gF<g<g<ag.

it follows that variances are ordered in the same way
Var(g) < Var(g*) < Var(g) < Var(g)
The estimated outcome measures effect size estimator by Glass, based on
standardized unbiased effect size estimator, the maximum likelihood estimator,
and Shrunken estimators both fixed and random effects estimate, heterogeneity
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variance or corresponding to variance of between study and confidence interval
in each study are given in Table 8.

The results of estimate outcome measures and confidence interval for fixed
and random effects are nearly similar. Considering the confidence intervals,
fixed effect confidence interval is narrower than the random effects confi-
dence interval for all methods. For example, for Glass estimator has (0, 26996
;0,60484) for fixed-effects model (0, 24689 ; 0, 63662) for random-effects model.
For unbiased effect size estimator (Hedges) it has confidence interval (0,26103
: 0, 58699) for fixed effects model, for other model has (0, 22672 ; 0, 624592).Similarly
the confidence intervals are examined for maximum likelihood estimator with
confidence interval (0, 26996 ; 0, 60484) for fixed-effects model (0, 24689 ; 0, 63662)
for random-effects model.

For Shrunken Estimator with confidence interval, the confidence intervals
are (0,00668 ;0,081787) for fixed-effects model and (0,23949 ;0,56729) for
random-effects model. As the four modes of effect size estimator have about
the same confidence interval it can be inferred that almost all these estimators
have the same confidence interval. First confidence interval of fixed effect is
narrower than that of random effects interval for effects size estimator. Sec-
ondly if the performance of effect size estimators are compared with one an-
other, shrunken estimator has the narrowest interval. Compared to the other
effect size estimators, this difference is almost negligible. The test for hetero-
geneity value of Q =9,7611 ; Kk — 1 = 7 is found.

Table 8. Results of four effect size estimators for fixed and random effects model with confidence interval

Fixed Random
Effects 95%CI Effects 95% CI
Estimate (Fixed effects) Estimate (Random effects) 72

Effect size estimator

by Glass 0,03969 (0,21712;0,57678) 0, 4026 (0,20742;0,59761)  0,00934
Standardized

difference (Hedges) 0, 4240 (0,26103; 0, 58699) 0, 4256 (0,22672;0,6246) 0,02326
Maximum

Likelihood Estimator 0, 4371 (0,26996;0,60424) _ 0,4418 (0, 24689; 0, 63662) 0, 01759
Shrunken Estimator 0,416 (0,25571;0,576326)  0,4034 (0, 23949;0,56729) 0,01753

In Table 8 a tabulation of four estimators for fixed and random effects model
is given. Heterogeneity variance estimation of 72 by using the Der-Simonian
Laird estimator by Glass is 72 = 0,00934;by using unbiased effect size estima-
tor by Hedges 72 = 0,02326;by using maximum likelihood effect size estimator
with 72 = 0,01759,Shrunken effect size estimator with 7% = 0,01753. In this
table maximum likelihood and Shrunken effect size estimator have nearly the
same 72 value while the smallest value of estimator of heterogeneity variance
value is found with Glass. In order to evaluate these results, some criteria
should be taken into consideration. In this paper two criteria for the evalua-
tion of the performance of effect size estimator are defined: confidence interval
and heterogeneity variance estimation. If the first criterion is used, Glass esti-
mator is preferred; whereas if the second criterion is used, Shrunken with the
smallest variance of effect size estimator is preferred.
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5. CONCLUSION

In this paper the four effect size estimators are used in both fixed and
random-effects meta-analysis models. Like Glass and Hedges, two commonly
used effect size estimators in literature, it is also easy to apply Maximum like-
lihood and Shrunken effect size estimator. The effect size estimators were ap-
plied to one example of meta-analytical data to obtain inference for an overall
effect and confidence interval and to estimate heterogeneity parameter 72. For
the data set, the estimates of 72 for the Maximum likelihood and Shrunken were
comparable with the results of existing commonly used effect size estimators
like Glass and Hedges. Thus the meta-analytical inference for the effectiveness
of amlodipine and placebo on work capacity was made by using the effect size
estimators Glass, Hedges, Maximum Likelihood and Shrunken methods. To
estimate 72 Der-Simonian Laird estimator is used since it does not need itera-
tive and also is easy to calculate. The effectiveness of amlodipine and placebo
on work capacity studies were carried out in order to assess the performance
of the four effect size estimators based on the Der-Simonian Laird estimator.
The study showed that Glass estimator has the smallest heterogeneity variance
in all effect size estimators and that the Shrunken estimator of effect size has
approximately the nearly same heterogeneity variance estimation than that of
Maximum likelihood estimator. Shrunken estimator performs well in terms of
variance and the smallest confidence interval. the difference in performance of
the estimators are small for 16 or more degrees freedom . The differences are
appreciable only for small degrees of freedom which is unrealistics in the most
applications. Many applications involve sample sizes at least 10 subjects per
group and these cases the differences among are neglible.[10,15].

In summary, Glass estimator is used in many applications. Especially, with
small sample sizes (at least 10 subjects per group) it has better empirical
properties than the effect size estimators. However, the Hedges estimator may
be preferred over the other effect size estimators when sample size is small.
The difference among these four estimators is negligible.

6. REFERENCES

[1] Glass, G. V. Primary, Secondary, and Meta-analysis of research. Educa-
tional researcher 5 (1976) 3-8

[2] Normand SLT. Tutorial in Biostatistics Meta-analysis: Formulating,
Evaluating, Combining, and reporting. Statistics in Medicinel8 (1999), 321-
359

[3] DerSimonian R, Laird NM. Meta-Analysis in clinical trials. Controlled
Clinical Trials (7) 1986,177-188

[4] Petitti DB. Meta-Analysis Decision Analysis and Cost Effectiveness Anal-
ysis. Oxford University Press, 1994

[5] Hartung J, Knapp G. On tests of the overall treatment effect in meta-
analysis with normally distributed. Statistics in Medicine 20 (2001), 1771-1782



736 N. Yildiz, M. Akcil and M. Tez

[6] Berkey CS, Hoaglin DC, Mosteller F, Colditz GA. A random-effects re-
gression model for meta-analysis. Statistics in Medicine 14 (1995), 395-411

[7] Hardy RJ, Thompson SG. Detecting and describing the heterogeneity in
meta-analysis.17 (1998), 841-856

[8] Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a
comparison of methods.18 (1999), 2693-2708

[9] Whitehead A, Whitehead J.A general parametric approach to the meta-
analysis of randomize controlled clinical trials. Statistics in Medicine 10 (1991),
1665-1677

[10] Hedges LV, Olkin Statistical Methods for Meta-Analysis. Academics
Press: Orlondo, 1985

[11] Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F; Wiley 2000

[12] Stangl DK, Berry DA. Meta-Analysis in Medicine and Health Policy:
2000

[13] Whitehead, A. Meta-Analysis of Controlled Clinical Trials; Wiley, 2002

[14] Li Y, Shi L, Roth HD. The Bias of the Commonly Used Estimate of
Variance in Meta-Analysis. Communications in Statistics Theory and Methods
23 (1994),1063-1085

[15] Hedges LV. A Random Effects Model for Effect Sizes. Psychological
Bulletin 2 (1985), 388-395

Received: October, 2008



