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Abstract 
 

     In this paper, the solutions of the one dimensional non-homogeneous 
parabolic equations with a variable coefficient are obtained by means of 
variational iteration method (VIM). The results reveal that the variational 
iteration method (VIM)) is very effective, convenient and quite accurate to 
systems of partial differential equations. It is predicted that the VIM can be 
found widely applicable in engineering. 
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1 Introduction 
 
Most models of real – life problems are still very difficult to solve. Therefore, 
approximate analytical solutions such as variational iteration method [1-8] were 
introduced. 
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This method is the most effective and convenient ones for both linear and 
nonlinear equations. 
The VIM is to construct correction functional using general Lagrange multipliers 
identified optimally via the the variational theory, and the initial approximation 
can be freely chosen with unknown constants. 
In this paper, we apply variational iteration method (VIM) to one-dimensional 
non-homogeneous parabolic partial differential equations with a variable 
coefficient of the form [9]: 

 
2

2( ) ( , ), 0 1, 0,u ux x t x t
t x

μ φ∂ ∂
= + < < >

∂ ∂
 (1)

With initial condition: 
                                 ( ,0) ( ),u x f x=  (2)

and boundary conditions: 
                                 0 1(0, ) ( ), (1, ) ( ).u t g t u t g t= =  (3)

 
 
2   Variational iteration method 
 
     To clarify the basic ideas of VIM, we consider the following differential 
equation: 

( ),Lu Nu g t+ = (4) 
 

Where L is a linear operator, N is a nonlinear operator and )(tg is a homogeneous 
term. 

According to VIM, we can write down a correction functional as follows: 
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Where λ  is a general lagrangian multiplier which can be identified optimally via 
the variational theory. The subscript n indicates the nth approximation and nu  is 
considered as a restricted variation, i.e., 0~ =nuδ  

 
 
3   Example 1 
 
Let us consider the problem [9]: 
 

( , ) exp( )(cos sin ),t xx xxu u x t u x t tφ= + = + − − (6)
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where the initial condition is ( ,0) ( )u x f x x= = and the boundary conditions are 
  

sin(0, ) sin , (1, ) 1 tu t t u t
e

= = + (7)

Which is easily seen to have the exact solution ( , ) exp ( )sinu x t x x t= + − [9]. 
 
 
3.1    Application of variational iteration method 
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(8)

We obtain the lagrangian multiplier: 
1λ = − (9)

As a result, we obtain the following iteration formula: 
1

0
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∫
 (10)

Now we start with an arbitrary initial approximation that satisfies the initial 
condition: 

0 ( , ) ,u x t x= (11)

 
Using the above variational formula (10), we have 

1 0

0 0
0

( , ) ( , )
2( , ) ( , )( 1) ( ) ( ) cos sin2

t x x
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u x u x e e d
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τ τ τ τ τ
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∫
 (12)

Substituting Eq. (11) in to Eq. (12) and after simplifications, we have: 

1( , ) sin cosx x xu x t x e e t e t− − −= − + + (13)

In the same way, we obtain 2 3 4 5( , ), ( , ), ( , ), ( , )u x t u x t u x t u x t  as follows: 

2 ( , ) 2 sinx xu x t x e t e t− −= + − (14)

2
3

1( , ) sin cos
2

x x x xu x t x e t e e t e t− − − −= + + − − (15)

3
4

1( , )
6

x xu x t x e t e t− −= + − (16)
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2 4
5

1 1( , ) sin cos
2 24

x x x x xu x t x e e t e t e t e t− − − − −= − + + + − 

(17)

And so on. In the same way the rest of the components of the iteration formula can 
be obtained. 
Tables 1 and 2 and figs.1 and 2 show that variational iteration method is more 
efficient than the ADM. 
 
 
Table 1: Numerical solutions for 0.1x =   

t  ( , )u x t Exact 
solution 

( , )u x t Adomian  
method 

( , )u x t variational 
iteration method 

0.1 0.190333 0.190329 0.190333 
0.3 0.367397 0.367093 0.367396 
0.5 0.533802 0.531465 0.533782 
0.7 0.682912 0.674006 0.682765 
0.9 0.808783 0.784705 0.808125 

 
 

Table 2: Numerical solutions for 0.9x =   

t  ( , )u x t Exact solution
( , )u x t  

Adomian  
method 

( , )u x t variatio
nal iteration 

method 
0.1 0.940589 0.940587 0.940589 
0.3 1.020149 1.020012 1.020149 
0.5 1.094919 1.093869 1.094911 
0.7 1.161919 1.157917 1.161853 
0.9 1.218476 1.207658 1.218181 

Fig.1.comparison between results of the VIM 
with Adomian method and  exact solution at 

0.1x =  

Fig.2.comparison between results of the VIM 
with Adomian method and  exact solution at 

0.9x =  
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4   Example 2 

 
Let us consider the problem [9]. 

exp( )(cosh sinh ),u uxxtt x t t= + − (18)

With the initial and boundary conditions posed are:  
3

( ,0) ( )
6

1(0, ) sinh , (1, ) .sinh ,
6

xu x f x

u t t u t e t t

= =

= = + +
 (19)

Exact solution of this equation is: 
3

( , ) exp( ) sinh .
6

xu x t x t xt= + + (20)

 
4.1   Application of variational iteration method 
 

0
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We obtain the lagrangian multiplier: 
1λ = − (22)

As a result, we obtain the following iteration formula: 
1

0

( , ) ( , )
2( , ) ( , )( 1) ( ) ( ) cosh sinh2

n n

t x x

u x t u x t

u x u xn n e e d
x

τ τ
τ τ τ

τ

+

− −

= +

⎛ ⎞∂ ∂
⎜ ⎟− − − +
⎜ ⎟∂ ∂⎝ ⎠

∫
 (23)

Now we start with an arbitrary initial approximation that satisfies the initial 
condition: 

3
0

1( , ) ,
6

u x t x= (24)

Using the above variational formula (23), we have 
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 (25)

Substituting Eq. (24) in to Eq. (25) and after simplifications, we have 
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3
1

1( , ) sinh cosh
6

x x xu x t x e e t e t xt= + + − + (26)

In the same way, we obtain 2 3 4 5( , ), ( , ), ( , ), ( , )u x t u x t u x t u x t  as follows: 

3
2

1( , )
6

xu x t x xt e t= + + (27)

3 2
3

1 1( , ) sinh cosh
6 2

x x x xu x t x xt e e t e t e t= + + + − + (28)

3 3
4

1 1( , )
6 6

x xu x t x xt e t e t= + + + (29)

3 2 4
5

1 1 1( , ) sinh cosh
6 2 24

x x x x xu x t x xt e e t e t e t e t= + + + − + + (30)

And so on. In the same way the rest of the components of the iteration formula 
can be obtained. 
 
 

Tables 3 and 4 and figs.3 and 4 show that variational iteration method is more 
efficient than the ADM 
 
 
Table 3: Numerical solutions for 0.1x =   

t  ( , )u x t Exact 
solution 

( , )u x t adomian  
method 

( , )u x t variational 
iteration method 

0.1 0.120868 0.120863 0.120868 
0.3 0.366713 0.366339 0.366712 
0.5 0.626066 0.623163 0.626041 
0.7 0.908531 0.897292 0.908349 
0.9 1.224649 1.193602 1.223815 

 
 
 
 
Table 4: Numerical solutions for 0.9x =   

t  ( , )u x t Exact 
solution 

( , )u x t Adomian  
method 

( , )u x t variational 
iteration method 

0.1 0.457870 0.457860 0.457870 
0.3 1.140499 1.139666 1.140496 
0.5 1.853187 1.846728 1.853134 
0.7 2.617314 2.592303 2.616909 
0.9 3.456323 3.387242 3.454481 
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Fig.3.comparison between results of the VIM with 
adomian method and  exact solution at 0.1x =  

Fig.4.comparison between results of the VIM with 
adomian method and  exact solution at 0.9x =  

 
 
5   Conclusion 
In this work, we proposed variational iteration method for solving one 
dimensional non-homogeneous parabolic equations with a variable coefficient. 
The results obtained here were compared with results of exact solution and 
homogeneous Adomian decomposition method. The results revealed that the 
variational iteration method is more efficient than the ADM and it is a 
powerful mathematical tool for solutions of differential equations in terms of 
accuracy and efficiency.  
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