Operational Calculus Method for Some

Mixed Boundary Problems

Nasser A. Hoshan
Department of Mathematics
Tafila Technical University
P.O.Box, 179, Tafila, Jordan
drnaserh@ttu.edu.jo

Abstract

Parper devoted to dual integral equations involving nonstatianary heat condition equation in the Laplace transform image (L-transform) for two dimentional symmetrical under mixed discontinious boundary conditions acted on level surface of semi-space in cylindrical coordinates. We consider a nonstationary heat conduction equation to determine a temperature distribution function of moving solid object a long a surface of semi-space with velocity v and heat source $m_{1}(r, \tau)$ inside a disk of radius $b, \quad r<b$, outside the disk $r>b$ a temperature fuction $m_{2}(r, \tau)$ is given. The solution of the given boundary value problem is given with the aid of operational calculus method and dual integral equations

Keywords: Dual integral equation, mixed boudary conditions, heat conduction equation.

1. Introduction

Dual integral equations method arises in a study of mixed boundary value problems in mathematical physics equation of elliptic type in different areas of applications such as: potential theory, diffraction, elasticityan steady state heat eqation [9-11]. In the last few years some papers involving nonstatianary heat eqation with application of dual integral were published $[1,2,6]$. In this paper, we will discuss the solution of heat equation related to moving solid heat object with the use of opertional calculus method and dual integral
equations with kernel of a Bessl function of the first kind of order zero and unknown function, weight function, free term with dependence of a Laplae transform parameter.The dual integral equations were reduced to a Fredholm integral equation of the second kind by using some known discontinious integrals.

2. Mathematical Formulation Of The Problem

Consider a prccess of heat body moves along x-axis with velocity v on a semi-space $z>0$ in a cartesian coordinates $x y z$ of a solid object., with a heat source moves inside a disk $x^{2}+y^{2}<b^{2}$, [3]. Outside the disk $x^{2}+y^{2}>b^{2}$, a temperature function is given. Find the temperature distribution of this body.

It is it required to solve a non-stationary heat conductivity differential equation

$$
\begin{equation*}
\nabla^{2} T-\frac{v}{a} \frac{\partial T}{\partial x}=\frac{1}{a} \frac{\partial T}{\partial \tau}, v>0, \tau>0, a>0, \tag{2.1}
\end{equation*}
$$

∇^{2} is a Laplaces operator, $T=T(x, y, z)$, where x, y, z cartesian coordinates, The heat coefficient a is independent of a temperature or coordinates (constant). Use the substitution $T=u \exp (-w x)$, $w=v / 2 a$, equation (2.1) should be written as [3]

$$
\begin{equation*}
\nabla^{2} u-w^{2} u=\frac{1}{a} \frac{\partial u}{\partial \tau}, \tag{2.2}
\end{equation*}
$$

$u=u(x, y, z) . \quad \nabla^{2} u$ in cylindrical coordinates should be written as
$\nabla^{2} u=\left[\partial^{2} / \partial z^{2}+\frac{1}{r} \partial / \partial r(r \partial / \partial r)\right] u$
The initial condition

$$
\begin{equation*}
u(r, z, 0)=T(r, z, 0)-T_{0}=0 \tag{2.3}
\end{equation*}
$$

The boundary conditions are

$$
\begin{equation*}
\left.\frac{\partial u}{\partial r}\right|_{r=0}=\left.\frac{\partial u}{\partial r}\right|_{r \rightarrow \infty}=\left.u\right|_{z \rightarrow \infty}=\left.\frac{\partial u}{\partial z}\right|_{r \rightarrow \infty}=0 \tag{2.4}
\end{equation*}
$$

and under the mixed discontinuous boundary conditions along the level surface $z=0$

$$
\begin{align*}
& \frac{\partial u}{\partial z}=-m_{1}(r, \tau) \quad, r \in(0, b) \tag{2.5}\\
& u=m_{2}(r, \tau), r \in(b, \infty) \tag{2.6}
\end{align*}
$$

$m_{1}(r, \tau)$ is a heat flux (heat source) obey Newtons low of heating inside the disk $r<b$, $m_{2}(r, \tau)$ is a temperature function acted outside the disk $r>b$. The known functions $m_{i}(r, \tau), i=1,2$ continuous and have the limited variation with respect of each of the variables r and τ, moreover [2]

$$
\int_{0}^{\infty}\left|m_{i}(r, \tau)\right| d r<\infty \quad \int_{0}^{\infty}\left|m_{i}(r, \tau)\right| d \tau<\infty, i=1,2 .
$$

These restrictions allow to apply Laplace transform with respect to τ and Hankle transform with respect to r moreover, we assume that the functions $m_{i}(r, \tau), i=1,2$ have absolutely continuous derivative with respect to r.
Applying a Laplace transform to (2.2)-(2.6), where

$$
\bar{u}(r, z, s)=\int_{0}^{\infty} u(r, z, \tau) \exp (-s \tau) d \tau
$$

A general solution of the given problem becomes

$$
\begin{align*}
& \bar{u}(r, z, s)=\int_{0}^{\infty} \bar{A}(p, s) \exp (-z \gamma(p, s)) J_{0}(p r) d p, \tag{2.7}\\
& \gamma(p, s)=\sqrt{p^{2}+\left(w^{2}+s / a\right)} .
\end{align*}
$$

Use mixed boundary conditions (2.5) and (2.6) in the Laplace transform image, we get the pair of dual integral equations to find the unknown function $\bar{A}(p, s)$

$$
\begin{align*}
& \int_{0}^{\infty} \bar{A}(p, s) \gamma(p, s) J_{0}(p r) d p=\bar{m}_{1}(r, s), r \in(0, b) \\
& \int_{0}^{\infty} \bar{A}(p, s) J_{0}(p r) d p=\bar{m}_{2}(r, s), \quad r \in(b, \infty) \tag{2.9}
\end{align*}
$$

At $w \rightarrow 0$, the solution of (2.7),(2.8) tends to known results [1]
To solve (2.7),(2.8), let us to express a function $\bar{m}_{2}(r, s)$ as

$$
\begin{equation*}
\bar{m}_{2}(r, s)=\int_{0}^{\infty} \bar{G}(y, s) J_{0}(p r) d p \tag{2.10}
\end{equation*}
$$

$\bar{G}(p, s)$ is a known function, applying the inverse Hankel transform to expression (2.9)

$$
\bar{G}(p, s)=\int_{0}^{\infty} y p \bar{m}_{2}(y, s) J_{0}(p y) d y
$$

Next, take $\bar{B}(p, s)-\bar{G}(p, s)=\bar{A}(p, s)$, the dual integral equations were obtained to determine $\bar{B}(p, s)$

$$
\begin{equation*}
\int_{0}^{\infty} \bar{B}(p, s) \gamma(p, s) J_{0}(p r) d p=\bar{M}(r, s), r \in(0, b) \tag{2.11}
\end{equation*}
$$

$$
\begin{align*}
& \int_{0}^{\infty} \bar{B}(p, s) J_{0}(p r) d p=0, \quad r \in(b, \infty) \tag{2.12}\\
& \bar{M}(r, s)=\bar{m}_{2}(r, s)-\int_{0}^{\infty} \sqrt{p^{2}+d} \bar{G}(p, s) J_{0}(p r) d p
\end{align*}
$$

To solve, (2.10), (2.11), replace $\bar{B}(p, s)$ by another unknown function with help of the relation

$$
\begin{equation*}
\bar{B}(p, s)=\int_{0}^{b} \bar{\phi}(t, s) \Gamma(t, p) d t, \tag{2.13}
\end{equation*}
$$

$\Gamma(t, p)=\frac{p}{\sqrt{p^{2}+d}} \sin \left(t \sqrt{p^{2}+d}\right), d=w^{2}+s / a$
use the discontinuous integrals[4]

$$
\begin{align*}
& \int_{0}^{\infty} \frac{p J_{0}(p r)}{\sqrt{p^{2}+d}} \sin \left(t \sqrt{p^{2}+d}\right) d p= \begin{cases}0 & r>t \\
\frac{\cos \sqrt{\left(t^{2}-r^{2}\right) d}}{\sqrt{t^{2}-r^{2}}} & t>r\end{cases} \tag{2.14}\\
& \int_{0}^{\infty} J_{1}(p r) \sin \left(t \sqrt{p^{2}+d}\right) d p= \\
& \frac{1}{r}\left\{\begin{array}{l}
\sin (t \sqrt{d})-\frac{-t}{\sqrt{t^{2}-r^{2}}} \sin \left(\sqrt{\left(t^{2}-r^{2}\right) d}\right), 0<r<t<b, \\
\sin (t \sqrt{d})-\frac{t}{\sqrt{r^{2}-t^{2}}} \exp \left(-\sqrt{\left(r^{2}-t^{2}\right) d}\right), 0<t<r<b .
\end{array}\right. \tag{2.15}
\end{align*}
$$

Substitution expression (2.12) into (2.11) and use (2.13), ensure the equality zero. Substitution (2.12) into relation (2.10), use some discontinuous integrals(2.15), we get a first kind singular integral equations to determine $\bar{\psi}(t, s)$

$$
\begin{align*}
& \int_{0}^{r} \frac{c h \sqrt{\left(r^{2}-t^{2}\right) d}}{\sqrt{r^{2}-t^{2}}} \bar{\psi}(t, s) d t=\bar{M}(r, s) \tag{2.16}\\
& +\int_{0}^{b}\left\{\frac{\sin \sqrt{\left(t^{2}-r^{2}\right) d}}{\sqrt{t^{2}-r^{2}}}-\frac{\sin (\sqrt{d t})}{t}\right\} \bar{\psi}(t, s) d t \quad r \in(0, b)
\end{align*}
$$

Where $\bar{\psi}(t, s)=t \bar{\phi}(t, s)$. Treating (2.16) as an Abels integral equation, a Fredholm
integral equation of the second kind is obtained with the unknown function $\bar{\psi}(t, s)$

$$
\begin{equation*}
\bar{\psi}(t, s)+\int_{0}^{R} \bar{\psi}(\xi, s) \bar{K}(\xi, s, t) d t=\bar{F}(t, s) \quad, \quad r \in(0, b) \tag{2.17}
\end{equation*}
$$

the free term and the kernel

$$
\begin{gather*}
\bar{F}(t, s)=\frac{2}{\pi} \frac{d}{d t} \int_{0}^{t} y \frac{\cos \sqrt{\left(t^{2}-y^{2}\right) d}}{\sqrt{t^{2}-y^{2}}} \bar{M}(y, s) d y \tag{2.18}\\
\bar{K}(t, \xi, s)=\frac{2}{\pi} \frac{d}{d t} \int_{0}^{t} y \frac{\cos \sqrt{\left(t^{2}-y^{2}\right) d}}{\sqrt{t^{2}-y^{2}}}\left(\frac{\sin \sqrt{\left(\xi^{2}-y^{2}\right) d}}{\sqrt{\xi^{2}-y^{2}}}-\frac{\sin (\sqrt{d} \xi)}{\xi}\right) d y \tag{2.19}
\end{gather*}
$$

(2.18) and (2.19) should be satified
$\int_{0}^{b}|\bar{F}(r, s)| d r<\infty$ and $\int_{0}^{b} \int_{0}^{b}\left|\bar{K}^{2}(r, t, s)\right| d r<\infty$
Integral equation (2.17) should be be solved numerically or by successive approximation techniques by expanding $\sin (x), \cos (x)$ in appropriate Maclaurin series with the help of some math software [5,7].The inverse Laplace tansform exists for (2.19) by multiplying the left and right sides of the equation by $\exp (-s)$, Res >0. If $w \rightarrow 0$, we can use the expression
$\bar{\psi}(t, s)=\sum_{m=-\infty}^{-1} \psi_{m}(t) s^{m / 2}+\exp (-b k) \sum_{m=0}^{\infty} \psi_{m}(t) s^{\frac{m}{2}-1}, \quad k^{2}=s / a$
if we substitute the last expression in (2.19), we recieve a recurrent formula for determination $\psi_{m}(t), n=0,1,2, \mathrm{~L} \quad$ [1]. Above theory involving dual integral equation can be used to solve several problems of mathematical physics equations involving heat conduction equation.

References

[1] N. A Abdelrazaq . The Dual Integral Equations Method for Nonstationary Heat Conduction Equation. Journal Of Engineering Thermophysics ,vol 17,No 1, 2005 p 103-112, SB RAS.
[2] N. A. Abdelrazaq., The Solution Of Heat Equation With Mixed Boundary Conditions, Journal of Mathematics and Statistics, Science Publications, New York USA.,2006, 2(2), 346- 350.
[3] A. S Galtsin., A N. Jocovisky A.N, Integral Transform and Special Functions in Heat Transfer Problems, Dymka, Kiev, 1976.
[4] I. S. Gradseyn, I M. Ryznik. Tables of Integrals, Series and Products. Academic Press,New York, 2000.
[5] W. Hackbusch , ,Integral Equations, Theory and Numerical Treatment, Birkhäuser Verlag, Boston, 1995.
[6] N. A. Hoshan., H A Al-Rabaia ., Application of Dual Integral Equations Method For Heat Conduction Equations. Petra International Conference on Mathematics, October, Maan,Jordan. 24-25, 2007.
[7] K Kythe , P Puri , Computational Methods for Linear Integral Equations Birkhhauer. 2002.
[8] E.G. Ladopoulos , Singular Integral Equations, Linear and Non-Linear Theory and its Applications in Science and Engineering, Springer-Verlag, Berlin, New York, 2000.
[9] B. N. Mandal., N. Mandal Advances in Dual Integral Equations.London:CRC,1999.
[10] I Snedon. Mixed Boundary Value Problems in Potential Theory, Amesterdam, North Holl Pub. Com. 1966.
[11] N. A. Virchenco, N. A., Dual (Triple) Integral Equations. Kiev University, Kiev, 1989.

Received: July, 2008

