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Abstract 
 

Parper devoted to dual integral equations involving nonstatianary heat condition equation 
in the Laplace transform image (L-transform) for two dimentional symmetrical under 
mixed discontinious boundary conditions acted on level surface of semi-space in 
cylindrical coordinates. We consider a nonstationary heat conduction equation to 
determine a temperature distribution function of moving solid object a long a surface of 
semi-space with velocity v  and heat source 1( , )m r τ  inside a disk of radius b ,   r b< ,  
outside the disk  r b>  a temperature fuction 2 ( , )m r τ  is given. The solution of the given 
boundary value problem is given with the aid of operational calculus method and dual 
integral equations 
 
Keywords: Dual integral equation, mixed boudary conditions, heat conduction equation.    
 
 
1. Introduction 
 
Dual integral equations method arises in a study of mixed boundary value problems in 
mathematical physics equation of elliptic type in different areas of applications such as: 
potential theory, diffraction, elasticityan steady state heat eqation [9-11]. In the last few 
years some papers involving nonstatianary heat eqation with application of  dual integral 
were published [1,2,6]. In this paper, we will discuss the solution of heat equation related 
to moving solid heat object with the use of opertional calculus method and dual integral  
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equations with kernel of a Bessl function of the first kind of order zero and unknown 
function, weight function, free term with dependence of a Laplae transform 
parameter.The dual integral equations were  reduced to a Fredholm integral equation of 
the second kind by using some known discontinious integrals.  
 
 
2. Mathematical Formulation Of The Problem 
 
Consider a prccess of heat body moves along  x axis− with velocity v on a semi-space 

0z >  in a cartesian coordinates xyz of  a solid object., with a heat source moves inside a 
disk 2 2 2x y b+ < , [3] . Outside the disk 2 2 2x y b+ > , a temperature function is given. 
Find the temperature distribution of this body. 
     It is it required to solve a non-stationary heat conductivity differential equation  

            2 1 , 0, 0, 0v T TT v a
a x a

τ
τ

∂ ∂
∇ − = > > >

∂ ∂
,                                                      (2.1)  

2∇  is a Laplaces operator , ( , , )T T x y z= , where  , ,x y z cartesian  coordinates,  The 
heat coefficient a  is independent of a temperature or coordinates (constant). Use the 
substitution   exp( ), / 2T u wx w v a= − = ,  equation (2.1)  should be written as [3] 

       2 2 1 ,uu w u
a τ
∂

∇ − =
∂

                                                                                            (2.2) 

( , , )u u x y z= .   u2∇  in cylindrical coordinates should be written as 
2 2 2 1[ / / ( / )]u z r r r u

r
∇ = ∂ ∂ + ∂ ∂ ∂ ∂  

The initial condition 
        0)0,,()0,,( 0 =−= TzrTzru                                                                            (2.3) 
     
 
The boundary conditions are  
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and under the mixed discontinuous boundary conditions along the level surface 0=z  

                  1( , )u m r
z

τ∂
= −

∂
, (0, )r b∈                                                              (2.5)                                       

                   2 ( , ), ( , )u m r r bτ= ∈ ∞                                                                         (2.6) 

1( , )m r τ  is a heat flux (heat source) obey Newtons low of heating inside the disk r b< ,    

2 ( , )m r τ  is a temperature function acted outside the disk r b> . The known functions 
( , ), 1, 2im r iτ =    continuous and have the limited variation with respect of each of the 

variables   r and τ , moreover [2]  
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0

( , )im r drτ
∞

< ∞∫    
0

( , )im r dτ τ
∞

< ∞∫  , .2,1=i  

These restrictions allow to apply Laplace transform with respect to τ  and Hankle 
transform with respect to r  moreover,  we assume that the functions  ),( τrmi , 2,1=i  
have absolutely continuous derivative with respect to r  . 
   Applying a Laplace transform to  (2.2)-(2.6), where  

0

( , , ) ( , , ) exp( )u r z s u r z s dτ τ τ
∞

= −∫  

A general solution of the given problem becomes 

     0
0

( , , ) ( , ) exp( ( , )) ( )u r z s A p s z p s J pr dpγ
∞

= −∫ ,                                               (2.7) 

2 2( , ) ( / )p s p w s aγ = + +  .  
Use  mixed boundary conditions (2.5) and (2.6) in the Laplace transform image, we get 
the pair of dual integral equations to find the unknown function  ( , )A p s  
 
 

             10
0

( , ) ( , ) ( ) ( , ), (0, )A p s p s J pr dp m r s r bγ
∞

= ∈∫                               (2.8) 

            20
0

( , ) ( ) ( , ) , ( , )A p s J pr dp m r s r b
∞

= ∈ ∞∫                                (2.9)                            

  At   0,w → the solution of (2.7),(2.8) tends to known results [1]  
To solve (2.7),(2.8),  let us to express a function 2 ( , )m r s  as 

                2 0
0

( , ) ( , ) ( )m r s G y s J pr dp
∞

= ∫                                             (2.10)             

 ( , )G p s  is a known function, applying the inverse Hankel transform to expression (2.9)  

                    2 0
0

( , ) ( , ) ( ) .G p s yp m y s J py dy
∞

= ∫   

Next, take  ),(),(),( spAspGspB =− , the dual integral equations were obtained to 
determine  ( , )B p s  

           0
0

( , ) ( , ) ( ) ( , ), (0, )B p s p s J pr dp M r s r bγ
∞

= ∈∫                           (2.11) 

 



938                                                                                                                   N. A. Hoshan 
 
 

          0
0

( , ) ( ) 0 , ( , )B p s J pr dp r b
∞

= ∈ ∞∫                                           (2.12) 

        2
2 0

0

( , ) ( , ) ( , ) ( )M r s m r s p d G p s J pr dp
∞

= − +∫                             

To solve, (2.10), (2.11), replace ( , )B p s by another unknown function with help of the 
relation 
      
 
 

 
0

( , ) ( , ) ( , )
b

B p s t s t p dtφ= Γ∫ ,                                                                                 (2.13)                     

2

2
( , ) sin( )pt p t p d

p d
Γ = +

+
, 2 /d w s a= +    

 use the discontinuous integrals[ 4] 

( )20
2

0 2 2

2 2

0
( ) sin

cos ( )

r t
p J pr t p d dp

p d
t r d

t r
t r

∞

⎧
⎪

>⎪
⎪+ = ⎨

+ ⎪
−⎪ >⎪ −⎩

∫                  (2.14) 
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2 2
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2 2

2 2
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sin( ) sin ( ) , 0 ,
1

sin( ) exp ( ) , 0 .
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tt d t r d r t b
t r
tr t d r t d t r b

r t

∞
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⎨
⎪ − − − < < <
⎪ −⎩

∫

                      (2.15) 

Substitution expression (2.12) into (2.11) and use (2.13), ensure the equality zero.    
Substitution (2.12) into relation (2.10),use some discontinuous integrals(2.15), we get  a 
first kind singular integral equations to determine ( , )t sψ  

2 2

2 2
0

2 2

2 2
0

( )
( , ) ( , )

sin ( ) sin( ){ } ( , ) (0, )

r

b

ch r t d
t s dt M r s

r t

t r d d t t s dt r b
tt r

ψ

ψ

−
=

−

−
+ − ∈

−

∫

∫
                                           (2.16) 

  Where ( , ) ( , )t s t t sψ φ= . Treating (2.16) as an Abels integral equation, a Fredholm  
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integral equation of the second kind is obtained with the unknown function ( , )t sψ   

      
0

( , ) ( , ) ( , , ) ( , ) , (0, )
R

t s s K s t dt F t s r bψ ψ ξ ξ+ = ∈∫                                (2.17) 

the free term and  the  kernel  

       
2 2

2 2
0

cos ( )2( , ) ( , )
t t y ddF t s y M y s dy

dt t yπ
−

=
−

∫                                              (2.18) 

2 2 2 2

2 2 2 2
0

cos ( ) sin ( )2 sin( )( , , )
t t y d y dd dK t s y dy

dt t y y

ξ ξξ
π ξξ

⎛ ⎞− −
⎜ ⎟= −
⎜ ⎟− −⎝ ⎠

∫          (2.19) 

 (2.18) and (2.19)  should be satified    

0

( , )
b

F r s dr < ∞∫   and    
2

0 0

( , , )
b b

K r t s dr < ∞∫ ∫   [7]         

Integral equation (2.17) should be  be solved numerically or by successive approximation 
techniques by expanding sin( ),cos( )x x  in appropriate Maclaurin series with the help of 
some math software [5,7] .The inverse Laplace tansform exists for (2.19) by multiplying 
the left and right sides of the equation by exp( ),Re 0s s− > . If  0w → , we can use the 
expression  

1 1/ 2 2

0
( , ) ( ) exp( ) ( )

m
m

m m
m m

t s t s bk t sψ ψ ψ
− ∞ −

=−∞ =

= + −∑ ∑ ,   2 /k s a=  

if we substitute the last expression in (2.19),  we recieve a recurrent formula for 
determination ( ), 0,1, 2,m t nψ = L    [1]. Above theory involving dual integral equation 
can be used to solve several problems of mathematical physics equations involving heat 
conduction equation.  
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