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Abstract

In this work, a novel model to simulate epidemic spreading is in-
troduced. It is based on the use of two-dimensional cellular automata,
where each cell stand for a square portion of the environment. It is
suppose that the distribution of the population is homogeneous, that is,
all cells have the same population. The laboratory simulations obtained
seem to be in agreement with the real behavior of epidemic spreading.
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1 Introduction

The public health issues have a lot of importance in our society, particularly
viral spread through populated areas. Epidemics refer to a disease that spreads
rapidly and extensively by infection and affecting many individuals in an area
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at the same time. In this way, the most recent worrying epidemic was the
Severe Acute Respiratoy Syndrome (SARS) outbreak in Asia. Consequently,
since the publication of the first mathematical epidemic models (see [2, 5]),
several mathematical models to study the dynamics of epidemics have been
apperared in the literature. Many of them are based on differential equations,
which neglect spatial aspects of the epidemic process. As a consequence, this
can lead to very unrealistic results, such as, for example, endemic patterns
relaying on very small densities of individuals, which are called “atto-foxes”
or “nano-hawks” (see [4]). Other mathematical models are based on discrete
systems: stochastic interacting particle models, cellular automata models, etc.
(see, for example [1, 3, 6, 7]). These simple models eliminate the last mentioned
shortcomings, and are specially suitable for computer simulations.

The main goal of this work is to introduce a new cellular automaton model
to simulate the spread of a general epidemic. As is mentioned above, cel-
lular automata (CA for short) are simple models of computation capable to
simulate complex physical, biological or environmental phenomena (see [8]).
Specifically, a two-dimensional CA is formed by a two-dimensional array of
identical objects called cells, which are endowed with a state that change in
discrete steps of time according to a specific rule. As the CA evolves, the
updated function (whose variables are the states of the neighbors) determines
how local interactions can influence the global behaviour of the system.

The rest of the paper is organized as follows: In Section 2 a review of
bidimensional cellular automata is given; the proposed model is introduced in
Section 3; some graphical simulations are shown in Section 4; and, finally, the
conclusions and the future work are presented in Section 5.

2 An overview on cellular automata

Two-dimensional cellular automata are discrete dynamical systems formed by a
finite number of identical objects called cells, which are arranged uniformly in a
two-dimensional space. Each cell is endowed with a state, belonging to a finite
state set, that changes at every discrete step of time according to a rule, called
local transtition function. More precisely, a CA can be defined as a 4-uplet,
A = (C, S, V, f), where C is the cellular space formed by a two-dimensional
array of r × c cells (see Figure 1-(a)): C = {(a, b) , 1 ≤ a ≤ r, 1 ≤ b ≤ c}.

The state of each cell is an element of a finite state set, S, in such a way
that the state of the cell (a, b) at time t is denoted by s

(t)
ab ∈ S. The matrix

C(t) =
(
s
(t)
ij

)
is called configuration of the CA at time t. Moreover, C(0) is the

initial configuration of the CA.

The neighborhood of a cell (a, b) is the set of cells whose states at time
t determine the state of the cell (a, b) at time t + 1, by means of the local
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Figure 1: (a) Cellular space (b) Von Neuman neighborhood (c) Moore neigh-
borhood

transition function. Depending on the process to be modelled, one can choose
an appropiate neighborhood. Nevertheless, the traditional neighborhoods con-
sidered are the Von Neumann neighborhood (see Figure 1-(b)), and the Moore
neighborhood (see Figure 1-(c)). Note that the main cell is also considered
in its neighborhood. A neighborhood is defined by means of a finite set of
indices V = {(αi, βi) , 1 ≤ i ≤ m} ⊂ Z × Z, such that for every cell (a, b), its
neighborhood, V(a,b), is the set of m cells given by

V(a,b) = {(a + α1, b + β1) , . . . , (a + αm, b + βm) : (αk, βk) ∈ V } .

Note that for Moore neighborhood, we have

V = {(0, 0) , (−1, 0) , (−1, 1) , (0, 1) , (1, 1) , (1, 0) , (1,−1) , (0,−1) , (−1,−1)} .

Moreover, we will denote by V ∗ the set of indices defining the neighborhood of
a cell (a, b) in which the main cell is not considered, that is, V ∗ = V −{(0, 0)}.

As is mentioned above, the CA evolves deterministically in discrete time
steps, changing the states of all cells according to a local transition function
f : Sm → S. The updated state of the cell (a, b) depends on the m vari-
ables of the local transition function, which are the previous states of the cells
constituting its neighborhood, that is,

s
(t+1)
ab = f

(
s
(t)
a+α1,b+β1

, . . . , s
(t)
a+αm,b+βm

)
.

As the cellular space is considered to be finite, boundary conditions must be
taken into account in order to assure the well-defined dynamics of the CA.
Several boundary conditions can be chosen depending on the phenomenon to
be simulated. In this work, we will consider null boundary conditions, that is:
s
(t)
ab = 0 if a < 1 or a > r, or if b < 1 or b > c.

A very important type of CA, suitable for simulating some ecological and
biological systems, are those whose local transition functions are as follows:

s
(t+1)
ab = g

⎛
⎝ ∑

(α,β)∈V

μ
(a,b)
αβ s

(t)
a+α,b+β

⎞
⎠ , (1)
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where g : R → S is a suitable discretization function, and μ
(a,b)
αβ ∈ R are the

specific parameters of the system to be simulated.

3 The model

The proposed model is based on the use of a two-dimensional cellular endowed
with a local transition function of the form (1). Each cell stands for a square
area of the land in which the epidemic is spreading. Moreover, it is assumed
that the population distribution is homogeneous, i.e., all cells have the same
population at every step of time.

The state of each cell at each time step is obtained from the fraction of the
number of individuals of the cell which are infected by the epidemic, that is,
s
(t)
ab is a suitable discretization of

infected population of (a, b)

total population of (a, b)
. (2)

At time t = 0, the last expression is exactly the state for each cell. Conse-
quently, s

(t)
ab ∈ [0, 1] for every t. As s

(t)
ab is a real number and the state set is

finite, we must discretize such value in order to obtain an element of S. In this
work a state set with 11 elements will be considered:

S = {s0 = 0, s1 = 0.1, . . . , s9 = 0.9, s10 = 1} . (3)

Furthermore, it is supposed that the state of each cell at a particular time step
depends on the states of its eight nearest cells and the cell itself at the previous
time step. Hence, the neighborhood considered is the Moore neighborhood.

Taking into account the definition of S, we will consider the following dis-
cretization function:

g : R → S, x �→ g (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if x < 0

[10x]
10

, if 0 ≤ x ≤ 1

1, if x > 1

(4)

where [x] stands for the round (x) function.
These states change according to the following local transition function:

s
(t+1)
ab = g

⎛
⎝(1 − P (t)) s

(t)
ab +

(
1 − s

(t)
ab

)⎡
⎣εs

(t)
ab +

∑
(α,β)∈V ∗

μ
(a,b)
αβ s

(t)
a+α,b+β

⎤
⎦

⎞
⎠ ,

where g is the discretization function given in (4).
The function P (t) stands for the recovering process of the infected cells, i.e.,

it measures the population of the cell that has recovered from the disease after
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a time step. The explicit expression of the function P (t) must be determined
according to the epidemic to be modeled. For the sake of simplicity, in our
work we suppose that this function is a polynomial of degree n.

Moreover, the real parameters ε and μ
(a,b)
αβ represent the main characteristics

of the epidemic and the environment. Obviously, ε and μ
(a,b)
αβ are determined

by the epidemic to be modeled.
Specifically, the real parameter μ

(a,b)
αβ involves three factors: The connec-

tion factor, c
(a,b)
αβ , the movement factor, m

(a,b)
αβ , between the cell (a, b) and its

neighbor cell (a + α, b + β), and the virulence of the epidemic, v ∈ [0, 1]. As a

consequence, μ
(a,b)
αβ = c

(a,b)
αβ ·m(a,b)

αβ · v, for every cell (a, b) and every (α, β) ∈ V ∗.
As is mentioned above, it is suppose that the way on infection is the contact

between two individuals. Then, the non-infected individuals located at the cell
(a, b) can be infected by the infected individuals of the main cell (a, b), or by
the infected individuals located at a neighbor cell, (a + α, b + β), that have
travelled to the cell (a, b).

In the first situation, that is, when all individuals considered belong to
the cell (a, b), the infection process is given by the parameter ε ∈ [0, 1], which
represents the portion the non-infected individuals of the cell at time t infected
by the infected population of the cell at the same time.

In the second situation, that is, when the non-infected individuals of (a, b)
are infected by the infected individuals of the neighbor cells, some type of
connection (by airplane, by train, by car, etc.) between two neighbor cells must
be considered in order to permit the epidemic propagation from a neighbor cell
to the main cell. This connection is given by the coefficients c

(a,b)
αβ , such that if

there is some connection between (a + α, b + β) and (a, b), then c
(a,b)
αβ = 1, and

if there is not connection between these two cells, then c
(a,b)
αβ = 0.

The parameter m
(a,b)
αβ gives the probability of an infected individual belongs

to the cell (a + α, b + β) to be moved to the cell (a, b). As a consequence,

m
(a,b)
αβ ∈ [0, 1].

4 Simulations

The cellular space in the next simulations will be formed by a two-dimensional
array of 40× 40 cells and, as is mentioned above the state set is formed by 11
elements (see (3)). To represent the state of each cell, a color code is used and

it is shown in Figure 2. Moreover, we also suppose that ε = 0.4, m
(a,b)
αβ = 0.4

for all (a, b) and (α, β) ∈ V(a,b), v = 0.4, and P (t) = 0.2t + 0.2. Note that for
the sake of simplicity, these parameters are artificially chosen.

Moreover, the size of the time step must be considered according to the
main characteristic of the epidemic and the environment.
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Figure 2: Color codes

First of all, let us consider the case in which each cell is connected with
all of its neighbor cells, that is c

(a,b)
αβ = 1 for all (a, b) and (α, β) ∈ V ∗. If the

initial configuration is formed by all cells with state 0 except for three cells
which are infected as follows: s

(0)
10,10 = 0.8, s

(0)
20,20 = 1, s

(0)
30,30 = 0.5, then, the

evolution of the epidemic spreading obtained from the CA is shown in Figure
3 (the evolution goes from left to right, and from top to botton). Note that in
this case, after 11 iterations, the epidemic disappeared.

Figure 3: Simulation with all neighbor cells connected

Furthermore, suppose that the state of each cell at time t = 0 is randomly
chosen, then the evolution is shown in Figure 4. In this case, the epidemic
disappeared after 20 iterations. Moreover, the frequency of the different states
in the evolution of the CA is shown in the following table, and the percentage
of infected population evolves as is shown in Figure 5.

On the other hand, let us suppose that the conections between the cells are
given by the following graph (see Figure 6), where each vertix stands for a cell
and each edge between two vertices stands for a conection between these two
cells. Note that in this case, the cellular space is of 13× 13. If the parameters
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Figure 4: Simulation with a random initial configuration: Configurations C(0)–
C(14)

Figure 5: Evolution of the percentage of infected population

of the CA are P (t) = 0.1t + 0.1, ε = 0.4, m
(a,b)
αβ = 0.8, ∀ (a, b) , ∀ (α, β) ∈ V ∗

and v = 0.6, then the evolution of the epidemic spreading is given in Figure 7.
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t s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
0 82 174 156 164 184 150 151 143 166 151 79
1 0 0 1 3 27 105 557 628 238 37 4
2 0 0 0 1 7 171 933 488 0 0 0
3 0 0 0 4 205 1251 136 4 0 0 0
4 0 0 4 197 1329 70 0 0 0 0 0
5 0 0 209 1334 57 0 0 0 0 0 0
6 0 77 1444 79 0 0 0 0 0 0 0
7 27 1316 253 4 0 0 0 0 0 0 0
8 349 1186 64 1 0 0 0 0 0 0 0
9 762 806 32 0 0 0 0 0 0 0 0
10 1203 392 5 0 0 0 0 0 0 0 0
11 1336 264 0 0 0 0 0 0 0 0 0
12 1424 176 0 0 0 0 0 0 0 0 0
13 1477 123 0 0 0 0 0 0 0 0 0
14 1516 84 0 0 0 0 0 0 0 0 0
15 1550 50 0 0 0 0 0 0 0 0 0
16 1572 28 0 0 0 0 0 0 0 0 0
17 1586 14 0 0 0 0 0 0 0 0 0
18 1593 7 0 0 0 0 0 0 0 0 0
19 1598 2 0 0 0 0 0 0 0 0 0
20 1600 0 0 0 0 0 0 0 0 0 0

Table 1: Frequency of the states

Figure 6: Connections between the cells

5 Conclusions and future work

In this work a new mathematical model to simulate the spreading of an epi-
demic is introduced. It is based on the use of two-dimensional cellular au-
tomata endowed with a suitable local transition function. The state of each
cell is considered to be the portion of its population which is infected at each
time step. The laboratory simulations obtained seem to be in agreement with
the expected behaviour of a real epidemic.

Future work aimed at designing a more complete CA-based epidemic model
involving additional effects such as the population movement (that is, a non-
homogeneous population environment), or the effect of vaccination of the pop-
ulation, virus mutation, etc. Furthermore, it is also interesting to consider
non-constant connections factors.
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Figure 7: Simulation with variable connections
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