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Abstract

In a previous article we defined ”combined manifold” M3 as the
graph of a diffeomorphism from one manifold M1 to another M2, akin
to the idea of a diagonal map. In this paper, we derive the values for
the previously undetermined two parameters: (1) the energy distribu-
tion between a particle in M1 and its accompanied electromagnetic wave
in M2 for the combined entity - - [particle, wave], and (2) the gravita-
tional constant G2 for M2, where there exist only electromagnetic waves
and gravitational forces. Because of a large G2, an astronomical black
hole B arose in M2, branching out M1 (the Big Bang), with a fraction of
a wave energy in M2 transferred to M1 as a photon, which collectively
were responsible for the subsequent formation of matter. Being within
the Schwarzschild radius, B in M2 is a complex (sub) manifold, which
furnishes exactly the geometry for the observed quantum mechanics;
moreover, B provides an energy interpretation to probabilities. In sum-
mary, our M3 casts quantum mechanics in the framework of General
Relativity.
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1 Introduction

Previously we introduced in this publication [8] (cf. also [9]) a construct anal-
ogous to a diagonal map, namely, a combined space-time 4-manifold M[3]

:=
{(
p[1], p[2]

) ∈ M[1] ×M[2] | h (p[1]
)

= p[2], h = any diffeomorphism
}

, (1)
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where manifold M[i], i = 1, 2, is determined by Einstein Field Equations

R[i]
μν −

1

2
R[i]g[i]

μν = −8πG[i]

c2
T [i]

μν (2)

(Rμν ≡ the Ricci (0, 2) curvature tensor, R ≡ the Ricci scalar curvature tensor,
gμν ≡ a semi-Riemannian metric, {μ, ν} ⊂ {1, 2, 3, 4}, G[i] ≡ the gravitational
constant in M[i], c ≡ the speed of light in empty spaces, Tμν ≡ the energy-
momentum tensor), and we proposed the entity of a ”combined particle j” of
energy

E
[3]
j = E

[1]
j + E

[2]
j , (3)

where E
[1]
j and E

[2]
j contribute respectively to T [1] of M[1] and T [2] of M[2],

with
{
E

[1]
j | j ∈ N

}
engaging in all the fundamental forces within M[1] and{

E
[2]
j

}
engaging only in gravitational forces within M[2]. We did not however

specify the ratio E
[1]
j /E

[3]
j ≡ 1 −

(
E

[2]
j /E

[3]
j

)
, but here in this paper we shall

settle this ratio in the following Section 2 and moreover equate
[
E

[1]
j , E

[2]
j

]
to the [particle energy, wave energy] of j. We shall also resolve the other
previously undetermined parameter G[2], even though we had provided the
relation

G[3] =
G[1]G[2]

G[1] +G[2]
, (4)

by a consideration of the form invariance of the time-time component of g ∀i =
1, 2, 3,

g
[i]
tt = 1 − 2G[i]M [i]

rc2
, (5)

where M [i] ≡ the total mass in M[i], and r ≡ the radius of the space in M[i].

Upon settling
(
E

[1]
j /E

[2]
j

)
andG[2], we shall next establish two propositions:

(1) The wave part of a combined particle is just the particle’s wave function
ψ, but we shall add an energy interpretation to ψ. (2) The probability current
is just a Poynting vector in M[2]. After remarking on the significance of our
analysis, we shall conclude with a summary in Section 3.

2 The Quantum Geometry

Hypothesis: M[2] consists solely of electromagnetic waves as
described by Maxwell Equations for free space; M[2] predates M[1].
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Due to a large G[2], an astronomical black hole B ⊂M[2] came into
being (cf. e.g., [2, 12], for formation of space-time singularities in
Einstein manifolds), and resulted in M[1] × B (the Big Bang; cf.
e.g., [5], for how a black hole may give rise to a macroscopic uni-
verse): photons then emerged in M[1] with their associated remain-
der electromagnetic waves existing in B. Any energy entity j in
M[1] is a particle resulting from a superposition of electromagnetic
waves in B and

the combined entity ≡ [particle, wave] (6)

has energy E
[3]
j = E

[1]
j + E

[2]
j (7)

(where the term ”particle wave” was exactly used in Feynman [4]).
Particles in M[1] engage in electromagnetic, nuclear weak or strong
forces via exchanging virtual particles. Both particles and waves
engage in gravitational forces separately and respectively in M[1]

and M[2] as introduced in Section 1.

Remark 1 As established in the previous paper [8], the gravitational motions
in M[3] are determined by

g[3] =

(
G[2]

G[1] +G[2]

)
g[1] +

(
G[1]

G[1] +G[2]

)
g[2], (8)

or

m[3]a[3] = −[

(
G[2]

G[1] +G[2]

)(
G[1]M [1]m[1]

‖r‖2

)

+

(
G[1]

G[1] +G[2]

)(
G[2]M [2]m[2]

‖r‖2

)
] · r

‖r‖ , (9)

as the Newtonian limit of the gravitational dynamics between masses
[
m[1], m[2]

]
at r �= 0 and

[
M [1],M [2]

]
at 0 as expressed in terms of the acceleration a[3] of

m[3]
(
= m[1] +m[2]

)
, which also implies that

a[3] = −G
[3]M [3]

‖r‖2

(
M [1]

M [3]
· m

[1]

m[3]
+
M [2]

M [3]
· m

[2]

m[3]

)
r

‖r‖ , (10)

so that a laboratory-measured mass M
[3]
measured necessarily observes

a[3] = −G
[3]M

[3]
measured

‖r‖2

r

‖r‖ (11)

= −
G[3]

[
M [3]

(
M [1]2+M [2]2

M [3]2

)]
‖r‖2

r

‖r‖ ; (12)
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i.e., denoting by η ≡ M [1]

M [3] ≡ 1 − M [2]

M [3] , we have

M [3]
(
η2 + (1 − η)2

)
= M

[3]
measured, (13)

implying that

M [1] =
M

[3]
measured · η

η2 + (1 − η)2 and (14)

M [2] =
M

[3]
measured · (1 − η)

η2 + (1 − η)2 . (15)

Incidentally, we also defined in [8]

G[3] = G[1] ∀M [2]m[2] = 0, and (16)

G[3] = G[2] ∀M [1]m[1] = 0, (17)

so that a dark matter
[
0,M [2]

]
acts on

[
m[1], m[2]

]
by

a[3] = −G
[2]M [2]

‖r‖2

(
m[2]

m[3]

)
r

‖r‖ . (18)

Proposition 1 Any [particle, wave] of electric charge +1 or −1 with energy
E[3] has

E[1] =
3

4
E[3] and (19)

E[2] =
1

4
E[3]. (20)

Proof. Following Feynman ([4], II-28-4), we cite the discrepancy in the elec-
tromagnetic mass of an electron as measured in a stationary state and as
measured in a moving state with a constant velocity of ‖V‖ << c :

mV=0 =
3

4
mV �=0 =

3

4

q2

4πεoro
, (21)

where q ≡ the charge of electron, εo ≡ the permittivity constant, and ro ≡ the
classical electron radius ≈ 2.82×10−15 meter. By Hypothesis, electromagnetic
forces take place only in M[1], but motions necessarily take place in M[3]; thus,
we attribute mV=0 to M[1] and mV �=0 to M[3]; i.e., E[3] = mV �=0c

2 = 3
4
E[3] +

1
4
E[3] = E[1]+E[2]. Since Feynman’s calculation applies to any electromagnetic

field, the result of E[1] = 3
4
E[3] and E[2] = 1

4
E[3] applies to any particle of

electric charge.

Corollary 1 Any [photon, electromagnetic wave] has E[1] = 3
4
E[3] and E[2] =

1
4
E[3].
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Proof. Since an electron and a positron annihilate each other into photons,
by energy conservation the energy ratio of 3

4
: 1

4
is preserved in [photon, elec-

tromagnetic wave].

Remark 2 By Equations (14), (15), and (13), we have η = 3
4
, and thus

E[1] = 1.2E
[3]
measured, (22)

E[2] = 0.4E
[3]
measured, (23)

and E[3] = 1.6E
[3]
measured. (24)

Proposition 2

G[2] =
c5 · second2

1.6h
(h ≡ the Planck constant) (25)

≡ c5

1.6ḧ
, where we define (26)

ḧ : =
h

second2
≈ 6.6 × 10−34 ×

(
joule

second

)
. (27)

Proof. Consider two reference frames, S [1] and S [2]: S [1] observes a free photon
with wave length λ, and S [2] is positioned on the boundary of exactly 1 wave
cycle of the photon; i.e., S [2] and the photon are of a mean distance of λ

2
.

Clearly to S [1] the unit of ν = c
λ
≡ ν[1] is 1 (cycle)

second
; however, the unit of ν[2]

to S [2] is 1 (cycle)
i· second

since: in B, any energy entity E[2] has its distance r to the
center of B less than the Schwarzschild radius, so that we have

gtt =

(
proper time t

[2]
o

proper time t
[1]
o

)2

= 1 − 2G[2]E[2]

rc4
< 0. (28)

By analytic continuation from
(M[2] −B

)
(where gtt > 0) to B (where gtt ≤

0), t
[2]
o changes from (δ1 second) to (0 second) and then (δ2 i second), with

δ1, δ2 > 0 unit-free (cf. e.g., [1], for the inherent necessity of complex numbers
in standard quantum theory, and [7], for analytic continuation of Lorentzian
metrics). Thus,

Δt
[2]
o

Δt
[1]
o

≡ ν[1]

ν[2]
≡ ν (cycle)

1 (cycle)
i second

= iν second ; (29)

accordingly,(
t
[2]
o

t
[1]
o

)2

= −ν2 · second2 (30)
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= 1 −
2G[2]

(
0.4E

[3]
measured

)
λ
2
· c4 (31)

(recall Equation (23) )

≈ 1 − 1.6G[2]hν
c
ν
· c4 (where E

[3]
measured = hν ∀ν >> 1 (32)

as derived by Planck, cf. [10] , 206)

≈ −1.6G[2]hν2

c5
; (33)

thus,

G[2] =
c5 · second2

1.6h
(34)

( =
(3 × 108)

5 × ( meter
second

)5 × second2

1.6 × 6.6 × 10−34 × kilogram × meter2

second2 × second
(35)

≈ 2.3 × 1075 × meter3

kilogram × second2
). (36)

Proposition 3 The wave function ψ of a photon γ (in M[1]) of frequency ν(≡ ω
2π

)
as measured by a local laboratory frame with a parameter domain U is

such that ∀ (t,x) ∈ U , one has

ψ (t,x) = z0 · ‖E (t,x)‖
�3 , (37)

where E (t,x) = Eo · e−i(ω t−k·x+φ) ∈ C3 is the electric field (in B ⊂ M[2])
associated with γ (k ≡ the wave vector, φ ∈ [0, 2π), and the complex norm∥∥∥(z1, z2, z3)T

∥∥∥2

�3
:= z2

1 + z2
2 + z2

3 ∈ C, (38)

cf. e.g., [6], 221, and [11] for metrics on complex manifolds), and z0 ∈ C is a
constant.

Proof. By the property of ψ,

|ψ (t,x)|2 ≡ ρ is the probability density of γ at (t,x) . (39)

Adopt now the following Axiom:

ρ = β · (0.4û) , (40)
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where β > 0 is a proportional constant of unit
(

1
joule

)
and

û ≡ εo · |‖E (t,x)‖
�3 |2 (41)

is the measured electric field energy density with (0.4û) = the energy density
apportioned to the electromagnetic wave of γ in B ⊂M[2] (recall Equation
(23)). Then,

ψ (t,x) =
√

0.4βεoe
iθ ‖E (t,x)‖

�3 (for some θ ∈ [0, 2π) ) (42)

≡ z0 · ‖E (t,x)‖
�3 . (43)

Corollary 2 The wave function ψp of any arbitrary particle p is

ψp (t,x) = zp · ‖Ep (t,x)‖
�3 , (44)

where

Ep (t,x) =
∑

j

Eγj
(t,x) . (45)

Proof. By Hypothesis, p results from a superposition of electromagnetic
waves, and we arrive at the conclusion.

Remark 3 For the next Proposition 4, we note that all the energy entities
refer to electromagnetic waves in B ⊂M[2].

Proposition 4 The probability current density of a particle

j (t,x) : =

(
�

2m̂i

)(
ψ̄ (t,x) · ∇ψ (t,x) − ψ (t,x) · ∇ψ̄ (t,x)

)
(46)

= β · S[2] (t,x) , (47)

where � ≡ h
2π

, m̂ ≡ m
[3]
measured ≡ the measured mass of the [particle, wave], β is

the constant of proportionality from the preceding Proposition 3, and S[2] (t,x)
is the Poynting vector apportioned to B ⊂M[2].
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Proof. Without loss of generality as based on (linear) superpositions of fields,
consider a free photon that travels in the direction of (x > 0, 0, 0) with

ψ (t,x) = z0 · ‖E (t,x)‖
�3 (48)

= z0 ·
∥∥∥(0, e−i(ωt−kx), 0

)T∥∥∥
�3

(49)

= z0e
−i(ωt−kx). (50)

Then

∇ψ =
(
z0e

−i(ωt−kx) · ki, 0, 0)T and (51)

∇ψ̄ =
(
z0e

i(ωt−kx) · (−ki) , 0, 0)T , (52)

so that j :=
(

�

2m̂i

) (
ψ̄ · ∇ψ − ψ · ∇ψ̄) = 1

2m̂

(
ψ̄ · �

i
∇ψ − ψ · �

i
∇ψ̄)

=
1

2m̂

(
ψ̄ψ · (�k, 0, 0)T + ψψ̄ · (�k, 0, 0)T

)
≡ 1

m̂
· |ψ|2 · p̂ (53)

(where p̂ denotes the measured momentum vector of unit [
kilogram · meter

second
])

=
1

m̂
· (β · (0.4û)) · Ŝ·meter3

c2
(54)

(where |ψ|2 equal to β · (0.4û) is from the above Axiom Equation (40) ,

and Ŝ denotes the measured Poynting vector, cf. [4] , II-27-9, so that

Ŝ

c2
equals the momentum density of unit

[
kilogram

second · meter2

]
)

=

(
û

m̂c2/meter3

)
· β ·

(
0.4Ŝ

)
= 1 · β · S[2] (55)

(due to the uniform probability density for a free photon).

Remark 4 Our geometry of M[1] × B serves to explain the following: (1)
quantum tunneling, (2) vacuum polarization, where we provide a different geo-
metric structure for this phenomenon in comparison with that of the ”infinite
sea of invisible negative energy particles” by Dirac (for a recent treatment on
this subject, see, e.g., [3]), and (3) the existence of dark matter and energy[
0, E[2]

]
, where we note that electromagnetic waves can form standing waves

(making the collection of waves ”matter-like”) by superposition.

Remark 5 In addition to the above, our M[1] ×B ⊂M[1] ×M[2] resolves the
pervasive problem of singularities at r = 0 in both the classical and the quantum
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domains by considering a neighborhood N of r = 0 that transfers uncertainty
energies between M[1] and M[2]. In this connection (cf. [4], II-28-4 through
10), we assert that (1) an electron e− is a point particle in M[1] that carries
an electromagnetic wave in B ⊂M[2], (2) in calculating the electromagnetic
energy of e−, one stops at Bdry N , and (3) as such, e− has no ”self force.”

Remark 6 We also note that a periodic electromagnetic field (in B) renders
itself a quotient space, displaying the phenomenon of ”instantaneous commu-
nication,” a feature serving as potential reference for quantum computing.

3 Summary

In this paper, we have settled the previously undetermined two parameters,(
E[1]/E [2]

)
and G[2]. Our geometry of M[1] ×B has contributed physical logic

to quantum mechanics, in particular, providing an energy interpretation to
probabilities; as a closing example, consider the fine structure constant,

α :=
e2

4πεo

�c
=

e2

4πεo

h
2π

· νλ =
e2

4πεoλ

E
[3]
measured/2π

(56)

= (the electrostatic potential energy between two electrons separated by a

distance of λ) / (the energy E
[3]
measured of the virtual photon needed to mediate

the two electrons divided by 2π) = the constant α, or, E
[3]
measured ·λ = constant,

i.e., a uniform probability for any two electrons to interact across all space.
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[12] D. Töben, Parallel focal structure and singular Riemannian
foliations, Trans. Amer. Math. Soc., 358 (2006), 1677-1704.

Received: October, 2008


