Applied Mathematical Sciences, Vol. 3, 2009, no. 20, 969-978

Combined Space-Time Manifold and the Quantum Geometry

Gregory L. Light
Providence College, Providence, Rhode Island 02918, USA
glight@providence.edu

Abstract

In a previous article we defined "combined manifold" M3 as the graph of a diffeomorphism from one manifold M1 to another M2, akin to the idea of a diagonal map. In this paper, we derive the values for the previously undetermined two parameters: (1) the energy distribution between a particle in M1 and its accompanied electromagnetic wave in M2 for the combined entity - - [particle, wave], and (2) the gravitational constant G2 for M2, where there exist only electromagnetic waves and gravitational forces. Because of a large G2, an astronomical black hole B arose in M2, branching out M1 (the Big Bang), with a fraction of a wave energy in M2 transferred to M1 as a photon, which collectively were responsible for the subsequent formation of matter. Being within the Schwarzschild radius, B in M2 is a complex (sub) manifold, which furnishes exactly the geometry for the observed quantum mechanics; moreover, B provides an energy interpretation to probabilities. In summary, our M3 casts quantum mechanics in the framework of General Relativity.

Mathematics Subject Classification: 53C25, 81T20, 53C15, 81Q70, 53C80, 83C75

Keywords: Relativity quantum unification, particle wave duality, complex space-time, vacuum invisible energies, quantum computing

1 Introduction

Previously we introduced in this publication [8] (cf. also [9]) a construct analogous to a diagonal map, namely, a combined space-time 4-manifold $\mathcal{M}^{[3]}$

$$
\begin{equation*}
:=\left\{\left(p^{[1]}, p^{[2]}\right) \in \mathcal{M}^{[1]} \times \mathcal{M}^{[2]} \mid h\left(p^{[1]}\right)=p^{[2]}, h=\text { any diffeomorphism }\right\}, \tag{1}
\end{equation*}
$$

where manifold $\mathcal{M}^{[i]}, i=1,2$, is determined by Einstein Field Equations

$$
\begin{equation*}
R_{\mu \nu}^{[i]}-\frac{1}{2} R^{[i]} g_{\mu \nu}^{[i]}=-\frac{8 \pi G^{[i]}}{c^{2}} T_{\mu \nu}^{[i]} \tag{2}
\end{equation*}
$$

($R_{\mu \nu} \equiv$ the Ricci $(0,2)$ curvature tensor, $R \equiv$ the Ricci scalar curvature tensor, $g_{\mu \nu} \equiv$ a semi-Riemannian metric, $\{\mu, \nu\} \subset\{1,2,3,4\}, G^{[i]} \equiv$ the gravitational constant in $\mathcal{M}^{[i]}, c \equiv$ the speed of light in empty spaces, $T_{\mu \nu} \equiv$ the energymomentum tensor), and we proposed the entity of a "combined particle j " of energy

$$
\begin{equation*}
E_{j}^{[3]}=E_{j}^{[1]}+E_{j}^{[2]}, \tag{3}
\end{equation*}
$$

where $E_{j}^{[1]}$ and $E_{j}^{[2]}$ contribute respectively to $T^{[1]}$ of $\mathcal{M}^{[1]}$ and $T^{[2]}$ of $\mathcal{M}^{[2]}$, with $\left\{E_{j}^{[1]} \mid j \in \mathbb{N}\right\}$ engaging in all the fundamental forces within $\mathcal{M}^{[1]}$ and $\left\{E_{j}^{[2]}\right\}$ engaging only in gravitational forces within $\mathcal{M}^{[2]}$. We did not however specify the ratio $E_{j}^{[1]} / E_{j}^{[3]} \equiv 1-\left(E_{j}^{[2]} / E_{j}^{[3]}\right)$, but here in this paper we shall settle this ratio in the following Section 2 and moreover equate $\left[E_{j}^{[1]}, E_{j}^{[2]}\right]$ to the [particle energy, wave energy] of j. We shall also resolve the other previously undetermined parameter $G^{[2]}$, even though we had provided the relation

$$
\begin{equation*}
G^{[3]}=\frac{G^{[1]} G^{[2]}}{G^{[1]}+G^{[2]}}, \tag{4}
\end{equation*}
$$

by a consideration of the form invariance of the time-time component of $g \forall i=$ $1,2,3$,

$$
\begin{equation*}
g_{t t}^{[i]}=1-\frac{2 G^{[i]} M^{[i]}}{r c^{2}} \tag{5}
\end{equation*}
$$

where $M^{[i]} \equiv$ the total mass in $\mathcal{M}^{[i]}$, and $r \equiv$ the radius of the space in $\mathcal{M}^{[i]}$.
Upon settling $\left(E_{j}^{[1]} / E_{j}^{[2]}\right)$ and $G^{[2]}$, we shall next establish two propositions: (1) The wave part of a combined particle is just the particle's wave function ψ, but we shall add an energy interpretation to ψ. (2) The probability current is just a Poynting vector in $\mathcal{M}^{[2]}$. After remarking on the significance of our analysis, we shall conclude with a summary in Section 3.

2 The Quantum Geometry

Hypothesis: $\mathcal{M}^{[2]}$ consists solely of electromagnetic waves as described by Maxwell Equations for free space; $\mathcal{M}^{[2]}$ predates $\mathcal{M}^{[1]}$.

Due to a large $G^{[2]}$, an astronomical black hole $\mathbf{B} \subset \mathcal{M}^{[2]}$ came into being (cf. e.g., [2,12], for formation of space-time singularities in Einstein manifolds), and resulted in $\mathcal{M}^{[1]} \times \mathbf{B}$ (the Big Bang; cf. e.g., [5], for how a black hole may give rise to a macroscopic universe): photons then emerged in $\mathcal{M}^{[1]}$ with their associated remainder electromagnetic waves existing in B. Any energy entity j in $\mathcal{M}^{[1]}$ is a particle resulting from a superposition of electromagnetic waves in B and

$$
\begin{align*}
\text { the combined entity } & \equiv[\text { particle, wave }] \tag{6}\\
\text { has energy } E_{j}^{[3]} & =E_{j}^{[1]}+E_{j}^{[2]} \tag{7}
\end{align*}
$$

(where the term "particle wave" was exactly used in Feynman [4]). Particles in $\mathcal{M}^{[1]}$ engage in electromagnetic, nuclear weak or strong forces via exchanging virtual particles. Both particles and waves engage in gravitational forces separately and respectively in $\mathcal{M}^{[1]}$ and $\mathcal{M}^{[2]}$ as introduced in Section 1.

Remark 1 As established in the previous paper [8], the gravitational motions in $\mathcal{M}^{[3]}$ are determined by

$$
\begin{equation*}
g^{[3]}=\left(\frac{G^{[2]}}{G^{[1]}+G^{[2]}}\right) g^{[1]}+\left(\frac{G^{[1]}}{G^{[1]}+G^{[2]}}\right) g^{[2]} \tag{8}
\end{equation*}
$$

or

$$
\begin{align*}
m^{[3]} \mathbf{a}^{[3]}= & -\left[\left(\frac{G^{[2]}}{G^{[1]}+G^{[2]}}\right)\left(\frac{G^{[1]} M^{[1]} m^{[1]}}{\|\mathbf{r}\|^{2}}\right)\right. \\
& \left.+\left(\frac{G^{[1]}}{G^{[1]}+G^{[2]}}\right)\left(\frac{G^{[2]} M^{[2]} m^{[2]}}{\|\mathbf{r}\|^{2}}\right)\right] \cdot \frac{\mathbf{r}}{\|\mathbf{r}\|}, \tag{9}
\end{align*}
$$

as the Newtonian limit of the gravitational dynamics between masses $\left[m^{[1]}, m^{[2]}\right]$ at $\mathbf{r} \neq \mathbf{0}$ and $\left[M^{[1]}, M^{[2]}\right]$ at $\mathbf{0}$ as expressed in terms of the acceleration $\mathbf{a}^{[3]}$ of $m^{[3]}\left(=m^{[1]}+m^{[2]}\right)$, which also implies that

$$
\begin{equation*}
\mathbf{a}^{[3]}=-\frac{G^{[3]} M^{[3]}}{\|\mathbf{r}\|^{2}}\left(\frac{M^{[1]}}{M^{[3]}} \cdot \frac{m^{[1]}}{m^{[3]}}+\frac{M^{[2]}}{M^{[3]}} \cdot \frac{m^{[2]}}{m^{[3]}}\right) \frac{\mathbf{r}}{\|\mathbf{r}\|}, \tag{10}
\end{equation*}
$$

so that a laboratory-measured mass $M_{\text {measured }}^{[3]}$ necessarily observes

$$
\begin{align*}
\mathbf{a}^{[3]} & =-\frac{G^{[3]} M_{\text {measured }}^{[3]}}{\|\mathbf{r}\|^{2}} \frac{\mathbf{r}}{\|\mathbf{r}\|} \tag{11}\\
& =-\frac{G^{[3]}\left[M^{[3]}\left(\frac{M^{[1] 2}+M^{[2] 2}}{M^{[3] 2}}\right)\right]}{\|\mathbf{r}\|^{2}} \frac{\mathbf{r}}{\|\mathbf{r}\|} ; \tag{12}
\end{align*}
$$

i.e., denoting by $\eta \equiv \frac{M^{[1]}}{M^{[3]}} \equiv 1-\frac{M^{[2]}}{M^{[3]}}$, we have

$$
\begin{equation*}
M^{[3]}\left(\eta^{2}+(1-\eta)^{2}\right)=M_{\text {measured }}^{[3]} \tag{13}
\end{equation*}
$$

implying that

$$
\begin{align*}
M^{[1]} & =\frac{M_{\text {measured }}^{[3]} \cdot \eta}{\eta^{2}+(1-\eta)^{2}} \text { and } \tag{14}\\
M^{[2]} & =\frac{M_{\text {measured }}^{[3]} \cdot(1-\eta)}{\eta^{2}+(1-\eta)^{2}} \tag{15}
\end{align*}
$$

Incidentally, we also defined in [8]

$$
\begin{align*}
& G^{[3]}=G^{[1]} \forall M^{[2]} m^{[2]}=0, \text { and } \tag{16}\\
& G^{[3]}=G^{[2]} \forall M^{[1]} m^{[1]}=0, \tag{17}
\end{align*}
$$

so that a dark matter $\left[0, M^{[2]}\right]$ acts on $\left[m^{[1]}, m^{[2]}\right]$ by

$$
\begin{equation*}
\mathbf{a}^{[3]}=-\frac{G^{[2]} M^{[2]}}{\|\mathbf{r}\|^{2}}\left(\frac{m^{[2]}}{m^{[3]}}\right) \frac{\mathbf{r}}{\|\mathbf{r}\|} \tag{18}
\end{equation*}
$$

Proposition 1 Any [particle, wave] of electric charge +1 or -1 with energy $E^{[3]}$ has

$$
\begin{align*}
E^{[1]} & =\frac{3}{4} E^{[3]} \text { and } \tag{19}\\
E^{[2]} & =\frac{1}{4} E^{[3]} \tag{20}
\end{align*}
$$

Proof. Following Feynman ([4], II-28-4), we cite the discrepancy in the electromagnetic mass of an electron as measured in a stationary state and as measured in a moving state with a constant velocity of $\|\mathbf{V}\| \ll c$:

$$
\begin{equation*}
m_{\mathbf{V}=\mathbf{0}}=\frac{3}{4} m_{\mathbf{V} \neq \mathbf{0}}=\frac{3}{4} \frac{q^{2}}{4 \pi \epsilon_{o} r_{o}} \tag{21}
\end{equation*}
$$

where $q \equiv$ the charge of electron, $\epsilon_{o} \equiv$ the permittivity constant, and $r_{o} \equiv$ the classical electron radius $\approx 2.82 \times 10^{-15}$ meter. By Hypothesis, electromagnetic forces take place only in $\mathcal{M}^{[1]}$, but motions necessarily take place in $\mathcal{M}^{[3]}$; thus, we attribute $m_{\mathbf{V}=\mathbf{0}}$ to $\mathcal{M}^{[1]}$ and $m_{\mathbf{V} \neq \mathbf{0}}$ to $\mathcal{M}^{[3]}$; i.e., $E^{[3]}=m_{\mathbf{V} \neq \mathbf{0}} c^{2}=\frac{3}{4} E^{[3]}+$ $\frac{1}{4} E^{[3]}=E^{[1]}+E^{[2]}$. Since Feynman's calculation applies to any electromagnetic field, the result of $E^{[1]}=\frac{3}{4} E^{[3]}$ and $E^{[2]}=\frac{1}{4} E^{[3]}$ applies to any particle of electric charge.

Corollary 1 Any [photon, electromagnetic wave $]$ has $E^{[1]}=\frac{3}{4} E^{[3]}$ and $E^{[2]}=$ $\frac{1}{4} E^{[3]}$.

Proof. Since an electron and a positron annihilate each other into photons, by energy conservation the energy ratio of $\frac{3}{4}: \frac{1}{4}$ is preserved in [photon, electromagnetic wave].

Remark 2 By Equations (14), (15), and (13), we have $\eta=\frac{3}{4}$, and thus

$$
\begin{align*}
E^{[1]} & =1.2 E_{\text {measured }}^{[3]}, \tag{22}\\
E^{[2]} & =0.4 E_{\text {measured }}^{[3]}, \tag{23}\\
\text { and } E^{[3]} & =1.6 E_{\text {measured }}^{[3]} . \tag{24}
\end{align*}
$$

Proposition 2

$$
\begin{align*}
G^{[2]} & =\frac{c^{5} \cdot \text { second }^{2}}{1.6 h}(h \equiv \text { the Planck constant }) \tag{25}\\
& \equiv \frac{c^{5}}{1.6 \ddot{h}}, \text { where we define } \tag{26}\\
\ddot{h} & :=\frac{h}{\text { second }} \approx 6.6 \times 10^{-34} \times\left(\frac{\text { joule }}{\text { second }}\right) . \tag{27}
\end{align*}
$$

Proof. Consider two reference frames, $S^{[1]}$ and $S^{[2]}: S^{[1]}$ observes a free photon with wave length λ, and $S^{[2]}$ is positioned on the boundary of exactly 1 wave cycle of the photon; i.e., $S^{[2]}$ and the photon are of a mean distance of $\frac{\lambda}{2}$. Clearly to $S^{[1]}$ the unit of $\nu=\frac{c}{\lambda} \equiv \nu^{[1]}$ is $\frac{1 \text { (cycle) }}{\text { second }}$; however, the unit of $\nu^{[2]}$ to $S^{[2]}$ is $\frac{1 \text { (cycle) }}{i \cdot \text { second }}$ since: in \mathbf{B}, any energy entity $E^{[2]}$ has its distance r to the center of \mathbf{B} less than the Schwarzschild radius, so that we have

$$
\begin{equation*}
g_{t t}=\left(\frac{\text { proper time } t_{o}^{[2]}}{\text { proper time } t_{o}^{[1]}}\right)^{2}=1-\frac{2 G^{[2]} E^{[2]}}{r c^{4}}<0 . \tag{28}
\end{equation*}
$$

By analytic continuation from $\left(\mathcal{M}^{[2]}-\mathbf{B}\right)$ (where $g_{t t}>0$) to \mathbf{B} (where $g_{t t} \leq$ $0), t_{o}^{[2]}$ changes from (δ_{1} second) to (0 second) and then ($\delta_{2} i$ second), with $\delta_{1}, \delta_{2}>0$ unit-free (cf. e.g., [1], for the inherent necessity of complex numbers in standard quantum theory, and [7], for analytic continuation of Lorentzian metrics). Thus,

$$
\begin{equation*}
\frac{\Delta t_{o}^{[2]}}{\Delta t_{o}^{[1]}} \equiv \frac{\nu^{[1]}}{\nu^{[2]}} \equiv \frac{\nu(\text { cycle })}{\frac{1(\text { cycle })}{i \text { second }}}=i \nu \text { second } ; \tag{29}
\end{equation*}
$$

accordingly,

$$
\begin{equation*}
\left(\frac{t_{o}^{[2]}}{t_{o}^{[1]}}\right)^{2}=-\nu^{2} \cdot \text { second }^{2} \tag{30}
\end{equation*}
$$

$$
\begin{align*}
= & 1-\frac{2 G^{[2]}\left(0.4 E_{\text {measured }}^{[3]}\right)}{\frac{\lambda}{2} \cdot c^{4}} \tag{31}\\
& (\text { recall Equation }(23)) \\
\approx & 1-\frac{1.6 G^{[2]} h \nu}{\frac{c}{\nu} \cdot c^{4}}\left(\text { where } E_{\text {measured }}^{[3]}=h \nu \forall \nu \gg 1\right. \tag{32}
\end{align*}
$$

as derived by Planck, cf. [10], 206)

$$
\begin{equation*}
\approx-\frac{1.6 G^{[2]} h \nu^{2}}{c^{5}} \tag{33}
\end{equation*}
$$

thus,

$$
\begin{align*}
G^{[2]} & =\frac{c^{5} \cdot \text { second }^{2}}{1.6 h} \tag{34}\\
(& =\frac{\left(3 \times 10^{8}\right)^{5} \times\left(\frac{\text { meter }}{\text { second }}\right)^{5} \times \text { second }^{2}}{1.6 \times 6.6 \times 10^{-34} \times \frac{\text { kilogram } \times \text { meter }^{2}}{\text { second }}{ }^{2}} \times \text { second } \tag{35}\\
& \left.\approx 2.3 \times 10^{75} \times \frac{\text { meter }^{3}}{{\text { kilogram } \times \text { second }^{2}}^{2}}\right) \tag{36}
\end{align*}
$$

Proposition 3 The wave function ψ of a photon γ (in $\mathcal{M}^{[1]}$) of frequency ν $\left(\equiv \frac{\omega}{2 \pi}\right)$ as measured by a local laboratory frame with a parameter domain U is such that $\forall(t, \mathbf{x}) \in U$, one has

$$
\begin{equation*}
\psi(t, \mathbf{x})=z_{0} \cdot\|\mathbb{E}(t, \mathbf{x})\|_{\mathbb{C}^{3}} \tag{37}
\end{equation*}
$$

where $\mathbb{E}(t, \mathbf{x})=\mathbb{E}_{o} \cdot e^{-i(\omega t-\mathbf{k} \cdot \mathbf{x}+\phi)} \in \mathbb{C}^{3}$ is the electric field (in $\mathbf{B} \subset \mathcal{M}^{[2]}$) associated with $\gamma(\mathbf{k} \equiv$ the wave vector, $\phi \in[0,2 \pi)$, and the complex norm

$$
\begin{equation*}
\left\|\left(z_{1}, z_{2}, z_{3}\right)^{T}\right\|_{\mathbb{C}^{3}}^{2}:=z_{1}^{2}+z_{2}^{2}+z_{3}^{2} \in \mathbb{C} \tag{38}
\end{equation*}
$$

cf. e.g., [6], 221, and [11] for metrics on complex manifolds), and $z_{0} \in \mathbb{C}$ is a constant.

Proof. By the property of ψ,

$$
\begin{equation*}
|\psi(t, \mathbf{x})|^{2} \equiv \rho \text { is the probability density of } \gamma \text { at }(t, \mathbf{x}) \tag{39}
\end{equation*}
$$

Adopt now the following Axiom:

$$
\begin{equation*}
\rho=\beta \cdot(0.4 \hat{u}) \tag{40}
\end{equation*}
$$

where $\beta>0$ is a proportional constant of unit $\left(\frac{1}{\text { joule }}\right)$ and

$$
\begin{equation*}
\hat{u} \equiv \epsilon_{o} \cdot\left|\|\mathbb{E}(t, \mathbf{x})\|_{\mathbb{C}^{3}}\right|^{2} \tag{41}
\end{equation*}
$$

is the measured electric field energy density with $(0.4 \hat{u})=$ the energy density apportioned to the electromagnetic wave of γ in $\mathbf{B} \subset \mathcal{M}^{[2]}$ (recall Equation (23)). Then,

$$
\begin{align*}
\psi(t, \mathbf{x}) & =\sqrt{0.4 \beta \epsilon_{o}} e^{i \theta}\|\mathbb{E}(t, \mathbf{x})\|_{\mathbb{C}^{3}} \quad(\text { for some } \theta \in[0,2 \pi)) \tag{42}\\
& \equiv z_{0} \cdot\|\mathbb{E}(t, \mathbf{x})\|_{\mathbb{C}^{3}} \tag{43}
\end{align*}
$$

Corollary 2 The wave function ψ_{p} of any arbitrary particle p is

$$
\begin{equation*}
\psi_{p}(t, \mathbf{x})=z_{p} \cdot\left\|\mathbb{E}_{p}(t, \mathbf{x})\right\|_{\mathbb{C}^{3}}, \tag{44}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbb{E}_{p}(t, \mathbf{x})=\sum_{j} \mathbb{E}_{\gamma_{j}}(t, \mathbf{x}) . \tag{45}
\end{equation*}
$$

Proof. By Hypothesis, p results from a superposition of electromagnetic waves, and we arrive at the conclusion.

Remark 3 For the next Proposition 4, we note that all the energy entities refer to electromagnetic waves in $\mathbf{B} \subset \mathcal{M}^{[2]}$.

Proposition 4 The probability current density of a particle

$$
\begin{align*}
\mathbf{j}(t, \mathbf{x}) & :=\left(\frac{\hbar}{2 \hat{m} i}\right)(\bar{\psi}(t, \mathbf{x}) \cdot \nabla \psi(t, \mathbf{x})-\psi(t, \mathbf{x}) \cdot \nabla \bar{\psi}(t, \mathbf{x})) \tag{46}\\
& =\beta \cdot \mathbf{S}^{[2]}(t, \mathbf{x}) \tag{47}
\end{align*}
$$

where $\hbar \equiv \frac{h}{2 \pi}, \hat{m} \equiv m_{\text {measured }}^{[3]} \equiv$ the measured mass of the [particle, wave], β is the constant of proportionality from the preceding Proposition 3, and $\mathbf{S}^{[2]}(t, \mathbf{x})$ is the Poynting vector apportioned to $\mathbf{B} \subset \mathcal{M}^{[2]}$.

Proof. Without loss of generality as based on (linear) superpositions of fields, consider a free photon that travels in the direction of $(x>0,0,0)$ with

$$
\begin{align*}
\psi(t, \mathbf{x}) & =z_{0} \cdot\|\mathbb{E}(t, \mathbf{x})\|_{\mathbb{C}^{3}} \tag{48}\\
& =z_{0} \cdot\left\|\left(0, e^{-i(\omega t-k x)}, 0\right)^{T}\right\|_{\mathbb{C}^{3}} \tag{49}\\
& =z_{0} e^{-i(\omega t-k x)} \tag{50}
\end{align*}
$$

Then

$$
\begin{align*}
& \nabla \psi=\left(z_{0} e^{-i(\omega t-k x)} \cdot k i, 0,0\right)^{T} \text { and } \tag{51}\\
& \nabla \bar{\psi}=\left(z_{0} e^{i(\omega t-k x)} \cdot(-k i), 0,0\right)^{T} \tag{52}
\end{align*}
$$

so that $\mathbf{j}:=\left(\frac{\hbar}{2 \hat{m} i}\right)(\bar{\psi} \cdot \nabla \psi-\psi \cdot \nabla \bar{\psi})=\frac{1}{2 \hat{m}}\left(\bar{\psi} \cdot \frac{\hbar}{i} \nabla \psi-\psi \cdot \frac{\hbar}{i} \nabla \bar{\psi}\right)$

$$
=\frac{1}{2 \hat{m}}\left(\bar{\psi} \psi \cdot(\hbar k, 0,0)^{T}+\psi \bar{\psi} \cdot(\hbar k, 0,0)^{T}\right) \equiv \frac{1}{\hat{m}} \cdot|\psi|^{2} \cdot \hat{\mathbf{p}}
$$

(where $\hat{\mathbf{p}}$ denotes the measured momentum vector of unit [$\left.\frac{\text { kilogram } \cdot \text { meter }}{\text { second }}\right]$)
$=\frac{1}{\hat{m}} \cdot(\beta \cdot(0.4 \hat{u})) \cdot \frac{\hat{\mathbf{S}} \cdot \text { meter }^{3}}{c^{2}}$
(where $|\psi|^{2}$ equal to $\beta \cdot(0.4 \hat{u})$ is from the above Axiom Equation (40), and $\hat{\mathbf{S}}$ denotes the measured Poynting vector, cf. [4], II-27-9, so that
$\frac{\hat{\mathbf{S}}}{c^{2}}$ equals the momentum density of unit $\left[\frac{\text { kilogram }}{\operatorname{second} \cdot \text { meter }^{2}}\right]$)
$=\left(\frac{\hat{u}}{\hat{m} c^{2} / \text { meter }^{3}}\right) \cdot \beta \cdot(0.4 \hat{\mathbf{S}})=1 \cdot \beta \cdot \mathbf{S}^{[2]}$
(due to the uniform probability density for a free photon).

Remark 4 Our geometry of $\mathcal{M}^{[1]} \times \mathbf{B}$ serves to explain the following: (1) quantum tunneling, (2) vacuum polarization, where we provide a different geometric structure for this phenomenon in comparison with that of the "infinite sea of invisible negative energy particles" by Dirac (for a recent treatment on this subject, see, e.g., [3]), and (3) the existence of dark matter and energy $\left[0, E^{[2]}\right]$, where we note that electromagnetic waves can form standing waves (making the collection of waves "matter-like") by superposition.

Remark 5 In addition to the above, our $\mathcal{M}^{[1]} \times \mathbf{B} \subset \mathcal{M}^{[1]} \times \mathcal{M}^{[2]}$ resolves the pervasive problem of singularities at $r=0$ in both the classical and the quantum
domains by considering a neighborhood N of $r=0$ that transfers uncertainty energies between $\mathcal{M}^{[1]}$ and $\mathcal{M}^{[2]}$. In this connection (cf. [4], II-28-4 through 10), we assert that (1) an electron e^{-}is a point particle in $\mathcal{M}^{[1]}$ that carries an electromagnetic wave in $\mathbf{B} \subset \mathcal{M}^{[2]}$, (2) in calculating the electromagnetic energy of e^{-}, one stops at Bdry N, and (3) as such, e^{-}has no "self force."

Remark 6 We also note that a periodic electromagnetic field (in \mathbf{B}) renders itself a quotient space, displaying the phenomenon of "instantaneous communication," a feature serving as potential reference for quantum computing.

3 Summary

In this paper, we have settled the previously undetermined two parameters, $\left(E^{[1]} / E^{[2]}\right)$ and $G^{[2]}$. Our geometry of $\mathcal{M}^{[1]} \times \mathbf{B}$ has contributed physical logic to quantum mechanics, in particular, providing an energy interpretation to probabilities; as a closing example, consider the fine structure constant,

$$
\begin{equation*}
\alpha:=\frac{\frac{e^{2}}{4 \pi \epsilon_{o}}}{\hbar c}=\frac{\frac{e^{2}}{4 \pi \epsilon_{o}}}{\frac{h}{2 \pi} \cdot \nu \lambda}=\frac{\frac{e^{2}}{4 \pi \epsilon_{o} \lambda}}{E_{\text {measured }}^{[3]} / 2 \pi} \tag{56}
\end{equation*}
$$

$=$ (the electrostatic potential energy between two electrons separated by a distance of $\lambda) /\left(\right.$ the energy $E_{\text {measured }}^{[3]}$ of the virtual photon needed to mediate the two electrons divided by $2 \pi)=$ the constant α, or, $E_{\text {measured }}^{[3]} \cdot \lambda=$ constant, i.e., a uniform probability for any two electrons to interact across all space.

4 References

[1] J.B. Barbour, Time and complex numbers in canonical quantum gravity, Phys. Rev. D 47 (1993), 5422-5429.
[2] J. Cheeger and G. Tian, Curvature and injectivity radius estimates for Einstein 4-manifolds, J. Amer. Math. Soc., 19 (2006), 487-525.
[3] M.J. Esteban, M. Lewin and E. Sere, Variation methods in relativistic quantum mechanics, Bull. Amer. Math. Soc., 45 No. 4 (2008), 535-593.
[4] R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures on Physics, Addison-Wesley, Reading, 1963.
[5] V.P. Frolov, M.A. Markov and V.F. Mukhanov, Black holes as possible sources of closed and semiclosed worlds, Phys. Rev. D 41 (1990), 383-394.
[6] V.G. Ivancevic and T.T. Ivancevic, Complex Dynamics - Advanced System Dynamics in Complex Variables, Springer, Dordrecht 2007.
[7] P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003), 124022-124037.
[8] G.L. Light, An introduction of a combined space-time manifold, Appl. Math. Sci., 1 No. 27 (2007), 1341-1346.
[9] G.L. Light, Energy inquiry, Can. J. Phys., 68 (1990), 242243.
[10] M.S. Longair, Theoretical Concepts in Physics, Cambridge University Press, Cambridge, 1986.
[11] G. Maschler, Central Kähler metrics, Trans. Amer. Math. Soc., 355 (2003), 2161-2182.
[12] D. Töben, Parallel focal structure and singular Riemannian foliations, Trans. Amer. Math. Soc., 358 (2006), 1677-1704.

Received: October, 2008

