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Abstract

In a previous article we defined ”combined manifold” M3 as the
graph of a diffeomorphism from one manifold M1 to another M2, akin
to the idea of a diagonal map. In this paper, we derive the values for
the previously undetermined two parameters: (1) the energy distribu-
tion between a particle in M1 and its accompanied electromagnetic wave
in M2 for the combined entity - - [particle, wave], and (2) the gravita-
tional constant G2 for M2, where there exist only electromagnetic waves
and gravitational forces. Because of a large G2, an astronomical black
hole B arose in M2, branching out M1 (the Big Bang), with a fraction of
a wave energy in M2 transferred to M1 as a photon, which collectively
were responsible for the subsequent formation of matter. Being within
the Schwarzschild radius, B in M2 is a complex (sub) manifold, which
furnishes exactly the geometry for the observed quantum mechanics;
moreover, B provides an energy interpretation to probabilities. In sum-
mary, our M3 casts quantum mechanics in the framework of General
Relativity.
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1 Introduction

Previously we introduced in this publication [8] (cf. also [9]) a construct anal-
ogous to a diagonal map, namely, a combined space-time 4-manifold M

= { (p", p?) € MU x MP | b (pM) = pi, h = any diffeomorphism}, (1)
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where manifold MU, i = 1,2, is determined by Einstein Field Equations

, 1 0 o rGH
[ _ Zpll il — 28 pli]
R/u/ 2R gul/ - 02 11;LV (2>
(R, = the Ricci (0,2) curvature tensor, R = the Ricci scalar curvature tensor,
9, = a semi-Riemannian metric, {u, v} C {1,2,3,4}, Gl = the gravitational
constant in M, ¢ = the speed of light in empty spaces, T,, = the energy-
momentum tensor), and we proposed the entity of a ”combined particle j” of

energy , ) )
B =gy BP (3)

where E][-l] and E][-Q] contribute respectively to T of MM and TP of M,
with {EJ[I] |jeN } engaging in all the fundamental forces within M and

{EJ[.Q]} engaging only in gravitational forces within M. We did not however
specify the ratio E][-l] / E][-S] =1- <E][-2] / Ej[g]), but here in this paper we shall

settle this ratio in the following Section 2 and moreover equate [E][-I],EJ[?]}

to the [particle energy, wave energy] of j. We shall also resolve the other
previously undetermined parameter G2, even though we had provided the
relation -

GHG
Ve ek (4)
Gl + G
by a consideration of the form invariance of the time-time component of g Vi =
1,2,3,

GBI =

2! il
— 2 ()
where M = the total mass in MU, and r = the radius of the space in M.

Upon settling <Ej[1] / E][-Q]) and G| we shall next establish two propositions:
(1) The wave part of a combined particle is just the particle’s wave function
¥, but we shall add an energy interpretation to . (2) The probability current

is just a Poynting vector in M. After remarking on the significance of our
analysis, we shall conclude with a summary in Section 3.

gy =1-

2 The Quantum Geometry

Hypothesis: M consists solely of electromagnetic waves as
described by Maxwell Equations for free space; M2 predates M.
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Due to a large G, an astronomical black hole B c M? came into
being (cf. e.g., [2,12], for formation of space-time singularities in
Einstein manifolds), and resulted in M x B (the Big Bang; cf.
e.g., [5], for how a black hole may give rise to a macroscopic uni-
verse): photons then emerged in M!! with their associated remain-
der electromagnetic waves existing in B. Any energy entity j in
MW s a particle resulting from a superposition of electromagnetic
waves in B and

the combined entity = [particle, wave] (6)
has energy E][.?’] — E][,ll + Ej[?] (7)

(where the term ”particle wave” was exactly used in Feynman [4]).
Particles in MU engage in electromagnetic, nuclear weak or strong
forces via exchanging virtual particles. Both particles and waves
engage in gravitational forces separately and respectively in M
and MU as introduced in Section 1.

Remark 1 As established in the previous paper [8], the gravitational motions
in MP are determined by

G2 GH
£ R C S W ) Y G C S W )
g (G[1]+G[2J)g +(Gm+am)9 ’ ®)
or
ek G
mBlal¥ = 2m
Gl + GP x|
el G2 0122
+ )T (9)
Gl 4+ G2l I |||

as the Newtonian limit of the gravitational dynamics between masses [mm, mm]
atr # 0 and [MM, MP] at 0 as expressed in terms of the acceleration aP¥! of
mB (= ml +ml) | which also implies that

8 GBIAMBL /0 prRE 2 w0
T TP \ME B e ) e (10)
so that a laboratory-measured mass Mﬂaswed necessarily observes
G[3]M[3]
a[3] _ megsuredi (11)
] ]
12 22
_G[3] []\/[[3] (M Mg\g )] v )

el Iz
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i.e., denoting by n = %E =1- %—E, we have
ME (P + (1= 0)") = Mycqurea: (13)
implying that
(3] )
M[l] — Mmeasured 2 and (14)
n?+ (1 —n)
(3]
M[Q] — Mmeasured ) (1 _2 7]) ) (15)
n*+(1—n)
Incidentally, we also defined in [§]
GO = G wyMBmE =0, and (16)
GBl = G vylpll =g, (17)
so that a dark matter [0, M[z]} acts on [mm, mm} by
2 1712 2
9 :_G[]]\/[[] m2 T as)
feff* - \mP/ [l
Proposition 1 Any [particle, wave] of electric charge +1 or —1 with energy
EB has
EW = ZE[?’] and (19)
1
ER — ZEgBL 20
' (20)

Proof. Following Feynman ([4], II-28-4), we cite the discrepancy in the elec-
tromagnetic mass of an electron as measured in a stationary state and as
measured in a moving state with a constant velocity of | V]| << ¢ :

3 3 ¢
My — = —mM = — s
V=0T VAT Y 4me,r,

(21)

where ¢ = the charge of electron, ¢, = the permittivity constant, and r, = the
classical electron radius ~ 2.82 x 10~ meter. By Hypothesis, electromagnetic
forces take place only in M, but motions necessarily take place in M) thus,
we attribute mvy_g to M and My o to MBl:je., BBl = My 2o = %EB] +
1EBl = El 4+ BRI Since Feynman’s calculation applies to any electromagnetic
field, the result of El = 3EBl and EP = 1EB applies to any particle of
electric charge. m

Corollary 1 Any [photon, electromagnetic wave] has EM = 3EBl and B2 =

3
4
1B,
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Proof. Since an electron and a positron annihilate each other into photons,
by energy conservation the energy ratio of % : i is preserved in [photon, elec-
tromagnetic wave|. m

Remark 2 By Equations (14), (15), and (13), we have n =2, and thus

BN = 12E7 e (22)
EFl = 0'4Er[ileasured7 (23)
and E¥ = 16E% (24)
Proposition 2

Gl = % (h = the Planck constant) (25)

&
= o where we define (26)
B K66 %1079 (M) : (27)

second? second

Proof. Consider two reference frames, SI and S12: SI observes a free photon
with wave length \, and S is positioned on the boundary of exactly 1 wave
cycle of the photon; i.e., S® and the photon are of a mean distance of %

Clearly to SU the unit of v = £ = vl is lsizizﬁ); however, the unit of v

to S is % since: in B, any energy entity E? has its distance 7 to the

center of B less than the Schwarzschild radius, so that we have

e 22 2 2]
time ¢ 2GR E
gtt _ (proper 11me ) _ 1 e 0 (28)

proper time tg] rct

By analytic continuation from (M[Q] — B) (where g > 0) to B (where g <

0), P changes from (61 second) to (0 second) and then (Jy 7 second), with
91,09 > 0 unit-free (cf. e.g., [1], for the inherent necessity of complex numbers
in standard quantum theory, and [7], for analytic continuation of Lorentzian
metrics). Thus,

At[OQ] [1] 1
= 1/_2 = % = v second ; (29)
At[o] 2l Lc)l

accordingly,

21 2
(%) = —12 . second? (30)

o
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2G2) (0.4E[3] )

measured
= 1- 31
(recall Equation (23))
1.6GP hy 5
~ 11— e a (where E}n]easwed =hv Vv >>1 (32)
as derived by Planck, cf. [10], 206)
1.6GP hy?
~ LG (33)
thus,
5 . d2
Gl _ ¢ secon a4
1.6h (34)
( = (3 x 108)° x (%)5 x second? (35)
1.6 x 6.6 x 1034 x Mloaram x meter? o061
meter>
~ 2.3 x107 : 36
% . kilogram x second? (36)
u

Proposition 3 The wave function 1 of a photon v (in MM) of frequency v
(E %) as measured by a local laboratory frame with a parameter domain U s

such that ¥V (t,x) € U, one has

¥ (t,x) =20 Bt x)lcs (37)
where E (t,x) = E, - e i@ =kx+9) ¢ C3 s the electric field (in B ¢ MP)
associated with vy (k = the wave vector, ¢ € [0,27), and the complex norm

2
o 2i+ 25+ 25 €C, (38)

H(Zh 22, ZS)T

cf. e.g., [6], 221, and [11] for metrics on complex manifolds), and zy € C is a
constant.

Proof. By the property of 9,
[ (t,x)|> = p is the probability density of v at (¢,x) . (39)
Adopt now the following Axiom:

p=0-(0.44), (40)
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where (3 > 0 is a proportional constant of unit <%) and
joule

L 2
0= |[[E(tx)| (41)
is the measured electric field energy density with (0.44) = the energy density

apportioned to the electromagnetic wave of v in B c M (recall Equation
(23)). Then,

Y (t,x) = /0.4Be,e” |E(t,%)||es (for some 6 € [0,27)) (42)
= 20 [[E(#X)les - (43)

Corollary 2 The wave function 1, of any arbitrary particle p is

Py (6, %) = 2, - ||Ep (taX)H@» ) (44)

where

E, (t,x) = Z E, (t,%). (45)

Proof. By Hypothesis, p results from a superposition of electromagnetic
waves, and we arrive at the conclusion. m

Remark 3 For the next Proposition 4, we note that all the energy entities
refer to electromagnetic waves in B C M.

Proposition 4 The probability current density of a particle

500 = (5i) (0030 V000~ (20 VO () (@0
g8 (t,x), (47)
where h = %, m= mfi]easwed = the measured mass of the [particle, wave], 3 is

the constant of proportionality from the preceding Proposition 3, and S (t,x)
is the Poynting vector apportioned to B c M.
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Proof. Without loss of generality as based on (linear) superpositions of fields,
consider a free photon that travels in the direction of (z > 0,0,0) with

Y (t,x) = 2z |E@x)]e (48)
= 2o+ ||(0. 7 0)"| (49)
_ Zoefi(wtfk:t)' (5())
Then
Vi = (207 ki 0,0)" and (51)
Vq_b = (Z()@i(Wt_kx) : (_kl) 70’ 0>T7 (52>
so that j:= (52) (¢ - VY — - Vi) = 5L (¢ - 2V — - 2VY)
1 v T - T\ __ 1 2 A

kilogram - meter

(where p denotes the measured momentum vector of unit |

second
1 S-meter3
p— —_— . . 0'4/\ - —_——
— (5 (040)) - 2

(where |1|* equal to 3 - (0.44) is from the above Axiom Equation (40),
and S denotes the measured Poynting vector, cf. [4] , 11-27-9, so that

A~

S kilogram
— equals the momentum density of unit { & } )
c

U A
= (——) 8 0.4s>:1~ st
(rhc2 /meter? ) g < g
(due to the uniform probability density for a free photon).

second - meter?

Remark 4 Our geometry of MY x B serves to explain the following: (1)
quantum tunneling, (2) vacuum polarization, where we provide a different geo-
metric structure for this phenomenon in comparison with that of the "infinite
sea of invisible negative energy particles” by Dirac (for a recent treatment on
this subject, see, e.g., [3]), and (3) the existence of dark matter and energy
[0, E[Q]], where we note that electromagnetic waves can form standing waves
(making the collection of waves "matter-like”) by superposition.

Remark 5 In addition to the above, our MM x B c MW x M resolves the
pervasive problem of singularities at r = 0 in both the classical and the quantum
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domains by considering a neighborhood N of r = 0 that transfers uncertainty
energies between MW and M. In this connection (cf. [4], 1I-28-4 through
10), we assert that (1) an electron e~ is a point particle in MUY that carries
an electromagnetic wave in B CMP, (2) in calculating the electromagnetic
energy of e~ , one stops at Bdry N , and (3) as such, e~ has no ”self force.”

Remark 6 We also note that a periodic electromagnetic field (in B) renders
itself a quotient space, displaying the phenomenon of “instantaneous commu-
nication,” a feature serving as potential reference for quantum computing.

3 Summary

In this paper, we have settled the previously undetermined two parameters,
(EW/ER) and GB. Our geometry of M x B has contributed physical logic
to quantum mechanics, in particular, providing an energy interpretation to
probabilities; as a closing example, consider the fine structure constant,

e? e? e?
o = 477:;60 _ h47reo)\ _ 3 4meo (56)
C o,
o "V Emeasured/zﬂ.

= (the electrostatic potential energy between two electrons separated by a
distance of \) / (the energy EE;Laswed of the virtual photon needed to mediate
the two electrons divided by 27) = the constant «, or, Ei]easwed -\ = constant,

i.e., a uniform probability for any two electrons to interact across all space.

4 References

[1] J.B. Barbour, Time and complex numbers in canonical quan-
tum gravity, Phys. Rev. D 47 (1993), 5422-5429.

[2] J. Cheeger and G. Tian, Curvature and injectivity radius
estimates for Einstein 4-manifolds, J. Amer. Math. Soc., 19 (2006),
487-525.

[3] M.J. Esteban, M. Lewin and E. Sere, Variation methods in
relativistic quantum mechanics, Bull. Amer. Math. Soc., 45 No.
4 (2008), 535-593.

[4] R.P. Feynman, R.B. Leighton and M. Sands, The Feynman
Lectures on Physics, Addison-Wesley, Reading, 1963.



978 G. L. Light

[5] V.P. Frolov, M.A. Markov and V.F. Mukhanov, Black holes
as possible sources of closed and semiclosed worlds, Phys. Rev. D
A1 (1990), 383-394.

[6] V.G. Ivancevic and T.T. Ivancevic, Complex Dynamics - -
Advanced System Dynamics in Complex Variables, Springer, Dor-
drecht 2007.

[7] P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with
AdS/CFT, Phys. Rev. D 67 (2003), 124022-124037.

[8] G.L. Light, An introduction of a combined space-time man-
ifold, Appl. Math. Sci., 1 No. 27 (2007), 1341-1346.

9] G.L. Light, Energy inquiry, Can. J. Phys., 68 (1990), 242-
243.

[10] M.S. Longair, Theoretical Concepts in Physics, Cambridge
University Press, Cambridge, 1986.

[11] G. Maschler, Central Kéhler metrics, Trans. Amer. Math.
Soc., 355 (2003), 2161-2182.

[12] D. Tében, Parallel focal structure and singular Riemannian
foliations, Trans. Amer. Math. Soc., 358 (2006), 1677-1704.

Received: October, 2008



