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Abstract
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In particular, three classes of approximation procedures – expansions
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the moment generating function of the Dirichlet functional variance are
given.
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1 Introduction

In this paper we discuss the problem of approximating the laws of functionals
of a Dirichlet process Pα with parameter α, using their moment sequences,
here, moment-based approximation problem. In particular, we address our
analysis to the approximation of the law of the variance Vα =

∫
x2Pα(dx) −

(
∫

xPα(dx))2 but, of course, it could be carried over to other functionals for
which moments are known. By the conjugacy property of the Dirichlet process,
any distributional results regarding its functionals will concern both prior and
posterior analysis.

The (exact or approximated) distribution of the variance of a Dirichlet
process is a useful tool in nonparametric Bayesian inference. For example, we
make inference about the unknown variance of some characteristic in a qual-
ity control setting when the variability of the manufacturing process must be
kept under control. If we think that a parametric model is not appropriate for
the data, then the “unknown” distribution can be assumed to be a Dirichlet
random probability Pα. In this case, we could choose “P (Vα ≥ k|data) less
than some desirably low probability” as a checking rule of the homogeneity of
the manufacturing process.

According to the Bayesian nonparametric viewpoint, the choice of a Dirich-
let process is not restrictive at all. First of all, any random probability measure
can be approximated in distribution, with any precision, by a finite mixture Pm

of Dirichlet processes; see [11] and [38]. Therefore, since the law of the variance
of Pm is the mixture of the distributions of the variances of the components
in Pm, results about the law of the variance of a Dirichlet process can be con-
sidered as being quite general. Moreover, we should consider the analysis of
Vα as the first step towards further generalizations, since many new popular
random probability measures extend Dirichlet processes. See [20], and [34] for
recent reviews. In particular, our results can apply to mixtures of parametric
families with a Dirichlet process as mixing measure, first introduced by [30];
see the last section of this paper.

However, results about distributions of functionals of a Dirichlet process
Pα are often stated in terms of integral transforms (such as Laplace, Stieltjies
or Zolotarev) or as solutions of stochastic equations involving the base mea-
sure α of the process. See [8], [36], [37] and [24] as far as linear functionals
of Pα are concerned; on the other hand, very few results are known about the
variance functional ([7] and [16]). In any case, explicit expressions for the dis-
tribution functions or the densities of these functionals can be obtained in very
few situations. At the same time, integral transforms or solutions of stochas-
tic equations easily yield the moments of the functionals as functions of the
moments of the parameter α. Therefore, one can use the moments to obtain
information on these functionals to make inferences in a Bayesian nonpara-
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metric perspective. How do we use a finite string of moments to approximate
the underlying distribution or some of its features? This is a classical problem,
widely discussed in the literature. Of course, preliminary to the approxima-
tion problem, there is an identification issue; i.e., finding out conditions under
which the moments of a distribution exist and uniquely identify it. This latter
problem has found a complete answer in classical works; very good reviews
are, for instance, [42], [1] and [12]. The approximation problem, on the con-
trary, suffers an intrinsic difficulty, since, even for distributions identified by
moments, finite sequences of moments give relatively poor information on the
distribution itself. In other words, the class of all distributions having the
same first k moments, even when it reduces to a singleton as k goes to +∞,
is somewhat wide for each finite k; [45] argues about how informative is the
reduced moment problem. The situation is quite different if we are interested
only in tail probabilities. In fact classical results ([1] and [27]) show that ap-
proximations based on moments are precise enough when used to compute the
high quantiles of the distribution of interest. A sharp enough bound is avail-
able in this case: if H and M are distribution functions sharing the first 2k
moments, then |H(t) − M(t)| is bounded by the reciprocal of a polynomial of
order 2k in t, whose coefficients are functions of the moments. This kind of
approximation can be very useful in Bayesian hypotheses testing, where up-
per tail probabilities are needed, as in the manufacturing process homogeneity
problem mentioned above. Since the literature on the problem is extremely
huge and “ancient” and there exists a large number of approximation meth-
ods, we will only focus on those we believe are tailor-made for the functionals
of interest. On the other hand, any approximation method using moments is
numerically unstable; see, for instance, [23], [19] and [44] for a description of
numerical issues connected to moment approximation problems. Of course, in
a different perspective, one can use simulation methods to approximate the
distribution of functionals of Pα, when draws from α are available (see, for
instance, [21]). But this is beyond the scope of this paper.

In approximating a distribution using some of its moments, one aims at
using as many information on the underlying distribution as he can. For this
reason, as far as the identification issue is concerned, we give a sufficient con-
dition on α characterizing the existence of the moment generating function
of Vα. Second, since knowledge of the support of the distribution is useful to
drive towards the choice of the “best” approximation, then we give some new
contributions on the support of Vα. Further information on the distribution of
Vα, i.e. the boundedness or the smoothness of its density, can in principle be
obtained from the same moments, but such conditions are generally difficult
to verify, since an infinite number of inequalities must be checked.

The set-up of the paper is the following. In Section 2 some background on
moments is reviewed. Section 3 recalls general results on the Dirichlet process



982 I. Epifani, A. Guglielmi and E. Melilli

and its functionals and yields new contributions on the support of Vα, on the
existence of its moment generating function and on its asymptotic normality.
Sections 4, 5 and 6 discuss three different classes of approximation procedures,
by means of expansions in series of orthonormal polynomials (Section 4), max-
imum entropy (Section 5) and mixtures of known distributions (Section 6).
Section 7 shows some illustrative examples, through which a comparison of
the approximation methods is carried on. Some comments are given in Sec-
tion 8.

2 Background on moments

In this section we briefly recall notation and classical results related to the
moment problem, i.e. finding a probability whose moments are equal to a
given sequence of real numbers (μk)k≥1. If (μk)k≥1 is a sequence of moments,
there exists at least one solution of the moment problem; if this solution is
unique, the moment problem is determinate. A probability P is said uniquely
determined by its moments if all its moments exist and the moment problem is
determinate. Sufficient (but not generally necessary) conditions for the unique-
ness of P are the existence of the moment generating function of P on some
interval containing the origin or the classical Carleman’s criterion on (μk)k≥1.
Moment problems are usually classified into 3 categories according to the sup-
port of their solutions; the Hausdorff moment problem concerns distributions
with bounded support, whilst Stieltjies and Hamburger moment problems are
those corresponding to bounded from below and unbounded support, respec-
tively. An important result about the moment-based approximation problem
is the following:

Proposition 2.1 Suppose that a probability measure P on R is determined
by its moments μ1, μ2, . . . . Let (Pn)+∞

n=1 be a sequence of probability measures
on R having all moments νn

k =
∫

xkPn(dx) such that

lim
n→+∞

νn
k = μk, k = 1, 2, . . . .

Then Pn
w→ P .

For the proof see [3]. Hence, when approximating a probability measure P by
means of a distribution Pn whose moments coincide or converge for n → +∞
to those of P , then the approximating Pn converges weakly to the target P .
When the target distribution P is continuous (and this is the case for the law
of the variance or of the mean of a Dirichlet process), the convergence of the
associated distribution functions is uniform.

In principle, at least in the Markov problem, knowledge of all moments
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yields information on the associated density. Let Δ be the difference operator
Δ(μj) := μj+1 − μj, Δk its k-th power with Δ0μj := μj and

μn,j := (−1)n−j

(
n

j

)
Δn−j(μj), n = 0, 1, . . . , j = 0, 1, . . . , n. (1)

A necessary and sufficient condition to guarantee that the moment problem is
determinate and its unique solution P is absolutely continuous with an almost
everywhere bounded density f is

0 ≤ μn,j ≤ d

n + 1
for all n, j and some positive real number d; (2)

see Theorem 2 in [13], where an analogous condition ensuring boundedness of
f in Lp-norm is also stated (Theorem 3 and 4).

3 Some new results on Vα

Here we first review notation and results about Dirichlet process and its func-
tionals. Let P be the space of all probability measures on the Borel σ-field
B(R) on R, endowed with the Prohorov metric; in this way, P is a Polish space,
whose Borel σ-field we denote by P. Given a probability space (Ω,F , P), a
random probability measure P on R is any measurable function from (Ω,F)
into (P,P); let P (A; ω) denote the value of the probability measure P (ω) at
A in B(R). If α is a finite measure on B(R), with total mass α(R) = c > 0,
then a Dirichlet process with parameter α is a random probability measure
Pα such that, for any finite measurable partition (A1, . . . , An) of R with n ≥ 2
and α(Aj) > 0, j = 1, . . . , n, the distribution of (Pα(A1), . . . , Pα(An)) is
Dirichlet with parameter (α(A1), . . . , α(An)). If α(Aj) = 0 for some j, the
j-th coordinate of the random vector (Pα(A1), . . . , Pα(An)) is P-a.s. equal
to 0. Denote by α0 the probability measure defined by α0(A) = α(A)/c, A
in B(R). Given a Dirichlet process Pα, we can consider some of its func-
tionals, such as the mean Γα(ω) :=

∫
xPα(dx; ω) and the variance Vα(ω) :=∫

x2Pα(dx; ω) −
( ∫

xPα(dx; ω)
)2

. First of all, Γα and Vα are P-a.s. finite r.v.

on (Ω,F) if and only if the base measure α is such that∫
�

log(1 + |x|)α(dx) < +∞.

Moreover, if α is non-degenerate, Γα and Vα are absolutely continuous r.v.; in
what follows we shall denote by fVα and FVα a density and the distribution
function of Vα, respectively.
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The laws of Γα and Vα are strictly related themselves by means of the dis-
tributional equation provided in [16] that connects Vα to the squared difference
of two independent copies of the Dirichlet mean Γα. Indeed, if c ≤ 1/2, then

Vα
d
= B1Uα, where B1, Uα are independent r.v’s with B1 ∼beta(1, 1/2− c) and

, Uα = (X − Y )2/4 with X, Y independent copies of Γα. Moreover, if c > 1/2,

then B2Vα
d
= Uα, with B2, Vα independent r.v’s and B2 ∼beta(1, c − 1/2). As

far as the moments of Γα and Vα are concerned, if the 2k-th moment of α0

is finite, then Γα and Vα have finite 2k-th and k-th moment, respectively; in
particular, Γα and Vα admit all moments if α0 does. The moments of Γα and
Vα are

E(Γk
α) =

c

Γ(c + k)

k−1∑
i=0

(k − 1)!

i!
Γ(c + i)ξk−iE(Γi

α), k = 1, 2, . . . , (3)

where ξk :=
∫
�

xkα0(dx) (see, for example, [14], and

E(V n
α ) =

Γ(a + n)Γ(1
2
)

4nΓ(n + 1
2
)Γ(a)

2n∑
j=0

(
2n

j

)
(−1)jE(Γj

α)E(Γ2n−j
α )

=
Γ(a + n)Γ(1

2
)

Γ(n + 1
2
)Γ(a)

E(Un
α ) (4)

(see (11) in [7]).
We can verify that Vα is uniquely determined by its moments if α ◦ (x2)−1

is. In fact, we prove the following:

Theorem 3.1 Let Z be a r.v. with α0 distribution. The moment generating
function MVα of Vα exists if, and only if, the moment generating function MZ2

of Z2 exists.

Proof. We use the above-mentioned distributional relationship between
Vα and Uα to prove the statement. First, by the distributional equation,

lim supk→∞
[|E(V k

α )|/k!
] 1

k is finite if, and only if, lim supk→∞
[|E(Uk

α)|/k!
] 1

k is
finite. Hence MVα exists if, and only if, MUα exists. Second, let us prove
that Uα admits moment generating function if, and only if, Γ2

α does. Since Γα

and Γα + b admit exactly the same numbers of moments, there is no loss of
generality in assuming that Γα has median 0. Thus it is easy to verify that
P (Uα > t) ≥ P (Γ2

α > 4t) for all t > 0 and

E(Uk
α) = k

∫ ∞

0

tk−1P (Uα > t) dt ≥ k

2

∫ ∞

0

tk−1P (Γ2
α > 4t) dt =

1

2
E

((
Γα

2

)2k
)

.
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Hence

lim sup
k→∞

[ |E(Uk
α)|

k!

] 1
k

≥ lim sup
k→∞

[
|E((Γα

2

)2k)|
k!

] 1
k

,

so that the existence of MUα implies the existence of MΓ2
α
. Conversely, it is

sufficient to observe that E(etUα) ≤ E(e
t
2
(X2+Y 2)) = E2(e

t
2
Γ2

α) to derive the
existence of MUα from that of MΓ2

α
. As a third step, notice that

∫
x2Pα(dx) =

Vα +Γ2
α, and

∫
x2Pα(dx) has the same distribution of a Dirichlet mean Γβ with

parameter β = α ◦ (x2)−1 and MΓβ
exists if, and only if, Mβ = MZ2 exists as

proved in Lemma 2 in [16]. Hence, the existence of MZ2 imply the existence of
both MVα and MΓ2

α
and the “if part” of Theorem 3.1 is proved. Conversely, the

existence of MVα implies the existence of MΓ2
α

and hence that of
∫

x2Pα(dx),
which is equal to the sum Vα + Γ2

α, and therefore that of MZ2 . �
We now determine the support of Vα. We shall denote the support of a

random element X with law q equivalently by means of S(X) or S(q), and the
closure of the convex hull of the support of q by co(S(q)).

Lemma 3.2 If (x, y) belongs to the support S(X, Y ) of a random vector
(X, Y ), then (x2, y) ∈ S(X2, Y ).

Proof. Let (x, y) ∈ S(X, Y ), ε2 > 0, and 0 < ε1 < x2 s.t. η := min{x −√
x2 − ε1,

√
x2 + ε1 − x} > 0 (if x = 0, the proof is trivial). Thus

{|X2 − x2| < ε1, |Y − y| < ε2} =

{−
√

x2 + ε1 < X < −
√

x2 − ε1, |Y − y| < ε2} ∪
∪ {
√

x2 − ε1 < X <
√

x2 + ε1}, |Y − y| < ε2}
⊇ {
√

x2 − ε1 < X <
√

x2 + ε1, |Y − y| < ε2} ⊇ {|X − x| < η, |Y − y| < ε2},
so that P(|X2 − x2| < ε1, |Y − y| < ε2) ≥ P(|X − x| < η, |Y − y| < ε2) > 0,
since (x, y) ∈ S(X, Y ). �

Lemma 3.3 Let B, W be independent r.v.’s and suppose S(B) = [0, 1].
Then S(W ) ⊆ S(BW ).

Proof. Let w ∈ S(W ). Then, for all ε > 0 and 0 < η < ε we have

{w − ε < BW < w + ε} ⊇ {w − η < W < w + η,
w − ε

w − η
< B < 1}

and then

P(w − ε < BW < w + ε) ≥ P(w − η < W < w + η,
w − ε

w − η
< B ≤ 1) =

= P(w − η < W < w + η)P(
w − ε

w − η
< B ≤ 1) > 0. �
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Lemma 3.4 Suppose the parameter α of a Dirichlet process Pα has bounded
support S(α). If u, v belong to S(α), and 0 < θ < 1, then θ(1 − θ)(v − u)2

belongs to S(Vα).

Proof. Let u, v be in S(α), 0 < θ < 1 and μ the discrete measure defined by
μ(dz) = θδu(dz) + (1− θ)δv(dz). Thus μ belongs to the support of Pα, S(Pα),
i.e.

Dα

{
p :

∣∣∣∣
∫

fi(x) p(dx) −
∫

fi(x) μ(dx)

∣∣∣∣ < ε, i = 1, . . . , k

}
> 0, (5)

where ε is positive, k = 1, 2, . . . and fi’s are bounded, continuous functions on
co(S(α)). In particular, by applying Equation (5) to f1(x) = x and f2(x) = x2

for any ε > 0, one has

Dα

{
p :

∣∣∣∣
∫

x p(dx) − (uθ + v(1 − θ))

∣∣∣∣ < ε,∣∣∣∣
∫

x2 p(dx) − (u2θ + v2(1 − θ))

∣∣∣∣ < ε,

}
> 0. (6)

It follows from (6) and Lemma 3.2 that

Dα

{
p :

∣∣∣∣(
∫

x p(dx))2 − (uθ + v(1 − θ))2

∣∣∣∣ < ε,∣∣∣∣
∫

x2 p(dx) − (u2θ + v2(1 − θ))

∣∣∣∣ < ε

}
> 0 (7)

∀ε > 0. Finally, Equation (7) and the definition of Vα as Vα =
∫

x2 Pα(dx) −
(
∫

x Pα(dx))2 yield u2θ+v2(1−θ)−(uθ+v(1−θ))2 = θ(1−θ)(v−u)2 ∈ S(Vα).�

Theorem 3.5 If co(S(α)) is a bounded interval [σ, τ ], then

S(Vα) =

[
0,

(τ − σ)2

4

]
. (8)

Otherwise, S(Vα) = [0,∞).

Proof. First, we suppose α has a bounded support. Secondly we consider
the case when co(S(α)) = [0,∞). This latter is equivalent to assume more
generally that the support of α is unbounded on one side only, since the law
of Vα is α-shift and α-reflection invariant. Indeed, if the measure α− is defined
via α−(B) := α(−B) and αc(B) := α(B − c), for any real constant c and
B ∈ B(R), then Vα− , Vαc and Vα have the same distribution; Sethuraman’s
representation of Pα ([41]) can be useful in proving it. Finally we tackle the
case co(S(α)) = R.
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Step 1. If co(S(α)) is [σ, τ ], then by Lemma 3.4 we obtain

[
0,

(τ − σ)2

4

]
⊆

S(Vα). Conversely, to prove that
[
0, (τ − σ)2/4

] ⊇ S(Vα), we use the distribu-
tional equation that connects Uα to Vα. First of all, the internality propriety
of the mean Γα (P(σ ≤ Γα ≤ τ) = 1) and (6) yield that S(Γα) = [σ, τ ] and
therefore S(Uα) = [0, (τ − σ)2/4]. Moreover, if a ≤ 1/2, then

P

(
Vα >

(τ − σ)2

4

)
= P

(
B1Uα >

(τ − σ)2

4

)
≤ P

(
Uα >

(τ − σ)2

4

)
= 0,

i.e. S(Vα) = [0, (τ − σ)2/4]. On the other hand, if a > 1/2, then S(B2Vα) =
S(Uα). So we can apply Lemma 3.3 above to obtain S(Vα) ⊆ S(B2Vα). Last
inclusion completes the proof of (8).

Step 2. Suppose now co(S(α)) = [0,∞). Here we need a “truncation
procedure” first appeared in [8]. Let A(x) := α((∞, x]) be the distribution
function corresponding to α, let Am be the distribution function defined as
follows

Am(x) =

{
A(x) x < m

c x ≥ m
(9)

and denote by αm the finite measure corresponding to Am. Of course co(S(αm)) =
[0, m] and, as observed in [16], the sequence of the random variances (Vm)m≥1,
with Vm := Vαm , converges weakly to variance Vα. Moreover, Vα is an abso-
lutely continuous r.v. and S(Vm) = [0, m2/4] by (8). We will prove by contra-
diction that there does not exist any finite K > 0 such that S(Vα) = [0, K].
Suppose that such a K exists, i.e. P(Vα > K) = 0. By the weak convergence
of (Vm)m to the absolutely continuous r.v. Vα , it follows that

∀ε > 0 ∃M1 such that 0 < 1 − P(Vm ≤ K) < ε, ∀m > M1.

On the other hand, since S(Vm) = [0, m2/4], then there exists M2 such that K
is an interior point of the support of Vm for all m > M2 and hence

P(Vm ≤ K) < 1 − 2ε, ∀m > M2 and for some ε > 0.

So, we have for some ε > 0 and for all m > max{M1, M2}
1 − ε < P(Vm ≤ K) < 1 − 2ε,

which is clearly impossible.

Step 3. Finally, let co(S(α)) be R and consider the measure αm defined
via the truncation procedure (9) and the corresponding Dirichlet variance Vm.
In this case, co(S(αm)) = (−∞, m], so that S(Vm) = [0,∞) (see Step 2) and,
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as before, Vm weakly converges to Vα. Thus, arguing as in the Step 2, we
obtain the result. �

We conclude this section with a proposition stating the asymptotic normal-
ity of Vα. A similar result concerning linear functionals of Pα has been given
by [22].

Proposition 3.6 Let α0 be a probability measure on (R,B(R)) such that
ξ4 < +∞. Then, for α = cα0,

√
c(Vα − V0)

d−→ N (0, σ2
0), c → +∞,

where σ2
0 = ξ4 − 4ξ3ξ1 + 4ξ2ξ

2
1 − ξ2

2 − 4ξ4
1 > 0.

Proof. Let Λα :=
∫

x2Pα(dx) be the random second moment of Pα and Gc

a gamma(c, 1) variable independent of Γα and Λα. Thus the characteristic
function of (GcΓα, GcΛα, Gc) is

E
(
exp(i(uGcΓα + vGcΛα + zGc))

)
= exp

(
− ic

∫
log (1 + ut + vt2 + z)α0(dt)

)
,

from which it follows that (GcΓα, GcΛα, Gc) is infinitely divisible. Then, an
application of the central limit theorem and the delta method gives

√
c (Γα − ξ1, Λα − ξ2)

d−→ N2(0, Σ), c → +∞, (10)

where N2(0, Σ) denotes the bivariate normal distribution with 0-mean vector

and covariance matrix Σ =

(
ξ2 − ξ2

1 ξ3 − ξ1ξ2

ξ3 − ξ1ξ2 ξ4 − ξ2
2

)
. On the other hand, if

h(x, y) = y − x2, then its gradient, evaluated in (ξ1, ξ2), is ∇T = (−2ξ1, ξ2), so
that (10) and an application of the delta method gives

√
c (h(Γα, Λα) − h(ξ1, ξ2))

d−→ h(W ), c → +∞,

where W is a N2(0, Σ) random vector and h(W ) is distributed according to
N (0,∇TΣ∇). �

4 Moment-based approximations of L(Vα): ex-

pansion in orthonormal polynomials

As proved in Section 3, the support of Vα can only be or a bounded interval,
say [0, δ], or the interval [0, +∞). We consider the case of bounded support
and assume, without loss of generality, δ = 1. Of course, in this case all
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the moments of Vα exist and uniquely identify its distribution. For a, b >
−1, let us consider the function wa,b(x) = xb(1 − x)a and denote by νa,b the
(finite) measure with density wa,b(x), w.r.t. Lebesgue measure on (0, 1). The
distribution of Vα is absolutely continuous w.r.t. νa,b with density ga,b(x) =
fVα(x)/wa,b(x).

We assume that there exist a, b > −1 for which the function ga,b belongs
to L2(νa,b), i.e.∫

(0,1)

ga,b(x)2νa,b(dx) =

∫ 1

0

fVα(x)2 1

wa,b(x)
dx < +∞. (11)

Let (Jn(x; a, b))n≥0 be the sequence of (normalized) Jacobi polynomial on (0, 1)
with parameters a, b (see, for instance, [43] for their definition). As it is well
known, (Jn(x; a, b))n≥0 is an orthonormal complete system of polynomials w.r.t.
the weight function wa,b on (0, 1). For instance, the first few elements of the
sequence are:

J0(x; a, b) =

√
1

B(b + 1, a + 1)
, J1(x; a, b) =

√
a + b + 2

B(b + 2, a + 2)

(
x − b + 1

a + b + 2

)
,

J2(x; a, b) =

√
(a + b + 3)(a + b + 4)

2B(a + 3, b + 3)

(
x2 − 2(b + 2)

a + b + 4
x +

(b + 1)(b + 2)

(a + b + 3)(a + b + 4)

)
.

Well known results on Hilbert spaces give the following formal representation
of ga,b:

ga,b(x) ∼
+∞∑
k=0

akJk(x; a, b) (12)

that means

lim
n→+∞

∫
[0,1]

{
ga,b(x) −

n∑
k=0

akJk(x; a, b)

}2

νa,b(dx) =

= lim
n→+∞

∫ 1

0

{
fVα(x) − wa,b(x)

n∑
k=0

akJk(x; a, b)

}2
1

wa,b(x)
dx = 0 ,

where, for each non-negative integer k,

ak =

∫
(0,1)

ga,b(x)Jk(x; a, b)νa,b(dx) =

∫ 1

0

fVα(x)Jk(x; a, b)dx = E(Jk(Vα; a, b)) .

Moreover, observe that if ν∗
a,b is the measure with density w−1

a,b w.r.t. the

Lebesgue measure on (0, 1) and a, b < 1 so that
∫ 1

0
w−1

a,b(x)dx < +∞ (i.e. ν∗
a,b
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is a finite measure), then fVα(x) itself can be approximated, in L2(ν∗
a,b), by the

finite sum wa,b(x)
∑n

k=0 akJk(x; a, b). Of course, this does not imply in general
the uniform or even pointwise convergence of the series wa,b(x)

∑+∞
k=0 akJk(x; a, b)

to fVα(x); some additional conditions are needed for this. For instance, a suf-
ficient (but not necessary) condition for uniform convergence of the series is
given by the following proposition, whose proof can be found in [17].

Proposition 4.1 If fVα is continuous and has a piecewise continuous deriva-
tive in (0, 1), then the series wa,b(x)

∑+∞
k=0 akJk(x; a, b), a, b > −1, converges

uniformly to fVα(x) in [ε, 1 − ε], for each positive ε.

Other sufficient conditions require the function fVα belonging to a Lipschitz
class of some order; see [35].

Remark 4.2 It follows from (11) that, for any νa,b-integrable function h,∫ 1

0

h(x)fVα(x)dx =

∫
(0,1)

h(x)ga,b(x)νa,b(dx)

=

+∞∑
k=0

ak

∫
(0,1)

Jk(x; a, b)h(x)νa,b(dx) =

+∞∑
k=0

ak

∫ 1

0

Jk(x; a, b)h(x)wa,b(x)dx .

In particular, for h(x) = I(0,t)(x), t ∈ (0, 1), if Jk(x; a, b) =
∑k

j=0 bk,jx
j , we

have

FVα(t) =

∫ t

0

fVα(x)dx =

+∞∑
k=0

ak

∫ t

0

Jk(x; a, b)xb(1 − x)adx

=
+∞∑
k=0

ak

∫ t

0

k∑
j=0

bk,jx
jxb(1 − x)adx =

+∞∑
k=0

ak

k∑
j=0

bk,jBt(b + j + 1, a + 1) ,

Bt(p, q) denoting the incomplete beta function with parameters p and q. More-
over, the convergence of the series is uniform in (0, 1), as shown in [40], Sec-
tion 7, Theorem 32. Hence, the distribution function of Vα can be uniformly
approximated by the finite sum

n∑
k=0

ak

k∑
j=0

bk,jBt(b + j + 1, a + 1) ,

whose coefficients depends only upon the moments of Vα.

Remark 4.3 We emphasize that approximations based on expansions in
orthonormal polynomials are not necessarily densities or distribution functions
themselves (i.e., approximations of densities may assume negative values and
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approximations of distribution functions can be decreasing in some intervals).
On the other hand, when the convergence of the expansion is uniform, such
approximations are generally very good.

Remark 4.4 Similar approximations of fVα and FVα can be built when
the support of Vα is [0, +∞), using orthonormal Laguerre polynomials La

n(x)
(e.g., see [40]) instead of the Jacobi ones, under the assumption that, for some
a > −1,

∫ +∞
0

f 2
Vα

(x)exx−adx < +∞.

5 Moment-based approximations of L(Vα): max-

imum entropy method

As in the previous section, we introduce notation and definitions when the
support of Vα is [0, 1]. The Boltzmann-Shannon entropy of fVα is defined as

H(fVα) := −
∫ 1

0

fVα(x) log fVα(x)dx = −
∫

(0,1)∩{x:fVα (x)>0}
fVα(x) log fVα(x)dx,

and, according to notation in [9], −H(fVα) is called I-divergence of the law of
Vα (w.r.t. the Lebesgue measure on [0, 1]). Observe that H(f) ≤ 0, for any
density f , since x log x ≥ x − 1 for any x ≥ 0. A function gn is the maximum
entropy estimate of fVα, based on its first n moments, if

max
q∈Qn

H(q) = H(gn), (13)

where Qn := {q : [0, 1] → R
+ :

∫ 1

0

xjq(x)dx = μj, j = 0, 1, . . . , n}.

Since the support of Vα is bounded, Theorem 3.3 in [9] ensures that, if there
exists a density q(x) with first n moments equal to μ1, . . . , μn, such that the
I-divergence −H(q) is finite, then there exists a unique solution gn of (13).
Here we cannot check directly that H(fVα) > −∞ since the analytic expression
of fVα is unknown in general. However, if exp(

∑n
i=0 λix

i) belongs to Qn, then
it is a density and its entropy is finite. Since (μj)j≥0 is an infinite sequence of
moments of a density on [0, 1], then the system of equations∫ 1

0

xj exp(

n∑
i=0

λix
i)dx = μj , j = 0, 1, . . . , n (14)

has a unique solution (λ∗
0, λ

∗
1, . . . , λ∗

n) in R
n+1 (see [31], Theorem 1, or [4],

Lemma 1). Summing up, the maximum entropy estimate of fVα exists, is
unique and its expression is

gn(x) = exp
( n∑

i=0

λ∗
i x

i
)
, x ∈ [0, 1]. (15)
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It can be proved that H(gn) ↓ H(fVα) (finite or infinite) as n → +∞, i.e.
gn converges in entropy to fVα as n grows to infinity. On the other hand, if
H(fVα) > −∞, then

∫ 1

0
|gn(x)−fVα(x)|dx → 0 as n → +∞, i.e. gn converges in

L1 to fVα ; this is equivalent to convergence in total variation distance, yielding
supx |Gn(x)− FVα(x)| → 0 for n → +∞, where Gn represents the distribution
function of the density gn; see [9] and [5]. Convergence of gn to the exact
density in L∞ or Lp, p ≥ 2, as well as reasonable error bounds, holds under
more “smoothness” assumptions on fVα , but they will not be considered here,
since they cannot be granted in general.

When the support of Vα is S(Vα) = [0, +∞), the existence of the maximum
entropy estimate of Vα is not guaranteed, depending on the geometry of the
set Λ := {(λ1, . . . , λn) ∈ R

n :
∫

S(Vα)
exp(

∑n
i=1 λix

i)dx < +∞}. In general,

if Λ is open in R
n, then the maximum entropy estimate of Vα exists and its

expression is as in (15); see Corollaire 1 in [10]. However it is straightforward to
verify that Λ is not open when S(Vα) = [0, +∞), and other weaker conditions,
involving bounds on moments, must be checked; see [25], Section 9.

6 Moment-based approximations of L(Vα): mix-

tures of distributions

In this section we consider a few methods for approximating L(Vα) by means
of a (finite) mixture of known distributions. Whilst methods discussed in the
previous sections aim at approximating the density of Vα, here a direct approx-
imation of its distribution function is looked for. We begin with two classical
approximation procedures valid when Vα has bounded support which, as usual,
without loss of generality, we assume equal to [0, 1]. The approximating distri-
butions will turn out to be mixtures of Dirac measures, i.e. discrete probability
distributions.

The first one is based on properties of Bernstein polynomials and aims at
approximate L(Vα) through the distribution

Pn =
n∑

j=0

(
n

j

)
(−1)n−jΔn−j(μj)δj/n =

n∑
j=0

μn,jδj/n, (16)

where μn,j is defined in (1). Observe that Pn has fixed support points {j/n}
(i.e., not depending on the moments of Vα) and associated masses {μn,j} de-
termined through μ1, . . . , μn. It is simple to prove that, for each k ≥ 1,∫ 1

0
xkPn(dx) → μk as n → +∞ (see, for instance, [18]); by Proposition 2.1,

the weak convergence of Pn to L(Vα) follows and the uniform convergence of
the associated distribution functions holds true too. The main drawback of
this approximation scheme is its very low rate of convergence; [2] gives more
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details on the convergence of (Pn).
The second discrete approximation we briefly mention is based on well-

known Chebyshev polynomials and, as before, is valid for bounded support
distributions only. The procedure is very simple: for each n ≥ 1, determine n
points θ1, . . . , θn in [0, 1] and n nonnegative weights π1, . . . , πn with

∑
j πj = 1

such that probability measure

Pn =
n∑

j=1

πjδθj
(17)

has μ1, μ2, . . . , μ2n−1 as first 2n − 1 moments. Since μ1, μ2, . . . , μ2n−1 is part
of an infinite moment sequence, then a solution exists; moreover it is unique.
The support points θ1, . . . , θn are exactly the roots of the polynomial (in t)

det

⎛
⎜⎜⎜⎜⎜⎝

1 μ1 μ2 · · · μn 1
μ1 μ2 μ3 · · · μn+1 t
μ2 μ3 μ4 · · · μn+2 t2

...
...

...
...

...
...

μn μn+1 μn+2 · · · μ2n tn

⎞
⎟⎟⎟⎟⎟⎠ = 0 , (18)

while the weights π1, . . . , πn are obtained as the solution of the simple linear
system ⎛

⎜⎜⎜⎝
1 1 ... 1
θ1 θ2 ... θn
...

...
...

...
θn−1
1 θn−1

2 ... θn−1
n

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

π1

π2
...

πp

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
μ1
...

μn−1

⎞
⎟⎟⎟⎠ , (19)

whose coefficients matrix is a Vandermonde (hence nonsingular) matrix. A de-
tailed discussion of this method can be found in [6]. Unfortunately, the relation
between the moments μ1, μ2, . . . , μ2n−1 and the solution θ1, . . . , θn, π1, . . . , πn

is extremely unstable, so the method is severely ill-conditioned.
According to the next technique, essentially due to Lindsay ([26], [28] and

[29]), the mixture components are parametric distributions having specific fea-
tures, making the approximation procedure particularly easy to implement.
Let us consider a parametric family of distributions {Fθ, θ ∈ Θ} on (0, +∞)
and, for each positive integer p, denote by Qp a probability measure on Θ
with p-point support, i.e. Qp =

∑p
j=1 πjδθj

. The aim is to choose the weights
π1, . . . , πp and the support points θ1, . . . , θp so that the (finite) mixture

FQp =

∫
Θ

FθQp(dθ) =

p∑
j=1

πjFθj
(20)
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has the same first 2p−1 moments as Vα. This problem, requiring the solution of
a system of 2p−1 equations on the 2p−1 (free) unknown π1, . . . , πp−1, θ1, . . . , θp,
is generally very complex, both theoretically since existence and uniqueness of
the solution are by no means guaranteed, and computationally since the equa-
tions may be highly non-linear). Lindsay and coauthors suggest considering
particular parametric families {F λ

θ , θ ∈ Θ, λ ∈ Λ}, having an additional non-
negative parameter λ, in order to make simpler the solution of the system.
The proposed classes of distributions arise as generalizations of the quadratic
variance exponential families, introduced by [32], [33], and are characterized
by the existence, for each k = 1, 2, . . . , of a polynomial ξλ

k (x) =
∑k

i=0 aλ
k,ix

i of
degree k, possibly depending on λ, for which∫ +∞

0

ξλ
k (x)dF λ

θ (x) = θk, θ ∈ Θ. (21)

By integrating both sides of (21) with respect to Qp one obtains

∫ +∞

0

ξλ
k (x)dF λ

Qp
(x) =

∫
Θ

θkQp(dθ),

which yields, by imposing equality of the first 2p moments of FQp and FVα

(now the free parameters are 2p, i.e. θ1, . . . , θp, π1, . . . , πp−1, λ):

k∑
i=0

aλ
k,iμi =

p∑
j=1

πjθ
k
j , k = 1, 2, . . . , 2p. (22)

Observe that systems (19) and (22) formally differ only by the constant terms
(the moment vector in the former and a linear function of it in the latter).
Hence, the original (and generally complex) approximation problem has been
transformed into the following: finding a distribution Qp on Θ whose support
has exactly p points and whose first 2p moments are given. In other words,
the moment constraints on the mixture FQp have been carried over to the
mixing measure Qp, greatly simplifying the problem. Indeed the existence of a
solution Qp can be proved under mild assumptions and the solution itself can
be (numerically) determined. As a first step, one needs to choose λ such that
a solution of (22) does exist; that is, a value of λ has to be determined for
which the 2p quantities in the left hand-sides of Equations (22) are the first
2p moments of a distribution on Θ having p points of support. As proved in
[29] (Theorem 3.1 and Proposition 3.2) using moment matrices theory, such
a λ exists and it is unique, under weak conditions on the family {F λ

θ , θ ∈
Θ, λ ∈ Λ}. Once the value of λ guaranteeing the existence of the solution
has been determined, (22) can be numerically solved. In particular, choosing
gamma(1/λ, 1/(λθ)) as F λ

θ (so that the coefficient of variation is
√

λ), the
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approximating FQp turns out to be a mixture of gamma distributions, well
tailored to approximate a positive support distribution as the variance law
FVα . If we assume

ξλ
k (x) =

k∑
i=0

aλ
k,ix

i =
xk

(1 + λ)(1 + 2λ) . . . (1 + [k − 1]λ)
,

(22) yields

νλ
k :=

μk

(1 + λ)(1 + 2λ) · · · (1 + (k − 1)λ)
=

p∑
j=1

πjθ
k
j , k = 1, 2, . . . , 2p. (23)

As mentioned above, the aim is to determine a λ > 0 so that (23) has solution,
that is a λ > 0 such that there exists a probability measure on Θ = (0, +∞),
with a p-point support, having νλ

1 , νλ
2 , · · · νλ

2p as first 2p moments. Classical
moment results (see, for instance, [26], Theorem 2A, p. 726) establish that
{νλ

k , k = 1, 2, . . . , 2p} are the first 2p moments of a distribution on (0, +∞)
with a p-point support if, and only if, the matrix

Mλ
k =

⎛
⎜⎜⎜⎜⎜⎝

1 νλ
1 νλ

2 · · · νλ
k

νλ
1 νλ

2 νλ
3 · · · νλ

k+1

νλ
2 νλ

3 νλ
4 · · · νλ

k+2
...

...
...

...
...

νλ
k νλ

k+1 νλ
k+2 · · · νλ

2k

⎞
⎟⎟⎟⎟⎟⎠ (24)

is positive definite for k = 1, 2, . . . , p − 1 and singular for k = p. In [29] the
authors prove that if λ is the smallest positive root λ∗ of equation det(Mλ

p ) = 0,
these conditions are satisfied, and (23) is solvable. Next step consists in the
explicit resolution of system (23), i.e. finding the p support points θ1, θ2, . . . , θp

and the p − 1 weights π1, π2, . . . , πp−1. Of course, since Lindsay’s FQp shares
its first 2p moments with FVα, it converges uniformly to the latter for p → +∞
by Proposition 2.1.

7 Numerical examples and comparisons

In this section, three different moment-based approximation procedures (ex-
pansions in orthonormal polynomials, maximum entropy estimates and Lind-
say’s gamma-mixtures) are compared by some examples.
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Example 7.1 We assume c = 1 and α0 = beta(1/2, 1/2), so that the exact
density of Vα (see [7], Example 3.5(α)) is

fVα(v) =
32

π

∫ 1

4v

x−1/2(1 − x)1/2dx =

=
32

π

(
arctan(

√
1 − 4v

4v
) −
√

4v(1 − 4v)

)
, v ∈ [0, 1/4].

The density fVα is bounded and continuous on [0, 0.25] (this implies fVα ∈
L2([0, 1], dx)) and its derivative f ′

Vα
is continuous on (0, 0.25). Moreover, all

the moments of Vα exist and

μn = E(V n
α ) =

1

4n(n + 1)

B(n + 3
2
, 3

2
)

B(3
2
, 3

2
)

=
1

4n(n + 1)

4Γ(n + 3
2
)√

π(n + 2)!
, n = 0, 1, . . . .

We decided to use the first 12 moments μ1, . . . , μ12 to compare the proce-
dures illustrated in this paper. First, we approximate the law of Vα via ex-
pansion in Jacobi polynomials {Jk(·; 0, 0)}. In this case, by Proposition 4.1,
the convergence of

∑+∞
0 akJk(·; 0, 0) is also uniform in [ε, 1/4 − ε] for any

ε > 0. Actually we approximate the density of Y := 4Vα, in order to con-
sider the interval [0, 1] as support, and finally we transform back the approx-
imating density

∑12
0 akJk(·; 0, 0), ak = E(Jk(Y ; 0, 0)) (we use the same no-

tation for the approximating density on [0, 0.25] or on [0, 1]). In this case,
the function

∑12
0 akJk(·; 0, 0) is a density with the same first 12 moments

as Y and the two functions intersect at 13 points. Moreover, the L2-error
is ‖fY −∑12

k=0 akJk(; 0, 0)‖2 = 0.5340 × 10−2. If we represent Jk(x; 0, 0) as

Jk(x; 0, 0) =
∑k

j=0 bk,jx
j , then the distribution function FY will be uniformly

approximated by

12∑
0

ak

k∑
j=0

bk,jBt(j + 1, 1) =
12∑
0

ak

k∑
j=0

bk,j
tj

j + 1
;

the error in the uniform metric between the two distribution functions (both
transformed back to have [0, 0.25] support) is supt |FVα(t) −∑12

0 ak

∑k
j=0 bk,j

Bt(j + 1, 1)| = 0.1802 × 10−3. The maximum entropy estimate g12(v) of
fVα (which has finite entropy H(fVα) = −1.8073), using the first 12 mo-
ments as before, yields supt |FVα(t) − G12(t)| = 0.6022 × 10−3. The plots
of fVα,

∑12
0 akJk(·; 0, 0) and g12 are displayed in Figure 1(a); they look in-

distinguishable, even if, as you can see if you zoom in on (see Figure 1(b)),
they present some differences at least in the monotonicity. In any case, Fig-
ure 1, as well as the plots of corresponding distribution functions, shows a very
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good approximation via Jacobi polynomials and maximum entropy methods.
Finally, following Lindsay, we computed a mixture of 6 gamma distributions
that matches μ1, . . . , μ12, with distribution function FQ6(v) =

∑6
j=1 πjFνj ,λ(v).

The 6-component mixture has well-separated modes, as you can see from Fig-
ure 2(a), where FQ6 climbs and wriggle on FV . The error in the uniform metric
is supv |FVα(v)− FQ6(v)| = 0.9885× 10−1, but it greatly decreases in the right
tail of FVα (see Figure 2(b)).

Example 7.2 Let c = 1, α0 = 1
2
δ0 + 1

2
beta(1/2, 1/2), so that, by (3)-(4),

μn = E((4Vα)n) =
(Γ(n + 1/2)

Γ(1/2)

)
/
(Γ(n + 2)

Γ(2)

)
, n = 0, 1, 2, . . . ;

since the moments uniquely identify the law of Y = 4Vα, it is easy to see

that Y
d
= Z1/Z2, where Z1 and Z2 are independent, Z1 ∼ gamma(1/2, 1),

Z2 ∼ gamma(2, 1), yielding Y ∼ beta(1/2, 3/2), i.e.,

fVα(v) =
4

π

√
1 − 4v

v
, v ∈ (0,

1

4
).

Of course, this density has an asymptote in 0, and it is continuous, together
with its first derivative f ′

Vα
, in (0, 0.25). We used the first 6 moments μ1, . . . , μ6

to compare the methods. Jacobi polynomials {Jk(·; 0,−1
2
)} were considered,

since
∫ 1

0
(fY (x))2ν∗

0,−1/2(dx) =
∫ 1

0
(fY (x))2

√
xdx < +∞, so that the conver-

gence of x−1/2
∑+∞

0 akJk(x; 0,−1/2) is uniform in [ε, 1− ε] for any ε > 0. The
L2(ν

∗
0,−1/2)-error is ‖fY (x)−∑6

0 akJk(x; 0,−1/2)‖L2(ν∗
0,−1/2

) = 0.246674× 10−2,

while the error in the uniform metric is supv |FVα(v) −∑6
0 ak

∑k
j=0 bk,jBt(j +

1
2
, 1)| = 0.1596×10−3. As in Example 7.1, plots of the Jacobi polynomial den-

sity (not included here) show a very good approximation of the exact distri-
bution. On the other hand, the maximum entropy estimate g6(v) of fVα , using
the first 6 moments as before, do not show the same very good behaviour. In
fact, supt |FVα(t) − G6(t)| = 0.4634 × 10−1. Figure 3(a) displays the plot of
the error between FVα and G6. The maximum entropy approximation slightly
improves considering 12 moments, instead of 6, as supt |FVα(t) − G12(t)| =
0.2839 × 10−1 shows. In this case, since H(g6) − H(fVα) = 0.5387 × 10−1,
while H(g12) − H(fVα) = 0.3335 × 10−1, the convergence of gn to fVα in en-
tropy seems very slow, at least comparing to Example 7.1. The 3-gamma
mixture FQ3(v) =

∑3
j=1 πjFνj ,λ(v), matching the first 6 moments of Vα, is

a poorer approximation, in this case. The error in the uniform metric is
supv |FVα(v) − FQ3(v)| = 0.1784; see Figure 3(b) for a plot of FV and FQ3.

Example 7.3 Given c > 0, we choose α0 on R such that Γα ∼ N (0, 1); the
existence of such an α0 is a special case of the inversion of the Markov transform



998 I. Epifani, A. Guglielmi and E. Melilli

(see [39] for details) and can be guaranteed for any c > 0 as showed in [15].
In this case, Vα ∼gamma(c, 1). Of course, Laguerre polynomial expansion
and Lindsay’s method are expected to perform very well in this case, since
approximating distributions are gamma mixtures. In fact, the expansion in
Laguerre polynomials La

n(x), with a = c − 1, is exact: a0 = E(Lc−1
0 (Vα)) >

0, ak = E(Lc−1
k (Vα)) = 0 for any k ≥ 1. If we fix a different parameter

a (for instance, a = −0.5 with c = 3), and assume the first 10 moments,
the approximation is still good: supv |FVα(v) − ∫ ∑10

0 akL
−0.5
k (·)| = 0.2293 ×

10−3. A very good performance is achieved by Lindsay’s 5-gamma mixture:
supv |FVα(v)−L10(v)| = 0.5204×10−4, while the maximum entropy distribution
function G10 does not behave so well, since supv |FVα(v) − G10(v)| = 0.1164 ×
10−1.

Example 7.4 Let us consider the dataset of n = 101 stress-rupture life-
times of Kevlar strands, x1, . . . , xn, extracted from the book by Andrews and
Herzberg, Table 29.1, also available via StatLib at CMU. We approximate the
posterior distribution of the unknown Vα when a priori the random probabil-
ity measure is a Dirichlet process with a negative exponential distribution of
parameter 1 (E(1)) as α0 and prior total mass equal to 1. By the conjugacy
property of the Dirichlet process, the posterior distribution of the variance,
given x1, . . . , xn, coincides with the law of Vα with α = E(1)+

∑101
1 δxi

. Hence
c = 102 and the support of Vα is [0, +∞). We approximate L(Vα) using 8
moments.

We do not have an explicit expression of the exact distribution of Vα, but we
are able to simulate from a Markov chain with L(Vα) as invariant distribution;
therefore we compare the different approximations of the previous sections
with the empirical distribution function Femp from the simulation procedure.
First of all, since the total mass c is relatively large, the normal limit law dis-
cussed in Section 3 holds. In particular, L(Vα) � N (1.238, 0.376). Secondly,
we compute a Laguerre polynomial approximation of the density, for different
values of the parameter a, but all of them turn out to be negative in some
subintervals (close to E(Vα)). Third, the maximum entropy estimate g8, which
is unimodal and not too asymmetric, yields a distribution function which is
not a good approximation of the empirical distribution function Femp at all.
On the other hand, the 4-gamma mixture FQ4(v) behaves well, with an error
in the uniform metric (w.r.t. Femp) equal to 0.1571626 × 10−1, which reduces
to 0.7084339 × 10−2 for v > E(Vα). Figure 4 displays a plot of Femp and FQ4,
showing a very good behaviour of the latter.



Moment-based approximations of the Dirichlet variance 999

8 Concluding remarks

Summing up, as already pointed out, knowledge of α yields information on the
support of Vα, as well as on its moment sequence (μn)n, but generally we have
no clue on the smoothness of fVα. However the examples show that further
information on L(Vα) can help selecting the “best” approximation procedure.
For instance, expansion in orthonormal polynomials works well if fVα/wa,b sat-
isfies the L2([0, 1], νa,b)-boundedness condition (11); the same when the support
of Vα is [0, +∞). This condition can in principle be checked via the knowledge
of (μn)n, but an infinite number of inequalities should be verified. However, if
fVα is L2(ν∗

a,b)-bounded for some a, b < 1, approximating functions based on
finite expansions in orthonormal polynomials can behave very well, provided
they are densities, i.e. if they are nonnegative. On the other hand, maximum
entropy estimates might not exist when the support of Vα is [0, +∞); moreover,
the solution of (14) is numerically unstable, so that a very accurate coding of
the algorithm must be implemented. Finally, Lindsay’s gamma-mixtures sug-
gest an “automatic” approximation method for FVα that really works very well
when the support of Vα is unbounded and no other information is available,
except for the moment sequence. Besides, Lindsay’s approximating distribu-
tions require the computation of a sum of a number of terms smaller than the
other two methods considered here.

Note that our approximation results apply also to the variance of a Dirich-
let mixture of location-invariant densities, f(t) =

∫
�

g(t−x)Pα(dx), where g is
a density with finite second moment. Popular choices for g are the normal den-
sity with x-mean and known variance and the exponential distribution shifted
by x. The model can be described as follows:

• the conditional density of an observation T , given X, is g( · − X);

• the conditional distribution of X, given Pα, is Pα;

• Pα is a Dirichlet process on R.

The random variance Vf of f can be represented as Vf = Vα + σ2
g , being σ2

g

the variance of g. Hence, the prior distribution of Vf is that of Vα shifted by
σ2

g . Having observed a sample T1, . . . , Tn from f , the posterior distribution of
Vf is a mixture of laws of Dirichlet random variances Vα+

�n
1 δxi

, with mixing
measure equal to the posterior distribution of X1, . . . , Xn, given T1 = t1, . . . ,
Tn = tn; we refer to [30] for more details.
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Figure 1. Comparison between fVα (green) and two approximating densities using the first
12 moments in Example 7.1: the Jacobi polynomial

∑12
0 akJk(·; 0, 0) (red) and the maximum

entropy g12 (yellow).
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Figure 2. Comparison between FVα (red) and FQ6 (green) on panel (a), plot of the error
FVα − FQ6 on panel (b), for Example 7.1.
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Figure 3. Comparison between approximations in Example 7.2: maximum entropy error
error FVα(v)−FQ3 (v) on the left (a), FVα(v) (red) and 3-gamma mixture FQ3(v) (green) on
the right (b).
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Figure 4. Comparison between Femp(v) and FQ4(v) (red dashed) in Example 7.4.


