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Abstract 
 

     In this article, we use an efficient analytical method called homotopy analysis 
method (HAM) to derive the frequency of a nonlinear oscillating system. Unlike 
the perturbation method, the HAM does not require the addition of a small 
physically parameter to the differential equation. It is applicable to strongly and 
weakly nonlinear problems. Moreover, the HAM involves an auxiliary parameter, 
h, which renders the convergence parameter of series solutions Controllable, and 
increases the convergence, and increases the convergence significantly. This 
article depicts that the HAM is an efficient and powerful method for solving 
oscillating systems.  
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1 Introduction 
 
     Modeling of natural phenomena in most sciences yields nonlinear differential 
equations the exact solutions of which are usually rare. Therefore, analytical 
methods are strongly needed. For instance, one analytical method, called 
perturbation, involves creating a small physically parameter in the problem, 
however, finding this parameter is impossible in most cases [1, 2]. Generally 
speaking, one simple solution for controlling convergence and increasing it does 
not exist in all analytical methods. 
     In 1992, Liao [3] presented homotopy analysis method (HAM) based on 
fundamental concept of homotopy in topology [4-6]. In this method, we do not 
need to apply the small parameter and unlike all other analytic techniques, the 
HAM provides us with a simple way to adjust and control the convergence region 
of approximate series solutions. HAM has been successfully applied to solve 
many types of nonlinear problems [7, 8]. 
 
 
2 Basic idea of HAM 
 
     In this work, we apply the HAM to obtain the frequency of a nonlinear 
oscillating system, known as the duffing equation, as follows 

( ) ( ) ( ) ,x t x t x tε+ + =3 0                                                                                         (1) 
Where t denotes the time, the dot denotes derivative with respect to t, ε  is a 
dimensionless quantity and ( )x t  is the oscillator displacement. As initial 
conditions, we take 

( ) , ( ) ,x x x= =00 0 0                                                                                                   (2) 
The exact frequency is [1] 
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To account for the nonlinear dependence of the frequency, we explicitly exhibit 
the frequency ω of the system in the differential equation. To this end, we 
introduce the transformation. 

,tτ ω=          ( ) ( ),x t u τ=                                                                                                         (6) 
 
Hence, equation (1) becomes 
 

( ) ( ) ( ) ,u u uω τ τ ε τ′′ + + =2 3 0                                                                                    (7) 
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( ) , ( ) ,u x uτ τ′= =0 0    when     .0=τ                                                                    (8) 
 
where the prime indicates the derivative respect to .τ  We note that the actual 
frequency of the system now appears explicitly in the equation. . ( )u τ can be 
expressed in the form 

( ) cos( ).n
n

u a nτ τ
+∞

=
= ∑

1
                                                                                               (9) 

where na is a coefficient.  
According to (9) and (8), it is obvious for us to choose such an initial guess 

( ) cos( ).u xτ τ=0 0                                                                                                  (10) 
According to Equation (9). We choose the auxiliary linear operator 
 

( ; )[ ( ; )] ( ; ),pL p pϕ τϕ τ ϕ τ
τ

∂= +
∂

2

2
                                                                          (11) 

which has the property 
 

( sin cos ) ,L α τ α τ+ =1 2 0                                                                                      (12) 
 
for any integration constants α1  and .α2  Now with respect to equation (7) we 
define the nonlinear auxiliary function N as follows 
 

( ; )[ ( ; ), ( )] ( ) ( ; ) ( ; ),pN p p p p pϕ τϕ τ ϕ τ ε ϕ τ
τ

∂Ω =Ω + +
∂

2
2 3

2
                                  (13) 

where ]1,0[∈p is an embedding parameter, ( ; )pϕ τ is a type of mapping of the 
unknown function ( )u τ  and it is a function of τ and p, ( )pΩ  is kind of mapping 
of unknown frequency ω  and it is a function of p. 
     Now we consider h determine an auxiliary parameter and ( )H τ ≠ 0  an 
auxiliary function, respectively. h increases the results convergence. Then, we 
construct the so-called zero-order deformation equation 
 
( ) [ ( ; ) ( )] [ ( ; ), ( )],p L p u hpN p pϕ τ τ ϕ τ− − = Ω01                                                  (14) 
 
subject to the initial conditions 
 

( ; ) ,p xϕ = 00              ( ; ) ,pϕ
τ

∂ =∂
0 0                                                                       (15) 

 
( ; ) ( ),uϕ τ τ= 00              ( ) ,ωΩ = 00                                                                         (16) 

 
( ; ) ( ),uϕ τ τ=1             ( ) ,ωΩ =1                                                                           (17) 

 
when p increases from zero to one, ( ; )pϕ τ from the ,( ) cosu xτ τ=0 0 to the ( )u τ  of 
Esq. (7) and (8) and ( )pΩ from ω0 to the unknown frequencyω . 
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Expanding ( ; )pϕ τ and ( )pΩ  in Taylor series with respect to p  and using (16), 
we have 

( ; ) ( ) ( ) ,m
m
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p u u pϕ τ τ τ
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=
= + ∑0

1
                                                                               (18) 
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we note that in the zero-order deformation equation ( ; )pϕ τ  and ( )pΩ  are 
dependent upon the auxiliary h and auxiliary function ( )H τ ≠ 0 . If the auxiliary 
linear operator, the initial guess, the auxiliary parameter h and the auxiliary 
function ( )H τ  are properly chosen so that the series (18) and (19) converge 
at p =1 , using (17), then we have  

( ) ( ) ( ),m
m

u u uτ τ τ
+∞

=
= + ∑0

1
                                                                                        (21) 

.m
m

ω ω ω
+∞

=
= + ∑0

1
                                                                                                     (22) 

Now for simplicity, we define the vectors of )(τmu  and mω as follows 
{ ( ), ( ),..., ( )},m mu u u uτ τ τ= 0 1  

 
{ , ,..., }.m mω ω ω ω= 0 1  

 
     Differentiating the zero-order deformation equation (14) and (17) m times with 
respect to p, then dividing them by m!, and finally setting p=0, we have the so-
called mth-order deformation equation in the following form 

[ ( ) ] ( ) ( , ),m m m m m mL u x u h H R uτ τ ω− − −− =1 1 1                                                          (23) 
Subject to initial conditions 

( ) , ( ) ,m mu u ′= =0 0 0 0                                                                                               (24) 
 where 
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where 
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It should be noted that we assume .( )H τ =1  
Regarding the nature my problem we can understand that ( , )m m mR u ω− −1 1 should be  
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expressed as follows 

,( , ) ( )cos[( ) ],
m

m m m m k m
k

R u k
μ

ω δ ω τ− − −
=

= +∑1 1 1
0

2 1                                                        (26) 
where ,m kδ is a coefficient, mμ is a integer dependent on the m. 
     Regarding to (12), when , ( )m mδ ω − ≠0 1 0 , the solution of mth-order (23) disobeys 
the solution expression (9). Then we should set 

, ( ) ,m mδ ω − =0 1 0                                                                                                                           (27) 
which provides us another algebraic equation for getting .mω −1  The Nth-order 
approximation is given as follows 

( ) ( ) ( ),
N

m
m

u u uτ τ τ
=

≈ + ∑0
1

                                                                                        (28) 

,
N

m
m

ω ω ω −
=

≈ + ∑0 1
1

                                                                                                  (29) 

     It should be noted that the HPM is a particular from of the analytical HAM, that 
is, for 1−=h  HAM will equal HPM [3]. 
 
 
3 Result Analysis 
 
     The objective of this study is to calculate the value of ,ω  and compare it with 
exact values of xε 2

0  in Nayfeh [1]. The auxiliary parameter h controls the 
convergence of series solutions. Once we obtainω , we will be able to plotω  
versus h ( h−ω curve) for different values of xε 2

0  to acquire the appropriate value 
of h to find the exact solution. In this paper, we plot four hω−  curves for four 
values of xε 2

0  after 10 iterations for .ω  the optimal h for each curve is shown in the 
table [1]. 
 
 
Table1 
Optimal h for each (h- curve) 
Number of figures h 

1 .−207  

2 −1  
3 .−0 09  

4 .−0 045  
 

The ω  values obtained through HAM (after 10, iterations for estimatingω ), HPM 
(after 10, iterations for estimatingω ) and the exact solution for different values of 

xε 2
0  are shown in table [2].  

     As the table [2] depicts, the solution resulting from HAM coincides with the 
exact solution in three cases, and is only slightly different in one case. Whereas 
for h = −1(HPM) the solutions are much weaker than those of HAM. The exact  
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values of ω  are obtained using the formula T
πω = 2  and substituting the exact 

values of T from Nayfeh [1]. 
 

 
 
 
Table 2 
The values of ω           

xε 2
0       .0 042  .0 087  .0 136  

 
.0 190

 

exact

exactT
πω =

2  .1 01555
 

.1 03206
 

.1 04965
 

.1 0687

 

HAMω  .1 01555
 

.1 03203
 

.1 04965 .1 0687

HPMω  .1 01561
 

.1 03203
 

.1 04957 .1 0685
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Fig.1. The 10th-order approximation of ω  versus h in case of xε 2
0 = .0 042  

 
 
 
 
 
 



Analytic Solution                                                                                               1037                                  
 
 

-5 -4 -3 -2 -1 1 2
h

-3

-2

-1

1

2

3

 
 

Fig.2. The 10th-order approximation of ω  versus h in case of xε 2
0 = .0 087  
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Fig.3. The 10th-order approximation of ω  versus h in case of xε 2
0 = .0 136  
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Fig.4. The 10th-order approximation of ω  versus h in case of xε 2
0 = .0 190  

 
 
 
4 Conclusions 
 
 
     In this paper, we utilized the powerful method of homotopy analysis to obtain 
the frequency of an oscillating system. We achieved a very good approximation 
with the actual solution of the considered system. In addition, this technique is 
algorithmic and it is easy to implementation by symbolic computation software, 
such as Maple and Mathematica. Different from all other analytic techniques, it 
provides us with a simple way to adjust and control the convergence region of 
approximate series solutions. Unlike perturbation method methods, the HAM 
does not need any small parameter. It shows that the HAM is a very efficient 
method.  We sincerely hope this method can be applied in a wider range. 
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