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Abstract

Ant colony optimization (ACO) is a well known metaheuristic. In
the literature it has been used for tackling many optimization problems.
Often, ACO is hybridized with a local search procedure. All the solu-
tions generated by ants (or some of them) are improved by the local
search. In this paper we propose a different framework, called Quick--
and-dirty ant colony optimization. It is an hybrid approach based
on the sequential coupling of ACO and a local search. It exploits the
ability of ants to explore the search space. After ants point out the
most promising area, the local search procedure is used for analyzing it.
Computational experiments on the traveling salesman problem confirm
that when the search space is large, by allowing the local search to con-
centrate on a smaller region it is possible to improve the quality of the
performance, provided that this region is properly selected.

1 Introduction

In recent years, the branch of literature related to metaheuristics is focusing
more and more on the hybridization of these approaches, either with each other
or with more classical procedures from artificial intelligence and operations
research. Among the others, also ant colony optimization (ACO) has been
object of many studies in this direction. The most widespread hybridization
in this context consists in coupling ant algorithms with local search procedures.
The ways in which this combination can be made are various. In general it is
possible to specify two categories: In the first one, the local search is applied
to the tours constructed by ants, and the local optima found are used for the
pheromone update as if the ants themselves had found them. In the second
one, ACO works in parallel with the local search, sharing information on the
search space. Apart from these exchanges of knowledge, the two approaches
work independently.

This paper describes an hybridization of ACO and a local search heuristic
which cannot be inserted in any of these groups. Here, the two approaches
work sequentially, and ant colony optimization is used for pointing out the
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region of the search space in which to start the local search. The bigger the
problem instance to tackle, in general, the more important this point is for the
quality of the solution achieved [17]. In this sense, ACO is in the service of
the local search.

The success of this idea is linked with the structure of the feasible region.
In some problems, there is strong correlation between the cost of a solution and
its distance to the global optimum [19]. This phenomenon has been referred
to in many ways: clusterization of the best solutions [22], “Massif Central”
phenomenon [14], principle of proximate optimality [16], and replica symmetry
[27]. It has been shown that this property holds for various combinatorial
optimization problems, such as the traveling salesman problem and the graph
bi-partitioning problem [7, 19]. Several algorithms base exploitation of this
characteristic. Among the others, let us cite iterated local search [22].

If the search space has this peculiarity, for obtaining a good solution, it is
sufficient to start the local search heuristic in a promising region, even if no
precise information has been gained about the specific (possibly local) optimum
whose basin of attraction has to be chosen. Given its searching behavior, ant
colony optimization is particularly suitable for exploring, in a short amount of
time, very different regions of the search space. After this exploration, ACO
can point out the most promising area. The hybrid algorithm proposed is
based on this ability of ants of obtaining a rough understanding of the search
space in a short amount of time. This understanding is, then, exploited by the
local search procedure. In the following, we will refer to this hybridization as
quick-and-dirty ant colony optimization (q&dACO).

We propose an experimental analysis for verifying the validity of the ap-
proach. It is based on the traveling salesman problem (TSP). One of the most
successful ACO algorithm (MAX-MZN Ant System [29, 30]) is combined with
a modified Lin-Kernighan Heuristic (LKH) [17, 18]. The performance of this
hybrid algorithm is compared to the one achievable by the local search alone,
which obtained state of the art results for several well known instances of T'SP.
Moreover, we consider a hybrid procedure of a genetic algorithm with LKH.
It is based on the same idea considered for quick-and-dirty ant colony
optimization, except that the initial phase is committed to a genetic algo-
rithm. This metaheuristic has been chosen as a reference approach owing to
its similarities with ant colony optimization.

The paper is organized as follows. Section 2 describes some successful
trends of the research on hybrid ant colony optimization. Section 3 describes
the quick-and-dirty ant colony optimization algorithm, and in Section
4 the experimental analysis is reported. Finally, Section 5 concludes the paper.
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2 Literature on hybrid ant colony optimiza-
tion

The first type of hybridization concerning ant colony optimization algorithms,
consists in the incorporation of local search procedures. In particular, in the
most classical hybridization, the local search procedure is applied to some (or
all) solutions constructed by the ants (see for example [12, 15]). The local
optimum returned is then used for the pheromone update. This approach is
generally accepted to improve the performance of ACO. It is widely used in the
literature, to the extent that often it is not even considered an hybridization.

The second typical way for coupling ACO and local search consists in hav-
ing the two approaches working in parallel and sharing information. Among
the others, Chen and Ting [9] propose to use ant colony system and simulated
annealing in parallel. The two approaches share the best solution found, which
is used for the pheromone update, on the one hand, and as starting solution
of the search, on the other.

Another branch of research focuses on hybridizing ACO with more classical
techniques of artificial intelligence and operations research. A short summary
of these trends can be found in [3].

An interesting application is proposed by Blum [4]: he describes an al-
gorithm called Beam-ACO. It brings together beam search and ant colony
optimization. Beam search is a heuristic search algorithm that uses a heuristic
function to estimate the promise of each node it examines. It unfolds the first
m most promising nodes at each step, where m is a fixed number, the beam
width [10]. In some sense it is an incomplete derivative of branch and bound al-
gorithms. The basic algorithmic framework of Beam-ACO is the framework of
ant colony optimization. The standard ACO solution construction mechanism
is replaced by a solution construction mechanism in which each artificial ant
performs a probabilistic beam search. In this context, the extension of partial
solutions is done in the ACO fashion rather than deterministically. As the
transition probabilities depend on the pheromone values, which change over
time, the probabilistic beam searches that are performed by this algorithm are
adaptive [3].

Another approach, which in recent years is quite often used, is the coupling
of ant colony optimization and constraint programming. The idea is to restrict
the search of ants in promising regions of the search space [26]. The hypothesis
at the basis of this approach is that, as it happens for various metaheuristics,
ACQ’s performance are better for non-constrained problems, while it degrades
for very constrained ones. Constraint programming (CP) is used for specifying
the constraints a feasible solution must meet. The CP approach to search
for a feasible solution often works by the iteration of constraint propagation
and the addition of additional constraints [25]. In the hybrid approaches, at
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each iteration, first constraint propagation is applied in order to reduce the
remaining search space. Then, solutions are constructed in the standard ACO
way with respect to the reduced search space. The results are encouraging
especially for tackling problems with many constraints which make the search
space of feasible solutions very fragmented, though too large for exact methods.

Still working on the search space, although in a different way, Blum and
Blesa propose to apply ACO algorithms to an auxiliary search space [5]. The
idea that the authors present in the paper is based on replacing the original
search space of the tackled optimization problem with an auxiliary search space
to which ACO is then applied. This technique needs the existence of a function
that maps each element from the auxiliary search space to a solution to the
tackled optimization problem. This technique can be beneficial in case the
generation of objects from the auxiliary search space is more efficient than
the construction of solutions to the optimization problem at hand, and/or
the mapping function is such that objects from the auxiliary search space are
mapped to high quality solutions of the original search space [3].

Finally, an approach which can be seen as a sort of hybridization, is the
application of ACO in a multilevel framework [20, 21]. The basic idea of
a multilevel scheme is simple. Starting from the original problem instance,
smaller and smaller problem instances are obtained by successive coarsening
until some stopping criteria are satisfied. This creates a hierarchy of problem
instances in which the problem instance of a given level is always smaller (or of
equal size) to the problem instance of the next lower level. Then, a solution is
computed to the smallest problem instance and successively transformed into
a solution of the next higher level until a solution for the original problem
instance is obtained. At each level, the obtained solution might be subject to
a refinement process.

Different, and more problem specific, ways for hybridizing ACO are pro-
posed by Di Caro et al. [8], Abraham and Ramos [1], Doerner et al. [11].

3 Quick-and-dirty ant colony optimization

As mentioned in the introduction, the algorithm proposed is an hybridization
of an ant algorithm and a local search heuristic. Namely, we consider MAX-
MIN Ant System (MMAS) [29, 30] and a modified Lin-Kernighan Heuristic
for the traveling salesman problem (LKH) [17, 18]. We will refer the following
arguments to this specific algorithms and problem. Nonetheless the whole
reasoning can be extended to a more general case.

We will refer to the hybrid algorithm as quick-and-dirty ant colony
optimization. This denomination has been chosen for stressing the fact that
ants are supposed not to converge on a very high quality solution, but to return
quickly a fairly good one. This solution will be appropriate to the aim of the
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first part of q&dACO if the balance of exploration and exploitation allows ants
to achieve a good understanding of the feasible region before converging toward
a (possibly local) optimum [13, 28]. Moreover, the search space has to present
the clusterization of the best solutions [22]. In this case, one can expect the
solution returned by ACO to be in the basin of attraction of a local optimum
which is close to the global one. The local search heuristic is then in charge of
selecting the best optimum of the nearby region. This procedure, then, needs
to be able to escape from the basin of attraction of an optimum solution to
move to the basin of attraction of a different one. It needs to be, then, a quite
sophisticated local search, as the modified Lin-Kernighan Heuristic.

3.1 The ant colony optimization phase

Ants construct solutions incrementally, choosing the components (that cor-
respond to edges in the TSP) probabilistically. The choice is biased by an
heuristic measure (n;; for arc (4,j)) and by the pheromone trail (7;; for arc
(,7)). In particular, in MAX-MZN Ant System, ant k being in node i and
not having visited the nodes belonging to the set N, chooses to move to node
J € Nji, with probability p;;, that is described in formula 1:

i = (73] 03] '
D e L R

(1)

a and 3 are parameters of the algorithm. In the TSP, the heuristic measure n;;
corresponds to the inverse of the length of the arc (i, 7). At the beginning of
the search, the pheromone trail is equally distributed on all the arcs (7;; = 79
for each arc (7,7)). As a consequence, the choice is influenced only by the
heuristic information.

After each iteration, i.e. after the m ants of a colony have constructed
their tours, the pheromone trail 7;; is updated on each arc (i, j) according to
formula 2:

7ij = (1 — p)1ij + ATy, (2)

where p is a parameter such that 0 < p < 1, and

Cy
0  otherwise.

ATZ‘]‘ =

{ L if arc (i, j) belongs to tour b, 3)

Cy is the cost associated to tour b, and tour b is either the iteration-best tour
or the best-so-far tour. The schedule according to which the solution to be
exploited is chosen, is described by Dorigo and Stiitzle [13]. Apart from this
update, in MAX-MIN Ant System the pheromone trail is bounded between
Tmin and Tyax. Following [13], we use the values reported in formula 4, 5
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Table 1: MMAS.

Initialize pheromone trails
While stopping criterion is not satisfied

{

Generate a population of solutions
Find the iteration best solution
Update the best so far solution
Perform the pheromone update
Check for pheromone bounds

and 6 for 79, Tyrax and T, respectively. At the beginning of a run, the best
solution corresponds to the one found by the nearest neighbor heuristic (NN).

1
To = 4
’ pCNN @)
1
T =— 5)
MAx pCbestfsoffar ( )
Tmin — ATMAX (6>

where a is a problem-dependent constant [13]. Remark that 7,,;, is a strictly
positive quantity. The general algorithmic framework that characterizes MMAS
is reported in Table 1.

This procedure implies, at the beginning, the spot exploration of many
different areas of the feasible regions, followed by the concentration in the most
promising areas, and finally by the convergence toward the best tour found
[13]. Quick-and-dirty ant colony optimization needs only the first two
phases, allowing the local search procedure to take care of the choice of the
best minimum.

A typical measure of the level of convergence of ant algorithms is the aver-
age A-branching factor [12, 13]. In the following, we will refer to this measure
as to average y-branching factor (7). This choice is due to the fact that, in the
second phase of q&dACO, a modified version of the Lin-Kernighan Heuristic is
used, which is based on A-opt moves.

The average y-branching factor measures the distribution of the pheromone
trail on the arcs. The basic idea is that the more the algorithm is close to
convergence, the fewer the arcs with a significant amount of pheromone are.
When the convergence is achieved, the concentration of pheromone is very
small on all the arcs incident to each node, but the ones belonging to the tour
toward which ants converged [12, 13].

For computing the average y-branching factor, the first step consists in
finding for each node 4 the maximal (7¢,,,) and the minimal (7,) pheromone
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trail value on arcs incident to ¢ itself. The ~-branching factor for node i is equal
to the number of edges (7,7) on which the pheromone trail is greater than a
defined threshold. This threshold depends on the maximum and the minimum
level of pheromone present on arcs incident on ¢ itself. The inequality that
needs to be satisfied is reported in 7:

Tij = T;m'n + K’(ﬂfnax - Tim'n)? (7>
where k is a parameter (0 < x < 1). The 7-branching factor is always
bounded between 2 and n — 1, with n number of nodes of the graph: When
the pheromone trail is equal on all the edges, for all ¢ we have 7%, = 7%
and then 7;; = 72. Vj € E. On the other hand, when the algorithm con-
verges, only one solution is visited. After a while, only the two edges incident
to each node belonging to this solution will have a high amount of pheromone.
On all the other edges the trail will keep decreasing up to 7,,;,,. The average
~v-branching factor is the average of the ~-branching factors of all nodes. It
gives a representation of the size of the region of the search space which has a
significant probability of being explored. For example, if 4 is very close to 3, it
means that in average 3 arcs incident to each node are likely to be chosen. In
case of the TSP it means that most likely the solutions constructed will belong
to a set with O(2") elements, with respect to the O(n!) elements of the feasible
region. In general, the smaller the average v-branching factor, the smaller the
area considered.

Using the average y-branching factor, then, it is somehow possible to mea-
sure the size of the area under analysis in any moment. By using as stopping
criterion for the algorithm the average vy-branching factor crossing a certain
threshold br, the best solution found S will belong to the area still under
exploration — and then to the most promising region of the search space —.

3.2 The local search phase

Once ants return a solution belonging to the most promising region of the
search space, quick-and-dirty ant colony optimization passes to a local
search heuristic, which uses as starting solution S.

The only characteristic that this approach needs to have, is the ability —
to some extent — of escaping from local minima. Lin-Kernighan Heuristic for
the traveling salesman problem [18] has this feature.

A very detailed description of the heuristic is reported in [17]. It is a
modification of a previous algorithm proposed by Lin and Kernighan [24]. Tt
is based on the idea of A-optimality [23]: a tour is said to be A-optimal if it is not
possible to obtain a shorter tour by replacing any \ of its links by any other set
of A links. While in the typical implementation the value chosen for X is either
2 or 3, Lin and Kernighan [24] propose a variable A\-opt. At each iteration step
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the algorithm examines, for ascending values of A\, whether an interchange of A
links may be convenient. The method for selecting which arcs to exchange aims
at being efficient in terms of computational cost, without worsening the quality
of the solution found. Helsgaun [17, 18] proposes additional rules for restricting
and directing the search. The introduction of these elements improves the
performance of the algorithm. Thanks to the variability of the factor A, this
heuristic is able to escape from local minima, by defining in different ways the
neighborhood of a solution. Various parameters are present in the algorithm.
For a complete description we refer the reader to [17].

For large enough instances, the algorithm needs a stopping criterion differ-
ent from having explored all the possibilities. To this aim, Helsgaun [17, 18]
fixes a limit for the number of A\-opt moves allowed. In a substantially equiv-
alent way, we use the consumption of a given computational time.

Clearly, the bigger the instance tackled, the higher the computational time
needed to complete the search, since the size of the search space to be explored
increases. When the available time is short, the starting point is crucial for
the quality of the final solution. Nonetheless, it is not fundamental to start
from a solution which is in the basin of attraction of the global optimum:
even if the heuristic has as starting point a solution S which is in the basin of
attraction of a local minimum, the search strategy may get to the best solution
quite fast, provided that the the local and the global minimum are not too far
[19, 22, 14, 16, 27]. This is due to the fact that the local search heuristic
moves in the search space along trajectories implied by the definition of the
neighborhoods, and it is able to escape from local minima.

4 Experimental analysis

The experimental analysis proposed is based on the traveling salesman prob-
lem. For the first phase of q&dACO, we consider the ACOTSP program im-
plemented by Thomas Stiitzle as a companion software for [13]. The code
has been released in the public domain and is available for free download on
www.aco-metaheuristic.org/aco-code/. In a similar way, for the second phase,
we consider the LKH problem implemented by Keld Helsgaun. Also the latter
has been released in the public domain. It is available for free download on
www.akira.ruc.dk/~keld /research/LKH/.

For evaluating the performance of q&dACQO, we compare its results with those
achieved by the LKH heuristic [18] started from random solutions, and with the
ones achieved by an hybrid genetic algorithm. This second algorithm is based
on the same idea considered for quick-and-dirty ant colony optimiza-
tion, except that the initial phase is committed to a genetic algorithm. This
metaheuristic has been chosen as a reference approach owing to its similarities
with ant colony optimization: they are both population based metaheuristics
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Table 2: Number of instances in which each algorithm obtains the best result.
# best result ‘
q&dACO | GA-LKH | LKH

1000 nodes 195 172 154
1500 nodes 168 132 82
2000 nodes 162 113 61
2500 nodes 139 101 48

Table 3: Average percentage difference between each algorithm’s result and

the best observed one for each instance.
average % gap

q&dACO | GA-LKH | LKH

1000 nodes | 3.48e-06 | 1.44e-05 | 3.12e-05
1500 nodes | 4.77e-05 | 3.99e-04 | 4.67e-04
2000 nodes | 9.30e-05 | 5.33e-04 | 7.09e-04
2500 nodes | 1.21e-04 | 7.14e-04 | 7.62e-04

[6], and then they may have a similar ability of exploring the search space. The
implementation of the genetic algorithm is based on [31] and we refer to the
hybrid approach as GA-LKH. In particular, starting from an initial population
of solutions, new ones are generated iteratively by edge recombination. At
each iteration, some individuals are subject to mutation. Edge recombination
[31] consists in generating a solution starting from two different ones, using
components that are present in both of them, whenever possible. Mutation
swaps probabilistically adjacent customers.

The criterion chosen for shifting from the genetic algorithm to the local
search phase is the computational time elapsed. In q&dACO the first phase
is concluded when the average y-branching factor reaches a fixed threshold.
After preliminary experiments the average time employed by ants has been
computed, and it has been used as stopping criterion for GA-LKH.

The instances used are generated through portgen, the instance generator
adopted in the DIMACS TSP Challenge. In particular, the ones we consider
here consist of two dimensional integer-coordinate cities distributed in a square
of size 10% x 10°.

We consider four sets of instances, with 1000, 1500, 2000, and 2500 nodes,
respectively. Two hundreds instances of each set are used for the experiments.
The parameters used for the algorithms are the ones suggested in the literature
[13, 17, 31]. For q&dACO, the value of k for the computation of the average
v-branching factor is 0.05 [13].

A single run is performed for each instance [2]. The experiments are run
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on a AMD Opteron 250. The computational time available for each run is 90,
135, 180, and 225 seconds for the instances with 1000, 1500, 2000, and 2500
nodes, respectively. In each run the search is restarted three times. Both the
LKH and the GA-LKH heuristic are started each time with a different random
seed. Quick-and-dirty ant colony optimization is restarted each time
considering a different value of br, the threshold for the average v-branching
factor which represents the stopping criterion for the first phase of quick--
and-dirty ant colony optimization. The values used are 3.0, 3.4, and 3.8.
They have been chosen after some preliminary experiments. A value around 3,
as explained in Section 3.1, implies that, on average, a high level of pheromone
is present on three edges incident on each node. This means that the search
is strongly biased toward O(2") solution. This number is quite low, compared
with the O(n!) solutions belonging to the feasible region, and then, when this
average y-branching factor is reached, ants have already made a considerable
selection. Nonetheless, given that the task assigned to ACO is to point out
a promising region of the search space for the local search heuristic, it is not
necessary to allow it to converge toward a (possibly local) minimum. For this
reason the value of br is fixed higher than 2, but still quite low.

For the four sets of instances, the number of times in which each algorithm
obtains the best result (# best result) is reported in Table 2, while the average
percentage difference, for each instance, between each algorithm’s result and
the best observed one (average % gap) is reported in Table 3. For each set, we
consider 200 instances. The cases in which the three algorithms achieve the
same result are 147, 68, 45 and 28 for the instances with 1000, 1500, 2000 and
2500 nodes, respectively.

The distribution of percentage difference for each class of instances is shown
in Figure 1.

The differences between the algorithm is statistically significant according
to the Wilcoxon Tests.

As it can be observed, q&dACO appears to perform better than both the
LKH and the GA-LKH heuristic for all the sets of instances. Furthermore, the
hybrid genetic algorithm achieves better results than the local search heuristic.

A trend can be detected in Tables 2 and 3. The relative performance
of q&dACO improves as the size of the instances increase. In other words, the
higher the number of nodes of the instances, the better the relative performance
of q&dACO. On the one hand, this supports the intuition that, the larger the
instance, the more important the starting point of the local search. On the
other hand, ant colony optimization appears to be a very effective approach
for gaining quickly a rough understanding of the characteristic of the search
space.
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Figure 1: Percentage difference between each algorithm’s result and the best
observed one, for each instance with 1000, 1500, 2000, 2500 nodes. Triangles
represent the LKH heuristic. Circles represent the EA-LKH hybrid. Bullets
represent q&dACO.

5 Conclusions

In this study a new hybrid algorithm is proposed. It is based on the coupling
of an ACO algorithm and a local search heuristic, namely MAX-MZN Ant
System and Lin-Kernighan Heuristic for the traveling salesman problem. It
is called quick-and-dirty ant colony optimization. The main element
which makes this approach different from previous hybridization of ant colony
optimization is the fact that, here, the ant algorithm is used as an instrument
for the choice of the starting point of the local search procedure. In this
way, ants do the dirty job, exploring the search space and selecting the most
promising region. The framework of ACO metaheuristic allows to achieve this
objective quite fast. From the promising region pointed out, the local search
heuristic moves in the search space along trajectories implied by the definition
of the neighborhoods. If the feasible region of the problem is such that the
best solutions are clustered, as in the traveling salesman problem, starting the
local search in the basin of attraction of a good local optimum, makes it likely
to get closer and closer to the global one.

Computational experiments support this intuition: the larger the instances
considered for the traveling salesman problem, the better the performance
achieved by q&dACO compared to LKH and to a hybrid genetic algorithm based
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on the same basic ideas.

Consisting in a metaheuristic and a local search procedure, the approach
proposed may be easily applied to many combinatorial optimization problems.
Object of future work will be the application of q&dACO to different problems.
An interesting element that may be investigate is the relative importance of
the two phases, when varying the problem tackled. For example, this relevance
may vary in case of very constrained problems with respect to an unconstrained
one. Moreover, various local search procedures may be tested. Different pro-
cedures, considering different neighborhoods, may get to very different results.
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