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Abstract

In this paper, we give a new method to solve a nonlinear system of second
order two-point boundary value problem. Its exact solutions are represented
in the form of series in the reproducing kernel space. The n-term approxi-
mation u,(x),v,(x) are proved to converge to the exact solutions u(z),v(x),
respectively. An example is given to demonstrate the application of the new
method.
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1 Introduction

The purpose of this paper is to study a general nonlinear second-order differential
system with the Dirichlet boundary conditions

V() = gz, u(@), u'(z),v(z),v'(z), 0<az<]1,
u(0) = 0,u(1) =0, (1.1)
v(0) =0,v(1) =0
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In recent years, boundary value problems of the system of ordinary differential
equations have been of interest in mathematics, physics, engineering, biology and
so on(see Refs[1-4]). It should be pointed out that the authors [5-11] obtained the
existence results of solution of Eqs(1.1), but discussion on numerical solutions of
Egs (1.1) is scare.

In this paper, we will give the presentation of the exact solutions of Eqgs.(1.1)and
approximate solutions in the reproducing kernel space. The method has the follow-
ing advantages: Firstly, the conditions for determining solution in Eqs(1.1) can be
imposed on the reproducing kernel space and therefore reproducing kernel satisfying
the conditions for determining solution can be calculated. We will use the kernel
to solve problems. Secondly, the iterative sequences u,(x),v,(x) of approximate

solutions converge in C?[0, 1] to the solutions u(z), v(x) respectively .

2 Preliminaries

2.1 The reproducing kernel space W3[0, 1]

The inner product space W3[0,1] is defined as W3[0,1] = {u(z) | v"(z) is a
absolutely continuous real value function, v (x) € L*0,1],u(0) = u(1) = 0}. The
inner product in W3[0, 1] is given by

(u(o), vl = 3w O0(0) + [ () (a) da, (21)

and the norm || u |[yys is denoted by || u |lyws= y/(u, u)ws, where u,v € W50, 1].

Theorem 2.1. The space W3[0,1] is a complete reproducing kernel space. That is,
for each fized x € [0, 1], there exists R,(y) € W5[0,1], such that (u(y), Ru(y))ws =
w(x) for any u(y) € W3[0,1] and y € [0,1]. The reproducing kernel R,(y) can be
written as

6
YayTl y<uz,
Ry(y) =4 "% (2.2)

6 .
S diyh oy >
=1

The representation of R,(y) is given in Appendix. The method of obtaining
coefficients of the reproducing kernel R, (y) and the proof of Theorem 2.1 are given
in Theorem 1.3.1 and Theorem 1.3.2 in [12].
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2.2 The reproducing kernel space W3[0, 1]
The inner product space W0, 1] is defined by W3 [0,1] = {u(x) | u is a absolutely
continuous real value function, v’ € L?[0,1]}. The inner product and norm in

W4 [0,1] are given respectively by

<U(x),v(x)>w;=u(0)v(0)+/0 u'(@)o'(w)de, || ullwy= 4/ (u u)wy

In [12], it has been proved that W.}[0,1] is also a complete reproducing kernel space

and its reproducing kernel is

2\Y 1+2z, y>ux

2.3 Introduction into a linear operator
Let Lu = u", L: WJ[0,1] — W3[0, 1], then Eqgs.(1.1)can be converted into the

form as follows

{LM@=f@w®MK@,

(),v'(x)), 0 <z <1,
(x),v'(x)), 0 <z <1,

<

(2.3)
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where u(z), v(z) € WE[0,1] and f(z,y, 2 w,v) € W3[0, 1], g(z,y, 2 w,v) € W3[0, 1]

as y = y(z),z = z(x),w = w(zr),v =v(x) € W3[0,1]. Therefore, we have

It is easy to prove that L is a bounded linear operator.
Now, we construct an orthogonal system of functions first.
Let ¢;(x) = K,,(z)and ;(x) = L*¢;(x), where L* is the conjugate operator of

L. In terms of the properties of reproducing kernel K,(y), one obtains

(u(a), Yi(@)wp = (Lu(@), oil@))wy = Lu(w), i=1,2,...

The normal orthogonal system of functions {1,(z)}22, in W3[0, 1] can be derived

from Gram-Schmidt orthogonalization process of {¢;(x)}2,,

Gi(x) = Butbn(x),

where [3;;, are orthogonalization coefficients,; > 0,7 =1,2,....

We collect the following lemmas in [13] for future use.
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Lemma 2.1. If {x;}2, is dense on [0,1], then {¢;(x)}2, is a complete system of
W310,1] and ¢i(z) = LyRo(y)|y=a,-

Lemma 2.2. If u(z) € W3[0,1], then there exists My > 0, such that
[ull ooy < M lfullwsg,

where [[ullczpon = max |u(z)] + max |u'(z)] + max [u"(z)]

Lemma 2.3. If |up—ullyz—0, [[v,—vllyz—0, 2, — 2, (n — 00) and f(z,y,z,w,v),
g(x,y, z,w,v) for x € [0,1],y, z,w,v € (—o0,+00) are continuous with respect to
x,Y, Z,w,v, then

f(xm unfl(l'n):u:z—l(l'n)v Unfl(xn)v U:z—l(xn)) - f(x>u(x)’ u,(x)>v(x)>v,($)) as n — 00,

9@, tn-1(Tn), ty 1 (Tn), vn-1(2n), v 1 (20)) = g(@, u(z), u'(2), v(2),0'(x)) as n — oo.

3 The exact and approximate solutions of Eqgs.(1.1)

Theorem 3.1. If {z;}32, is dense on [0, 1]and u(z),v(z) € W3[0,1] are the solu-
tions of Eq.(2.8), then u(x),v(z) satisfy the following form , respectively

= Z Z ﬁzkf(xkv U(ZEk), ul(xk)v U(xk)7 v'(xk))qﬁz(x), (31>

i=1 k=1

=Y B, ulwy), o/ (), viw), v/ () ) di(). (3.2)

1=1 k=1

Proof. u(zx) can be expanded to Fourier series in terms of normal orthogonal basis

Yi(x) in W3[0, 1].

u(w) = Do) Gil@)hwtile —ZZ@k (@) wyti()
= ZZﬁm 2), Lon(@))wadila) = 33 Bl Lu(e), pu(@))wydhi(x)

1=1 k=1 i=1 k=1

= DD Balf (e, u@), (@), v(2), v'(2)), ou(@))w, di(2)

i=1 k=1

- Z Z Birf (wr, ulay), ' (1), v(w), o' () )i ().

1=1 k=1
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In the same way, we can get

(@)=Y Buglan uler), o' (@), v(zp), o' (1)) i)

i=1 k=1

O

Remark:(i) If Eqs.(2.3) are linear, that is, f(z,u(x), v/ (x),v(x),v'(x)) = f(z),
g(x,u(z), v (x),v(x),v'(z)) = g(x), then the analytical solutions of Eq.(2.3) can
be obtained directly by (3.1),(3.2).

(ii) If Eqgs.(2.3) are nonlinear, then the solutions of Egs.(2.3) can be obtained by the
following iterative method.

3.1 The iterative sequence

We construct the iterative sequences u,(x), v,(x), putting

V fixed ug(x),vo(x) € W3[0,1],

n

vn(2) = iBi@iy

where

(A4 = Buaf(an, wo(a), (1), vo (1), v(1)),
2
As =3 Borf (wr, up—1(wr), up 1 (2r), vi—1(21), vy (T1)),
k=1 (3.4)

A, = I; B f (@, i1 (), (20), vt (1), Uy (),

( By = Bugla, uo(xr), uh(xy), vo(z1), vl (1)),
2
By = Z 5%9(%, Uk:—l(xk)a Uﬁgfl(fk), Uk—1(96k), U;Q,l@k)),
k=1 (3.5)

Bn = Z ﬂnkg(xka uk*l(mk% uz_l(l'k): /kal(l'k): /U,I,g_l(xk))'
L k=1

Next, we proof wu,(z),v,(x) in iterative formula (3.3) are convergent to the exact
solutions of Egs.(2.3)
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Theorem 3.2. Suppose the following conditions are satisfied:

(i) HunHWéa, anng are bounded ;

(11){x;}3°, is dense on [0,1];

(iii) f (2, y(x), 2(2), w(z), v(2)), 92, y(z), 2(x), w(z), v(x)) € W,[0,1] for any
y(z), 2(z), w(z),v(z) € W0, 1].

),
Then u,(z),v,(x) in iterative formula (3.3) are convergent to the exact solution
u(x),v(z) of Eq.(2.8) in W3[0,1] and

Z Aty v Z Bith,

where A;, B; are given by (3.4),(3.5),respectively

Proof. (1) First, we will prove the convergence of u,(x), v,(x).
By (3.3), we have

Upi1 (T) = Up(2) + Aps1Uni1(2),
{ Un41(2) = 0n () + Bni1¥n i1 (). (3.6)

From the orthogonality of {1(z)}$2,, it follows that

Hun-i-1H12xl/23 = ||unHI2/I/23 + (An+1)2 = Hun—lHIQ/VQP) + (An)2 + (An+1)27

n+1

= luollfys + Y (A%, (3.7)
=1
an-&-IHIQ/I/g = ||Un||?/[/23 + (Bn+1)2 = an—lHIQ/VQ?) + (Bn)2 + (Bn+1)27

n+1

= loollfyy + > _(B)?
i=1
From boundedness of |u,|[ys and [,z ,we have
o0
(A <o Z
1=1

i.e.

{AyeP{B}YelP(i=1,2,--).
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Let m > n, for (um — tm—1) L (Um-1 — Upm—2) L ---

1 (unJrl -

1147

un): (/Um - Umfl) L

(Um—1 — Um—2) L -+ L (Uy41 — vy), it follows that
[um(z) = un(@)lfyy = Ium(@) = wm-1(2) + tm-1(2) = tm-2(2) + - + wng1(2) = un ()|
< um(@) = um—1 (@)l + - + lunsa(2) = un(@) 5
= Z (A;)? =0, (n — o0) (3-8)
i=n+1

||UM($) - Un@)”%vg = ”UM(x) — Upn—1(®) + V1 () — UM—Z(x) + -

IN

[V () = V-1 (2) |Gy + -+

m

Z (B;)? — 0, (n — 00).

i=n+1

Considering the completeness of W3[0, 1], there exists u(z),
that

lI-llyy3
up(r) — u(z),as n — oo,

lI-llyy3
v(z) — v(x),as n — oo.

(2) Second, we will prove u(x),v(x) are the solutions of Eqs(2

Fllvns1(z) = vn(z

+ Un41 (x) - Un@)”?ﬁ@

vz

v(z) € W3[0, 1], such

3).
By Lemma 2.2 and (i) of Theorem 3.2, we know wu,(x), v, (z

) converge uniformly

to u(x), v(x),respectively. It follows that, on taking limits in (3.3), we have

Z Aty o Z By,

Since

) = ZAKL@‘(!K) oi(2))wy = ZAi@i(x) L

and

o0

i) = ZBz<LQEz(x) v;())

It follows that

Zﬂm (Lu)(z;)

and

Zﬂm (Lv)(x;)

ZA il Zﬁm

ZB il Zﬁm

wi = ZBMEZ(I) L oj(x))ws =

(z))ws

5

(x)>w23
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If n =1, then

(Lu)(z1) = f(fﬁl,Uo(xl)aUB(%),UO(%)WG(%)),
(Lw)(z1) = g(@1, uo(21), ug(w1), vo(w1), vh(1)). (3.9)
If n = 2, then

B21(Lu)(w1) + Boz(Lu)(we) = B21f (w1, uo(w1), up(z1), vo(w1), vo(21)) + B2 f (w2, w1 (w2), v (z2), v1 (w2), v] (22)),
B21(Lv)(21) + B22(Lv)(x2) = B219(21, uo(21), up (1), vo (1), vp (1)) + Beag(w2, ui(x2), uf (z2), v1(x2), v} (£2)){3.10)

From (3.9) and (3.10), it is clear that
(Lu)(w2) = f(22, ur(22), uy(22), vi(22), vy (22)),

(Lv)(z2) = g(@2, ur(22), vy (2), v1(22), vy (22))-
Furthermore, it is easy to see by induction that
(Lu)(z;) = f(oj,uj-1(25), u) 1 (25), v;-1(25), 0] (7)),

!/

(Lv)(x5) = g(@j, wj1(zs), wj_y (25), v;1(25), V5 (25))- (3.11)

Since {z;}$°, is dense on interval [0,1], for any y € [0, 1], there exists subsequence
{x,,}, such that

Tp; — Y,a8] — 00.

Hence, let j — oo in (3.11),by the convergence of u,(x),v,(z) and lemma 2.3 , we
have

(Lu)(y) = f(y, u(y), v'(y), v(y),v'(y)),
(Lv)(y) = g(y, uly), v'(y),v(y),v'(y))- (3.12)

That is, u(z),v(z) are the solutions of Eqgs.(2.3) and
u(z) = ZAﬂEi, v(z) = Z B, (3.13)
i=1 i—1

where A;, B; are given by (3.4),(3.5),respectively. O
From Lemma 2.2, we have the following the corollary.

Corollary 3.1. Assume that the conditions of Theorem 3.2 hold, then wu,(x),v,(x)
in (3.3) satisfy ||un(z) — u(z)||c2 — 0, ||vn(x) — v(z)||c2 — 0, n — oo , where
u(z),v(x) are the exact solutions of Eqs.(2.3).
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4 Example

Consider the system of equation

The exact solution is u(x) = (x — 1)sin(7z),v(z) =

M + Sjn[@’ x)] —+ f(,fL'), D<x< 1,

() = el ol (

V" (x) = %;(I))] cosfv(z)] +¢g(x), 0 <z <1,
u(0) = 0,u(1) =0

v(0) =0,0(1) =0

22 cos(5x).

results are displayed in Table 1 ,Table 2 ,Table 3 ,Table 4.

Table 1: The numerical results for Example

1149

The numerical

Node | True solution u(z) | Approximate solution ujgo(z) | Absolute error | Relative error
0.1 -0.278115 -0.278108 6.99E-6 2.51E-5
0.2 -0.470228 -0.470217 1.12E-5 2.40E-5
0.3 -0.566312 -0.566299 1.27E-5 2.25E-5
0.4 -0.570634 -0.570622 1.16E-5 2.03E-5
0.5 -0.5 -0.499991 8.58E-6 1.71E-5
0.6 -0.380423 -0.380418 4.70E-6 1.23E-5
0.7 -0.242705 -0.242704 1.09E-6 4.51E-6
0.8 -0.117557 -0.117558 1.26E-6 1.07E-5
0.9 -0.0309017 -0.0309034 1.72E-6 5.57E-5

1 0 0 0

Table 2: The mean square deviations for the derivatives for uqqg
\/ S0, w(o. 1) —ui0o(0:19) \/ 10w (0.18)—up, (0.14)
10

3.07E 5 3.02E-5

7 Appendix

—15:(—36 + 30z + 102* — 52® + 2*)y — c5; (120 — 1262 4 102% — 5z® + 2*)y?

— 1573 (2(120 — 1262 + 102% — 523 + 2*)y®) + 57 (2(—36 + 30z + 102% — 523 + z*)y?)

" 3 4 _ 5 5 <
Ro(y) = —1;518720((156 120z — 3022 — 102 + 5x )y ) y<u, . o
L5 — 355 (=72 4 60z 4 202% 4 32® + 22* )y — 557 (120 — 1262 — 4222 — 52® + 2*)y

1872( (120 + 30z + 1022
— z555 (2(120 + 30z + 1022

— 53 4+ at)y3) +
— 513 +x)5)

7217 (2(120 + 302 + 1022
Yy > x.

— 523 + zt)yt)
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Table 3: The numerical results for Example

Node | True solution v(x) | Approximate solution vigo(z) | Absolute error | Relative error
0.1 0.197538 0.197536 1.49E-6 7.54E-6
0.2 0.380423 0.38042 2.92E-6 7.68E-6
0.3 0.534604 0.5346 4.11E-6 7.69E-6
0.4 0.647214 0.647209 4.95E-6 7.65E-6
0.5 0.707107 0.707101 5.44E-6 7.70E-6
0.6 0.705342 0.705337 5.56E-6 7.88E-6
0.7 0.635587 0.635582 5.15E-6 8.11E-6
0.8 0.494427 0.494423 4.11E-6 8.32E-6
0.9 0.281582 0.28158 2.40E-6 8.53E-6

1 0 0 0

Table 4: The mean square deviations for the derivatives for v1gg
\/ 310, v/(0.18) = (0.14) \/ 10 v7(0.14) — v (0.14)
10 10

1.41E-5 9.30E-6
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