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Abstract

The Hosoya index of a graph G is defined as the sum of all the
numbers of k - matchings (k ≥ 0) in G. An upper bound for the Hosoya
index of trees is presented in this note.
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We consider only finite undirected graphs without loops or multiple edges.
Notation and terminology not defined here follow that in [1]. Let G be a
graph of order n. We assume that d1, d2, ..., dn, where di, 1 ≤ i ≤ n, is
the degree of vertex vi in G, is the degree sequence of G. For each vertex vi,
1 ≤ i ≤ n, we use ti to denote the 2 - degree of vertex vi, which is the sum of
degrees of the vertices adjacent to vertex vi. Moreover, we use Ni to denote
the sum of 2 - degrees of vertices adjacent to vi. We define Σk(G) as

∑n
i=1 dk

i .
Obviously, Σn

i=1ti = Σn
i=1d

2
i = Σ2(G). A bipartite graph is called semiregu-

lar if all the vertices in the same part of a bipartition have the same degree.
The Hosoya index of a graph G was introduced by Hosoya in [4] and it is de-
fined as Z(G) =

∑
k≥0 m(G, k), where m(G, k) is the number of k - matchings

in G. Notice that m(G, 0) = 1. The eigenvalues µ1(G) ≥ µ2(G), ...,≥ µn(G)
of a graph G are defined as the eigenvalues of A(G), the adjacency matrix of G.

The objective of this note is to prove the following theorem in which we
provide an upper bound for the Hosoya index of trees.

Theorem 1. Let T be a tree of n ≥ 3 vertices and let f(x) be (1 + x2)2(3n−
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4 − 2x2)n−2. Then

Z(T ) ≤

√√√√√√f(

√∑n

i=1
N2

i∑n

i=1
t2i

)

(n − 2)(n−2)

with equality if and only if at least one of the following statements is true:

(1) T is K1,n−1.

(2) N1

t1
= N2

t2
= ... = Nn

tn
and T has eigenvalues µ1 = N1

t1
, µn = −µ1,

µi =

√
2(n−1−µ2

1)

n−2
for each i with 2 ≤ i ≤ r, and µj = −

√
2(n−1−µ2

1)

n−2
for each j

with r + 1 ≤ j ≤ n − 1, where r is some integer such that 2 ≤ r ≤ n − 2.

(3) T is a bipartite graph with V (T ) = V1 ∪ V2, where V1 = { v1, v2, ..., vs }
and V2 = { vs+1, vs+2, ..., vn } such that N1

t1
= N2

t2
= ... = Ns

ts
and Ns+1

ts+1
= Ns+2

ts+2
=

... = Nn

tn
, and T has eigenvalues µ1 =

√∑n

i=1
N2

i∑n

i=1
t2i

, µn = −µ1, µi =

√
2(n−1−µ2

1)

n−2
for

each i with 2 ≤ i ≤ r, and µj = −
√

2(n−1−µ2
1)

n−1
for each j with r+1 ≤ j ≤ n−1,

where r is some integer such that 2 ≤ r ≤ n − 2.

In order to prove Theorem 1, We need the following theorems.

Theorem 2. [2] Let T be a tree of n vertices and µ1(T ) ≥ µ2(T ), ...,≥ µn(T )
are eigenvalues of T . Then

Z(T ) =
n∏

i=1

√
1 + µ2

i .

Theorem 3. [3] Let G be a simple connected graph of order n. Then

µ1 ≥
√√√√∑n

i=1 N2
i∑n

i=1 t2i

with equality if and only if N1

t1
= N2

t2
= ... = Nn

tn
or G is a bipartite graph with

V (G) = V1 ∪ V2, V1 = { v1, v2, ..., vs }, and V2 = { vs+1, vs+2, ..., vn } such that
N1

t1
= N2

t2
= ... = Ns

ts
and Ns+1

ts+1
= Ns+2

ts+2
= ... = Nn

tn
.

Theorem 4. [5] Let T be a tree of n vertices. Then µ1(G) ≤ √
n − 1, and

equality holds if and only if T is K1,n−1.

Proof of Theorem 1. Since T is a tree, T is a bipartite graph and therefore
µ1 = −µn. Thus by Theorem 2 and the inequality for arithmetic and geometric
means we have that
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(Z(T ))2 = (1 + µ2
1)

2
n−1∏

2

(1 + µ2
i ) ≤ (1 + µ2

1)
2 (

∑n−1
2 (1 + µ2

i ))
n−2

(n − 2)n−2

=
(1 + µ2

1)
2(n − 2 +

∑n
1 µ2

i − 2µ2
1)

n−2

(n − 2)n−2

=
(1 + µ2

1)
2(n − 2 + 2|E(H)| − 2µ2

1)
n−2

(n − 2)n−2

=
(1 + µ2

1)
2(3n − 4 − 2µ2

1)
n−2

(n − 2)n−2
.

Now consider the function f(x) = (1 + x2)2(3n − 4 − 2x2)n−2. It can be

easily checked that f(x) is decreasing when
√

3n−4
2

≥ x ≥
√

2(n−1)
n

.

Recall that, for a connected graph G, Hong and Zhang proved the following
inequality in [3]

µ1 ≥
√√√√∑n

i=1 N2
i∑n

i=1 t2i
≥

√√√√ ∑n
i=1 t2i∑n
i=1 d2

i

.

Recall again that, for a connected graph G, Yu, Lu, and Tian proved the
following inequalities in [6]√√√√ ∑n

i=1 t2i∑n
i=1 d2

i

≥
√∑n

i=1 d2
i

n
≥ 2|E(G)|

n
.

Therefore, for the tree T , we have the following inequalities

µ1 ≥
√√√√∑n

i=1 N2
i∑n

i=1 t2i
≥

√√√√ ∑n
i=1 t2i∑n
i=1 d2

i

≥
√∑n

i=1 d2
i

n

≥ 2|E(T )|
n

=
2(n − 1)

n
≥

√
2(n − 1)

n
.

From Theorem 4, we have that µ1 ≤
√

n − 1 ≤
√

3n−4
2

.

Hence

f(µ1) ≤ f(

√√√√∑n
i=1 N2

i∑n
i=1 t2i

).

So

Z(T ) ≤
√√√√ f(µ1)

(n − 2)(n−2)
≤

√√√√√√f(

√∑n

i=1
N2

i∑n

i=1
t2i

)

(n − 2)(n−2)
.
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If T is K1,n−1, a simple calculation shows that both sides of the inequal-
ity in this theorem are equal to n. If T is a tree satisfying the conditions in

(2) of this theorem, then by Theorem 3, we have that µ1 =

√∑n

i=1
N2

i∑n

i=1
t2i

. Since
N1

t1
= N2

t2
= ... = Nn

tn
, µ1 = N1

t1
. A simple calculation shows that both sides

of the inequality in this theorem are the same. If T is a tree satisfying the
conditions in (3) of this theorem, then again by Theorem 3, we have that

µ1 =

√∑n

i=1
N2

i∑n

i=1
t2i

. A simple calculation shows that both sides of the inequality

in this theorem are the same.

Now suppose that the inequality in this theorem becomes equality. Re-
viewing the above proof of the inequality in this theorem, we have that |µ2| =

|µ3| = ... = |µn−1| and µ1 =

√∑n

i=1
N2

i∑n

i=1
t2i

. Then Theorem 3 implies that

N1

t1
= N2

t2
= ... = Nn

tn
or T is a bipartite graph with V (T ) = V1 ∪ V2, where

V1 = { v1, v2, ..., vs } and V2 = { vs+1, vs+2, ..., vn } such that N1

t1
= N2

t2
= ... = Ns

ts

and Ns+1

ts+1
= Ns+2

ts+2
= ... = Nn

tn
. Then we have the following cases.

Case 1. There exists an i, where 2 ≤ i ≤ (n − 1), such that |µi| = 0.

In this case, we have that µ2 = µ3 = ... = µn−1 = 0. Since
∑n

i=1 µ2
i =

2|E(T )| and µ1 = −µn, µ1 =
√
|E(T )| =

√
n − 1. By Theorem 4, we have that

T is K1,n−1.

Case 2. For any i, where 2 ≤ i ≤ (n − 1), we have that |µi| �= 0.

If µ2 ≥ µ3 ≥ ... ≥ µn−1 ≥ 0 or 0 ≥ µ2 ≥ µ3 ≥ ... ≥ µn−1, then
by

∑n
i=1 µi = 0 we have that µ2 = µ3 = ... = µn−1 = 0, contradicting

to the assumption of this case. Thus there exists an integer r such that
µ2 ≥ µ3 ≥ ... ≥ µr > 0 > µr+1 ≥ µr+2 ≥ ... ≥ µn−1, where 2 ≤ r ≤ n − 2.

Now if N1

t1
= N2

t2
= ... = Nn

tn
, then µ1 = N1

t1
and µn = −µ1 = −N1

t1
. From

∑n
i=1 µ2

i = 2|E(T )| = 2(n−1), we have that µi =

√
2(n−1−µ2

1)

n−2
, where 2 ≤ i ≤ r,

and µj = −
√

2(n−1−µ2
1)

n−2
, where r + 1 ≤ j ≤ n − 1.

If T is a bipartite graph with V (T ) = V1∪V2, where V1 = { v1, v2, ..., vs } and
V2 = { vs+1, vs+2, ..., vn } such that N1

t1
= N2

t2
= ... = Ns

ts
and Ns+1

ts+1
= Ns+2

ts+2
= ... =

Nn

tn
, then µn = −µ1 = −

√∑n

i=1
N2

i∑n

i=1
t2i

. From again
∑n

i=1 µ2
i = 2|E(T )| = 2(n − 1),

we have that µi =

√
2(n−1−µ2

1)

n−2
, where 2 ≤ i ≤ r, and µj = −

√
2(n−1−µ2

1)

n−2
, where
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r + 1 ≤ j ≤ n − 2. QED

Note that Yu, Lu, and Tian proved the following theorem in [6]

Theorem 5. [6] Let G be a connected bipartite graph of order n. Then

µ1 ≥
√√√√∑n

i=1(d
2
i + ti)∑n

i=1 d2
i

,

where the equality holds if and only if G is a semiregular connected bipartite
graph.

They in [6] also proved that√√√√∑n
i=1(d

2
i + ti)∑n

i=1 d2
i

≥ 2

√∑n
i=1 d2

i

n
≥ 2

√
(
∑n

i=1 di)2

n2
≥ 4|E(G)|

n
.

Thus, for any tree T of order n ≥ 3, we have that√√√√∑n
i=1(d

2
i + ti)∑n

i=1 d2
i

≥ 4|E(T )|
n

=
4(n − 1)

n
≥

√
2(n − 1)

n
.

Notice that √
3n − 4

2
≥ √

n − 1 ≥ µ1 ≥
√√√√∑n

i=1(d
2
i + ti)∑n

i=1 d2
i

.

Hence, we can prove the following theorem via using a very similar argu-
ment as the one in the proof of Theorem 1.

Theorem 6. Let T be a tree of n ≥ 3 vertices and let f(x) be (1 + x2)2(3n−
4 − 2x2)n−2. Then

Z(T ) ≤

√√√√√√f(

√∑n

i=1
(d2

i +ti)∑n

i=1
d2

i

)

(n − 2)(n−2)
.
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