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Abstract

In this paper, a symmetry implicit scheme for solving convection-
diffusion equations is presented with a kind of exponential type trans-
formation. Based on the scheme a class of alternating group explicit
iterative method(AGI) is constructed. The AGI method is convergent,
unconditionally stable, and suitable for parallel computation. In order
to verify the conclusions for the AGI method, several numerical exam-
ples are presented.
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1 Preface

We consider the following time-dependent initial boundary value problem:⎧⎪⎪⎨⎪⎪⎩
∂u
∂t + k∂u

∂x = ε∂2u
∂x2 , 0 < x < 1, 0 ≤ t ≤ T

u(x, 0) = f(x),
u(0, t) = g1(t), u(1, t) = g2(t).

(1.1)

Many numerical methods for solving convection-diffusion equations have
been presented so far, which are sorted by explicit and implicit methods in
general. Considering the stability and accuracy of explicit schemes and the
computation difficulty of implicit schemes, it is a important work to construct
numerical methods with absolute stability while easy to compute. With the
development of parallel computer, researches on parallel numerical methods
are getting more and more popular. D. J. Evans and A. R. B. Abdullah
presented a class of alternating group method (AGE) for diffusion equations
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by the specifical combination of several asymmetric schemes in [1], and ap-
plied the method to convection-diffusion equations in [2]. The AGE method is
widely cared for it is simple for computing, unconditionally stable, and has the
property of parallelism. Based on the AGE method, many alternating group
methods have been presented such as in[3-7]. Most of the methods inherit the
advantages of the AGE method, and are of higher accuracy than the AGE
method, But researches on alternating group iterative methods are scarcely
presented.

We organize this paper as follows: In section 2, we present a symmetry
implicit scheme for solving (1.1) at first, based on which a class of alternating
group explicit iterative method(AGI) is constructed. In section 3, convergence
analysis and stability analysis are given. In section 4, results of numerical
experiments are presented.

2 The Alternating Group Iterative Method(AGI)

The domain Ω : (0, 1) × (0, T ) will be divided into (m × N) meshes with

spatial step size h= 1
m in x direction and the time step size τ= T

N . Grid points

are denoted by (xi, tn), xi = ih(i = 0, 1, ···, m), tn = nτ(n = 0, 1, · · · , T
τ ). The

numerical solution of (1.1) is denoted by un
i , while the exact solution u(xi, tn).

Let Un = (un
1 , un

2 , · · · , un
m−1)

T .

The equation (1.1) is equivalent to e−
kx
ε

∂u
∂t = ε ∂

∂x(e−
kx
ε

∂u
∂x). Integral from

xi− 1
2

to xi+ 1
2

we have (∂u
∂t )

n+ 1
2

i

∫ x
i+1

2
h

x
i− 1

2
h

e−
kx
ε dx ≈ ε[e−

kh
2ε (∂u

∂x)
n+ 1

2

i+ 1
2

− e
kh
2ε (∂u

∂x)
n+ 1

2

i− 1
2

].

We can derive an implicit scheme for solving (1.1) as below:

(e
kh
2ε −e−

kh
2ε )

un+1
i − un

i

τ
=

k

h
[e−

kh
2ε (

un+1
i+1 − un+1

i

2
+

un
i+1 − un

i

2
)−e

kh
2ε (

un+1
i − un+1

i−1

2
+

un
i − un

i−1

2
)]

Applying Taylor’s formula to the scheme at (xi, tn+ 1
2
), we can easily have

that the truncation error of the scheme is O(τ 2 + h2).

Let p = e−
kh
2ε , q = e

kh
2ε , r = kτ

h(q−p)
, then we have :

−rq

2
un+1

i−1 +[1+
r

2
(p+q)]un+1

i −rp

2
un+1

i+1 =
rq

2
un

i−1+[1− r

2
(p+q)un

i +
rp

2
un

i+1 (2.1)

We denote (2.1) as AUn+1 = F n. here

F n = (2I − A)Un + [
rq

2
(un+1

0 + un
0), 0, · · · , 0,

rp

2
(un+1

m + un
m)]T
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A =

⎛⎜⎜⎜⎜⎜⎜⎝
1 + r

2
(p + q) −rp

2−rq
2

1 + r
2
(p + q) −rp

2

... ... ...
−rq

2
1 + r

2
(p + q) −rp

2−rq
2

1 + r
2
(p + q)

⎞⎟⎟⎟⎟⎟⎟⎠
(m−1)×(m−1)

The alternating group iterative method will be constructed in two condi-

tions as follows: (1)m = 4s + 1, s is an integer. Let A = 1
2(G1 + G2), here

G1 =

⎛⎜⎜⎜⎜⎜⎜⎝
G11

...
...

...
G11

⎞⎟⎟⎟⎟⎟⎟⎠
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, G2 =

⎛⎜⎜⎜⎜⎜⎜⎝
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...
G11
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2
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2
0 0
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Then the alternating group iterative method I can be derived as below:

{
(ρI + G1)U

n+1(k+ 1
2
) = (ρI − G2)U

n+1(k) + 2F n

(ρI + G2)U
n+1(k+1) = (ρI − G1)U

n+1(k+ 1
2
) + 2F n

(2.2)

Here k is the iterative number.

(2)m = 4s + 3, s is an integer. Let A = 1
2(G1 + G2), here

G1 =

⎛⎜⎜⎜⎜⎜⎜⎝
G11

...
...

G11

G21

⎞⎟⎟⎟⎟⎟⎟⎠
(m−1)×(m−1)

, G2 =

⎛⎜⎜⎜⎜⎜⎜⎝
G21

G11

...
...

G11

⎞⎟⎟⎟⎟⎟⎟⎠
(m−1)×(m−1)

Then the alternating group iterative method II can be derived as below:

{
(ρI + G1)U

n+1(k+ 1
2
) = (ρI − G2)U

n+1(k) + 2F n

(ρI + G2)U
n+1(k+1) = (ρI − G1)U

n+1(k+ 1
2
) + 2F n

(2.3)
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3 Convergence Analysis and Stability Analy-

sis

In order to verify the convergence of the AGI method, from [8] we have the
following lemmas:
Lemma 1 Let θ >0, and G + GT is nonnegative, then (θI + G)−1exists, and

‖(θI + G)−1‖ 2 ≤ θ−1 (3.1)

Lemma 2 On the conditions of Lemma 1, we have:

‖(θI − G)(θI + G)−1‖2 ≤ 1 (3.2)

Theorem 1 The alternating group iterative method I given by (2.2) is
convergent.

proof: Let Ĝ1 = 1
r
(G1 − I), Ĝ2 = 1

r
(G2 − I), then G1 = I + rĜ1, G2 =

I + rĜ2

From the construction of the matrixes Ĝ1 and Ĝ2 we can see they are both
nonnegative definite real matrixes. Thus G1, G2, (G1 + GT

1 ), (G2 + GT
2 ) are

all nonnegative matrixes. Then we have ‖(ρI −G1)(ρI + G1)
−1‖2 ≤ 1, ‖(ρI −

G2)(ρI + G2)
−1‖2 ≤ 1.

From (2.2), we can obtain Un+1 = GUn + 2(ρI + G2)
−1[(ρI − G1)(ρI +

G1)
−1F n + F n], G = (ρI + G2)

−1(ρI −G1)(ρI + G1)
−1(ρI −G2) is the growth

matrix.
Let G̃ = (ρI+G2)G(ρI+G2)

−1 = (ρI−G1)(ρI+G1)
−1(ρI−G2)(ρI+G2)

−1,
then ρ(G) = ρ(G̃) ≤ ‖G̃‖2 ≤ 1., which shows the alternating group method I
given by (2.2) is convergent.

Analogously we have:

Theorem 2 The alternating group iterative method II given by (2.3) is
also convergent.

We will use the Fourier method to analyze the stability of (2.1). Let Un =
V neiαxj , then from (2.1) we have

V n+1 = V n 1 − r
2
(p + q) + r

2
(p + q)cos(αh) + i r

2
(p − q)sin(αh)

1 + r
2
(p + q) − r

2
(p + q)cos(αh) − i r

2
(p − q)sin(αh)

. (3.3)

Let x = r
2
(p + q) − r

2
(p + q)cos(αh), y = r

2
(p − q)sin(αh), then we have

V n+1 =
1 − x + iy

1 + x − iy
V n

Considering x ≥ 0, it follows that |1−x+iy
1+x−iy

|2 = (1−x)2+y2

(1+x)2+y2 ≤ 1, so we have:

Theorem 3 The scheme (2.1) is unconditionally stable.
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4 Numerical Experiments

We consider the following problem:⎧⎪⎪⎨⎪⎪⎩
∂u
∂t + k∂u

∂x = ε∂2u
∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T

u(x, 0) = 0,
u(0, t) = 0, u(1, t) = 1.

(4.1)

The exact solution of the problem above is denoted in [2] as below:

u(x, t) =
e

kx
ε − 1

ekε − 1
+

∞∑
n=1

(−1)nnπ

(nπ)2 + ( k
2ε

)2
e

k(x−1)
2ε sin(nπx)e−[(nπ)2ε+ k2

4ε
]t

Let A.E denote absolute error, while P.E denote relevant error. A.E=|un
i −

u(xi, tn)|, P.E=100 × |un
i − u(xi, tn)/u(xi, tn)|. In the numerical experiments

we let k = ε = ρ = 1. Using the iterative error 1× 10−6 to control the process
of iterativeness, We will present the numerical results in the following tables:

Table 1: The numerical results for the iterative scheme I

m = 17, τ = 10−4, t = 100τ m = 17, τ = 10−5, t = 100τ
A.E 6.513 ×10−5 7.133 ×10−5

P.E 3.106 ×10−2 8.477 ×10−2

average iterative times 3 2

Table 2: The numerical results for the iterative scheme I

m = 21, τ = 10−4, t = 100τ m = 21, τ = 10−4, t = 1000τ
A.E 4.269 ×10−5 1.718×10−5

P.E 2.084 ×10−2 1.127 ×10−2

average iterative times 3 2.994

Table 3: The numerical results for the iterative scheme II

m = 19, τ = 10−4, t = 100τ m = 19, τ = 10−5, t = 100τ
A.E 5.211 ×10−5 5.707 ×10−6

P.E 2.521 ×10−2 1.561 ×10−2

average iterative times 3 2

Table 4: The numerical results for the iterative scheme II

m = 23, τ = 10−4, t = 100τ m = 23, τ = 10−4, t = 1000τ
A.E 3.563 ×10−5 1.434×10−5

P.E 1.751 ×10−2 9.405 ×10−3

average iterative times 3 2.998

From Table 1-4 we can see that the numerical solution for the AGI method
(2.2) and (2.3) can converge to the exact solution fast, and we can get higher
accuracy when the spatial step diminishes, which accords to the conclusion of
convergence and error analysis.
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5 Conclusions

In this paper, an universal alternating group iterative(AGI) method is
derived by using a special implicit scheme of high accuracy, also convergence
analysis and stability analysis are finished. The AGI method is convenient
to use in solving large equation set, and is suitable for parallel computation.
Furthermore, using the Taylor formula we can obtain another implicit scheme
of higher accuracy than (2.1), and based on the scheme we can derive another
alternating group iterative method by almost the same procession in section
2. The construction of the AGI method can also be applied to other partial
differential equations.
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