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Abstract

In this paper, we suggest and analyze a new two-step iterative method
for solving a system of fuzzy nonlinear equations by using the Midpoint
quadrature rule. We prove that this method has quadratic convergence.
The fuzzy quantities are presented in parametric form. Sever examples
are given to illustrate the efficiency of the proposed method.
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1 Introduction

In recent years much attention has been given to develop iterative type meth-
ods for solving systems of simultaneous nonlinear equations because of their
important rule in various areas such as mathematics, statistics, engineering
and social sciences.

The concept of fuzzy numbers and arithmetic operation with these num-
bers were first introduced and investigated by Zadeh [10]. One of the major
applications of fuzzy number arithmetic is nonlinear systems whose parameters
are all or partially represented by fuzzy numbers[2, 5, 7]. Standard analytical
techniques presented by Buckley and Qu in [1], cannot be suitable for solving
the equations such as

{
AX4 + BY 4 + CX3 + DY 3 + EX2Y 2 + F = G,
X − cos(Y ) = H,

where X, Y, A, B, C, D, E, F, G and H are fuzzy numbers. In this paper we
have an adjustment on the classic Newton’s method in order to accelerate the
convergence or to reduce the number of operations and evaluations in each step
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of the iterative process. We suggest and analyze an iterative method by using
the Trapezoidal rule. This method is an implicit-type method. To implement
this, we use Newton’s method as predictor method and then use this method
as corrector method. Several examples are given to illustrate the efficiency and
advantage of this two-steep method.

In Section 2, we bring some basic definitions and results on fuzzy numbers.
In Section 3 we develop some modification on Newton’s method to introduce
Trapezoidal Newton’s method for solving of the system of nonlinear real equa-
tions and quadratic convergence of this method has been proved. In Section
4 we apply the obtained results from Section 3 for solving of nonlinear fuzzy
systems. The proposed algorithm is illustrated by some examples in Section 5
and a comparison with Classical Newton’s method will be done, and conclusion
is in Section 6.

2 Preliminaries

Definition 2.1 A fuzzy number is set like U : R → I = [0, 1] which satis-
fies, [4, 10, 11],

1. U is upper semi-continuous,

2. U(x) = 0 outside some interval [c, d],

3. There are real numbers a, b such that c � a � b � d and

3.1. U(x) is monotonic increasing on [c, a],

3.2. U(x) is monotonic decreasing on [a, b],

3.3. U(x) = 1, a � x � b.

An equivalent parametric is also given in [6] as follows.

Definition 2.2 A fuzzy number U in parametric form is a pair (U1, U2) of
functions U1(r), U2(r), 0 � r � 1, which satisfies the following requirements:

1. U1(r) is a bounded monotonic increasing left continuous function,

2. U2(r) is a bounded monotonic decreasing left continuous function,

3. U1(r) � U2(r), 0 � r � 1.

A crisp number α is simply represented by U1(r) = U2(r) = α, 0 � r � 1.
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A popular fuzzy number is triangular fuzzy number U = (x0, x1, y0, y1)
with interval defuzzifier [x1, y0] where the membership function is

U(x) =

⎧⎪⎪⎨
⎪⎪⎩

x−x0

x1−x0
; x0 � x � x1,

1 ; x ∈ [x1, y0],
y1−x
y1−y0

; y0 � x � y1,

0 ; otherwise.

Its parametric form is

U1(r) = (x1 − x0)r + x0, U2(r) = y1 − (y1 − y0)r.

If x1 = y0 then U = (x0, x1, y1)is called triangular fuzzy number.
Let TF (R) be the set of all trapezoidal fuzzy numbers. The addition and

scalar multiplication of fuzzy numbers are defined by the extension principle
and can be equivalently represented as follows.

For arbitrary U = (U1, U2), V = (V1, V2) and k > 0 we defined addition
U + V and multiplication by real number k > 0 as

(U + V )1(r) = U1(r) + V1(r), (U + V )2(r) = U2(r) + V2(r),
(kU)1(r) = kU1(r), (kU)2(r) = kU2(r).

3 Midpoint Newton’s method

We consider the problem of finding a real zero of a function F : D ⊆ R
n →

R
n, that is, a real solution α, of the nonlinear equation system F (x) = 0, of n

equations with n variables. This solution can be obtained as a fixed point of
some function G : R

n → R
n by means of the fixed point iteration method

xk+1 = G(xk), k = 0, 1, . . . ,

where x0 is the initial estimation. The best known fixed point method is the
classical Newton’s method, given by

xk+1 = xk − JF (xk)
−1F (xk), k = 0, 1, 2, . . . ,

where JF (xk) is the Jaccobian Matrix of the function F evaluated in xk.
Let F : D ⊆ R

n → R
n be a sufficiently differentiable function and α be a

zero of the system of nonlinear equations F (x) = 0. The following result will
be used describe the Newton’s method and Midpoint Newton’s method; see
its proof in [8, 9].

Lemma 3.1 Let F : D ⊆ R
n → R

n be continuously differentiable on a convex
set D. Then, for any x, y ∈ D, F satisfies
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F (y)− F (x) =

∫ 1

0

JF (x + t(y − x))(y − x)dt. (1)

Once the iterate xk has been obtained, using (1):

F (y) = F (xk) +

∫ 1

0

JF (xk + t(y − xk))(y − xk)dt. (2)

If we estimate JF (xk + t(y − xk)) in the interval [0, 1] by its value in t = 0,
that is by JF (xk), and take y = α, then

0 ≈ F (xk) + JF (xk)(α − xk),

is obtained, and a new approximation of α can be done by

xk+1 = xk − JF (xk)
−1F (xk),

what is the classical Newton method (CN) for k = 0, 1, . . .
If an estimation of (2) is made by means of the Midpoint rule and y = α is

taken, then

0 ≈ F (xk) + JF (
xk + α

2
)(α − xk),

is obtained and a new approximation xk+1 of α is given by

xk+1 = xk − JF (
xk + xk+1

2
)−1F (xk).

In order to avoid the implicit problem that this equation involves, we use the
(k + 1)th iteration of Newton method in the right side. Then,

xk+1 = xk − JF (
xk + zk

2
)−1F (xk), k = 0, 1, . . . , (3)

where
zk = xk − JF (xk)

−1F (xk).

This method is called Midpoint Newton’s method (MN).
The Midpoint Newton’s method can be understood as a substitution of JF (xk)

in Newton’s method by JF (xk+zk

2
). In the following, we bring the quadratic

convergence of Midpoint Newton’s method from [3].

Theorem 3.1 Let F : R
n → R

n be differentiable at each point of an open
neighborhood D of α ∈ R, that is a solution of the system F (x) = 0. Let us
suppose that JF (x) is continuous and non singular in α. Then the sequence
{xk}k�0 obtained using the iterative expression (3) converges to α and

lim
k→∞

‖xk+1 − α‖
‖xk − α‖ = 0.
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Moreover, if there exists γ > 0 such that

‖JF (x) − JF (α)‖ � γ‖x − α‖,

for any x in D, then there exists a constant M > 0 such that

‖xk+1 − α‖ � M‖xk − α‖2, ∀k � k0,

where k0 depends on the initial estimation x0.

4 Midpoint Newton’s method for fuzzy non-

linear system

Now our aim in this section is to obtain a solution for nonlinear system

{
F (X,Y ) = C,
G(X,Y ) = D,

(4)

where X,Y,C and D are fuzzy numbers. The parametric form ∀r ∈ [0, 1], is
as follows ⎧⎪⎪⎨

⎪⎪⎩

F1(X1, X2, Y1, Y2; r) = C1,
F2(X1, X2, Y1, Y2; r) = C2,
G1(X1, X2, Y1, Y2; r) = D1,
G2(X1, X2, Y1, Y2; r) = D2,

(5)

Suppose that X = (α1, α2) and Y = (β1, β2) are the solutions of (5), i.e.,∀r ∈
[0, 1]

⎧⎪⎪⎨
⎪⎪⎩

F1(α1, α2, β1, β2; r) = C1,
F2(α1, α2, β1, β2; r) = C2,
G1(α1, α2, β1, β2; r) = D1,
G2(α1, α2, β1, β2; r) = D2,

Therefore, if X0 = (X10 , X20) and Y0 = (Y10, Y20) are approximation solutions
for this system, then ∀r ∈ [0, 1], there are hi(r), ki(r); i = 1, 2 such that

⎧⎪⎪⎨
⎪⎪⎩

α1(r) = X10(r) + h1(r),
α2(r) = X20(r) + k1(r),
β1(r) = Y10(r) + h2(r),
β2(r) = Y20(r) + k2(r).
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Now by using of the Taylor series of F1, F2, G1, G2 about (X10, X20 , Y10, Y20),
then ∀r ∈ [0, 1],
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(α1, α2, β1, β2; r)
= F1(Δ0) + h1F1X1

(Δ0) + k1F1X2
(Δ0) + h2F1Y1

(Δ0) + k2F1Y2
(Δ0) + O(Γ) = C1,

F2(α1, α2, β1, β2; r)
= F2(Δ0) + h1F2X1

(Δ0) + k1F2X2
(Δ0) + h2F2Y1

(Δ0) + k2F2Y2
(Δ0) + O(Γ) = C2,

G1(α1, α2, β1, β2; r)
= G1(Δ0) + h1G1X1

(Δ0) + k1G1X2
(Δ0) + h2G1Y1

(Δ0) + k2G1Y2
(Δ0) + O(Γ) = D1,

G2(α1, α2, β1, β2; r)
= G2(Δ0) + h1G2X1

(Δ0) + k1G2X2
(Δ0) + h2G2Y1

(Δ0) + k2G2Y2
(Δ0) + O(Γ) = D2,

where Δ0 = (X10, X20 , Y10, Y20; r), Γ = h2
1 + h2

2 + h1k1 + h2k2 + h1k2 + h2k1 +
k2

1 +k2
2 and if X10 , X20, Y10 and Y20 are near to α1, α2, β1 and β2, respectively,

then hi(r) and ki(r); i = 1, 2 are small. It is assumed, of course, that all needed
partial derivative exists and bounded. Therefore for enough small hi(r) and
ki(r); i = 1, 2 we have ∀r ∈ [0, 1],
⎧⎪⎪⎨
⎪⎪⎩

F1(Δ0) + h1F1X1
(Δ0) + k1F1X2

(Δ0) + h2F1Y1
(Δ0) + k2F1Y2

(Δ0) � C1,
F2(Δ0) + h1F2X1

(Δ0) + k1F2X2
(Δ0) + h2F2Y1

(Δ0) + k2F2Y2
(Δ0) � C2,

G1(Δ0) + h1G1X1
(Δ0) + k1G1X2

(Δ0) + h2G1Y1
(Δ0) + k2G1Y2

(Δ0) � D1,
G2(Δ0) + h1G2X1

(Δ0) + k1G2X2
(Δ0) + h2G2Y1

(Δ0) + k2G2Y2
(Δ0) � D2,

and hence hi(r) and ki(r); i = 1, 2 are unknown quantities which can be ob-
tained by solving the following equations, ∀r ∈ [0, 1],

J(Δ0)

⎡
⎢⎢⎣

h1(r)
k1(r)
h2(r)
k2(r)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

C1(r) − F1(Δ0)
C2(r) − F2(Δ0)
D1(r) − G1(Δ0)
D2(r) − G2(Δ0)

⎤
⎥⎥⎦ , (6)

where

J(Δ0) =

⎡
⎢⎢⎣

F1X1
(Δ0) F1X2

(Δ0) F1Y1
(Δ0) F1Y2

(Δ0)
F2X1

(Δ0) F2X2
(Δ0) F2Y1

(Δ0) F2Y2
(Δ0)

G1X1
(Δ0) G1X2

(Δ0) G1Y1
(Δ0) G1Y2

(Δ0)

G2X1
(Δ0) G2X2

(Δ0) G2Y1
(Δ0) G2Y2

(Δ0)

⎤
⎥⎥⎦ .

is the Jaccobian Matrix evaluated in Δ0 = (X10, X20, Y10, Y20; r). Hence, the
next approximations for X1(r), X2(r), Y1(r) and Y2(r) are as follows⎧⎪⎪⎨

⎪⎪⎩

X11(r) = X10(r) + h1(r),
X21(r) = X20(r) + k1(r),
Y11(r) = Y10(r) + h2(r),
Y21(r) = Y20(r) + k2(r),

for all r ∈ [0, 1].
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We can obtain approximated solution, ∀r ∈ [0, 1], by using the recursive
scheme ⎧⎪⎪⎨

⎪⎪⎩

X1n+1(r) = X1n(r) + h1,n(r),
X2n+1(r) = X2n(r) + k1,n(r),
Y1n+1(r) = Y1n(r) + h2,n(r),
Y2n+1(r) = Y2n(r) + k2,n(r),

(7)

where hi,0(r) = hi and ki,0(r) = ki(r); i = 1, 2 for n = 0, 1, 2, . . . Analogous to
(6) ∀r ∈ [0, 1],

J(Δn)

⎡
⎢⎢⎣

h1,n(r)
k1,n(r)
h2,n(r)
k2,n(r)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

C1(r) − F1(Δn)
C2(r) − F2(Δn)
D1(r) − G1(Δn)
D2(r) − G2(Δn)

⎤
⎥⎥⎦ , (8)

where Δn = (X1n , X2n, Y1n, Y2n; r). Now, we assume J(Δn) be nonsingular,
then from (7) recursive scheme of Classical Newton’s method (CN) is obtained
as follows ∀r ∈ [0, 1],

⎡
⎢⎢⎣

X1n+1(r)
X2n+1(r)
Y1n+1(r)
Y2n+1(r)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

X1n(r)
X2n(r)
Y1n(r)
Y2n(r)

⎤
⎥⎥⎦ − J(Δn)

−1

⎡
⎢⎢⎣

F1(Δn)
F2(Δn)
G1(Δn)
G2(Δn)

⎤
⎥⎥⎦ , (9)

where n = 0, 1, 2, . . .
From Midpoint Newton’s method (MN) in Section 3, by substitution of

J(Δn) in (8) by J(Δn+Δ′
n

2
), where Δ′

n = (X ′
1n

, X ′
2n

, Y ′
1n

, Y ′
2n

; r) and

⎡
⎢⎢⎣

X ′
1n

X ′
2n

Y ′
1n

Y ′
2n

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

X1n

X2n

Y1n

Y2n

⎤
⎥⎥⎦ − J(Δn)

−1

⎡
⎢⎢⎣

F1(Δn)
F2(Δn)
G1(Δn)
G2(Δn)

⎤
⎥⎥⎦ ,

then recursive scheme for Midpoint Newton’s method is obtained as follows

⎡
⎢⎢⎣

X1n+1(r)
X2n+1(r)
Y1n+1(r)
Y2n+1(r)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

X1n(r)
X2n(r)
Y1n(r)
Y2n(r)

⎤
⎥⎥⎦ − J(

Δn + Δ′
n

2
)−1

⎡
⎢⎢⎣

F1(Δn)
F2(Δn)
G1(Δn)
G2(Δn)

⎤
⎥⎥⎦ , (10)

where n = 0, 1, 2, . . . For initial guess, one can use the fuzzy number

{
X0 = (X1(0), X1(1), X2(1), X2(0)),
Y0 = (Y1(0), Y1(1), Y2(1), Y2(0)),
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and in parametric form

⎧⎪⎪⎨
⎪⎪⎩

X10(r) = X1(1) + (X1(1) − X1(0))(r − 1),
X20(r) = X2(1) + (X2(0) − X2(1))(r − 1),
Y10(r) = Y1(1) + (Y1(1) − Y1(0))(r − 1),
Y20(r) = Y2(1) + (Y2(0) − Y2(1))(r − 1)

when X1(0) � X1(1) � X2(1) � X2(0) and Y1(0) � Y1(1) � Y2(1) � Y2(0).
Remark 1. Sequence {(X1n , X2n)}∞n=0 and {(Y1n, Y2n)}∞n=0 convergent to
(α1, α2) and (β1, β2), respectively, iff ∀r ∈ [0, 1], limn→∞ X1n(r) = α1(r),
limn→∞ X2n(r) = α1(r), limn→∞ Y1n = β1(r) and limn→∞ Y2n = β2(r).

Lemma 4.1 Let {
F (α1, α2) = (C1, C2),
G(β1, β2) = (D1, D2)

and if the sequence {(X1n, X2n)}∞n=0 and {(Y1n, Y2n)}∞n=0 convergent to (α1, α2)
and (β1, β2), respectively, according to Trapezoidal Newton’s method, then

lim
n→∞

Pn = 0,

where

Pn = sup
0�r�1

max{h1,n(r), k1,n(r), h2,n(r), k2,n(r)}.

Proof. For ∀r ∈ [0, 1] in convergent case for i = 1, 2, we have

lim
n→∞

hi,n(r) = lim
n→∞

ki,n(r) = 0,

which completes the proof. �

Finally, under certain conditions of Theorem 3.1, for n = 4, can be assured
that Midpoint Newton’s method (MN) for fuzzy system (4) is convergent and
that this convergence is quadratic.

5 Numerical application

In this section we will check the effectiveness of Midpoint Newton’s method.

Example 5.1 Consider the fuzzy nonlinear system

{
X2 + Y 2 = (4.4, 5, 7),
X2 + Y 3 + (1, 2, 3) = (8.6, 11, 17.2).
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Figure 1: Solution of X

Without any loss of generality, assume that X and Y are positive, then the
parametric form of this system is as follows:

⎧⎪⎪⎨
⎪⎪⎩

X2
1 (r) + Y 2

1 (r) = (4.4 + 0.6r),
X2

2 (r) + Y 2
2 (r) = (7 − 2r),

X2
1 (r) + Y 3

1 (r) + (1 + r) = (8.6 + 2.4r),
X2

2 (r) + Y 3
2 (r) + (3 − r) = (17.2 − 6.2r).

To obtain initial guess we solve above system for r = 0 and r = 1, therefore

⎧⎪⎪⎨
⎪⎪⎩

X2
1 (0) + Y 2

1 (0) = 4.4,
X2

2 (0) + Y 2
2 (0) = 7,

X2
1 (0) + Y 3

1 (0) = 7.6,
X2

2 (0) + Y 3
2 (0) = 14.2,

⎧⎪⎪⎨
⎪⎪⎩

X2
1 (1) + Y 2

1 (1) = 5,
X2

2 (1) + Y 2
2 (1) = 5,

X2
1 (1) + Y 3

1 (1) = 9,
X2

2 (1) + Y 3
2 (1) = 9.

Consequently X1(0) = 0.903638, X2(0) = 1.2567, Y1(0) = 1.892997, Y2(0) =
2.328240, X1(1) = X2(1) = 1 and Y1(1) = y2(1) = 2. Therefore we obtain
the initial guess X0 = (0.903638,1, 1.2567) and Y0 = (1.892997,2, 2.328240).
After two iterations, we obtain the solution of X and Y by Midpoint Newton’s
method with the maximum error less than 10−6, respectively, and by classical
Newton’s method after two iterations the maximum error would be less than
10−2. For more details see Figures 1-2.

Now let us suppose X and Y are negative, then we have the following
system, ⎧⎪⎪⎨

⎪⎪⎩

X2
2 (r) + Y 2

2 (r) = (4.4 + 0.6r),
X2

1 (r) + Y 2
1 (r) = (7 − 2r),

X2
2 (r) + Y 3

1 (r) + (1 + r) = (8.6 + 2.4r),
X2

1 (r) + Y 3
2 (r) + (3 − r) = 17.2− 6.2r).
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Figure 3: Solution of X
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For r = 0, we have Y01 = 2.018856 and Y02 = 2.242412, therefore there are not
negative roots.

Example 5.2 Consider the fuzzy nonlinear system

{
X2 + Y 2 = (12, 13, 17.6),
X2 − 1

4
Y 2 = (0.6, 1.75, 3.5).

Without any loss of generality, assume that X and Y are positive, then the
parametric form of this system is as follows:

⎧⎪⎪⎨
⎪⎪⎩

X2
1 (r) + Y 2

1 (r) = (12 + r),
X2

2 (r) + Y 2
2 (r) = (17.6 − 4.6r),

X2
1 (r) − 1

4
Y 2

2 (r) = (0.6 + 1.15r),
X2

2 (r) − 1
4
Y 2

1 (r) = (3.5 − 1.75r).

By solving above system for r = 0 and r = 1, the values X1(0) = 1.897366,
X2(0) = 2.366431, Y1(0) = 2.898275, Y2(0) = 3.464101, X1(1) = X2(1) =
2 and Y1(1) = Y2(1) = 3 is concluded. Then we obtain the initial guess
X0 = (1.897366,2, 2.366431) and Y0 = (2.898275,3, 3.464101). By applying
Midpoint Newton’s method, after two iterations, the maximum error for the
obtained solution of X and Y would be less than 10−9, and by classical New-
ton’s method after two iterations the maximum error is less than 10−3. For
more details see Figures 3-4. Now suppose X and Y are negative, we have

⎧⎪⎪⎨
⎪⎪⎩

X2
2 (r) + Y 2

2 (r) = (12 + r),
X2

1 (r) + Y 2
1 (r) = (17.6 − 4.6r),

X2
2 (r) − 1

4
Y 2

1 (r) = (0.6 + 1.15r),
X2

1 (r) − 1
4
Y 2

2 (r) = (3.5 − 1.75r).

By solving the above system for r = 0 and r = 1, we obtain the initial guess
X0 = (−2.366431,−2,−1.897366) and Y0 = (−3.464101,−3,−2.898275). If
we apply two iterations from Midpoint Newton’s method, the maximum error
would be less than 10−9, and by classical Newton’s method after two iterations
the maximum error is less than 10−3, see Figures 5-6.

6 Conclusion

In this paper, we suggested numerical solving method for fuzzy nonlinear
systems. This method is an implicit-type method. To implement this, we use
Newton’s method as predictor method and then use this method as corrector
method. The method is discussed in detail. Several examples are given to
illustrate the efficiency and advantage of this two-steep method.
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Figure 6: Solution of Y
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