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Abstract

We consider a stochastic gradient process, which is used for the esti-

mation of a conditional expectation : Xn+1 = Xn−an∇xφ(Vn,Xn)(φ(Vn,Xn)−
Un). We give one theorem of almost sure convergence and one theorem

of mean quadratic convergence. Several applications are given : lin-

ear estimation of a conditional expectation, sequential estimation of

law mixture parameters in classification, estimation of an observable

function in random points, estimation of a function h(x) = E[Z(x)],

estimation of a linear regression parameters, estimation of baysian dis-

criminant function.

Mathematics Subject Classification: Primary: 62; Secondary: L20

Keywords: Stochastic approximation, conditional expectation, stochastic

gradient



1220 A. Bennar, A. Bouamaine and A. Namir

1. Introduction

We consider a random vector Xn in R
p defined by :

Xn+1 = Xn − an∇xφ(Vn, Xn)(φ(Vn, Xn) − Un)

with

∗ (an) is a sequence of positive real numbers ;

∗ (U1, V1), (U2, V2), ..., (Un, Vn) is a sample of independent random

variable couples with the same probability law that (U, V ).

∗ φ(., .) is a real known measurable function in R
k × R

p.

In the following, 〈., .〉 and ‖.‖ are respectively the usual inner product and

norm in R
k ; A′ denotes the transposed matrix of A, λmin (B) the smallest

eigenvalue of B ; the abbreviation a.s. means almost surely and q.m. means

quadratic mean.

2. Convergence

2.1 Almost Sure Convergence

• Let’s make the following hypotheses :

(H1) an > 0,

∞∑
1

a2
n < ∞

(H ′
1) an > 0,

∞∑
1

an = ∞,

∞∑
1

a2
n < ∞

(H2) there exists a and b such thats, for all θ = (θ1, θ2, ..., θp)
′ ∈ R

p,

V ar

[
∂φ(V, x)

∂xi

(φ(V, x) − U)

]
< ag(x) + b, for all i = 1, 2, ..., p.

(H3) there exists K > 0 such that, for all x = (x1, x2, ..., xp)
′,

∣∣∣∣ ∂
2g(x)

∂xi∂xj

∣∣∣∣ < K, for i, j = 1, 2, ..., p.

(H4) θ∗ is a local minimum of g :

∃ α > 0 : (x 	= θ∗, ‖x − θ∗‖ < α) ⇒ (g(θ∗) < g(x))
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(H5) θ∗ is the unique stationary point of g :

∀ x ∈ R
p, (x 	= θ∗) ⇔ (∇xg(x) 	= 0)

Theorem

Under hypotheses H ′
1, H2, H3, H4, H5, we have :

Xn
a.s.−→ θ or ‖Xn‖ a.s.−→ +∞

Proof

See [3] �

2.2 Quadratic Mean Convergence

• Let’s make the following hypotheses :

(H8) φ(x, θ), ∇xφ(x, θ) are uniformly bounded in x and θ.

(H9) It exists two real positives functions h and h′ defined in R
p such that :

∀θ, θ′ ∈ R
p, ∀x ∈ R

q,

|φ(x, θ) − φ(x, θ′)| ≤ h(x)‖θ − θ′‖

‖∇θφ(x, θ) −∇θφ(x, θ′)‖ ≤ h′(x)‖θ − θ′‖

E[h(X)] < ∞; E[h′(X)] < ∞

(H10) Y is a real random bounded variable.

Theorem

Under hypotheses H ′
1, H3, H8, H9, H10, we have :

∇θg(Θn)
a.s.−→ 0 and ∇θg(Θn)

q.m.−→ 0

Proof

See [3] �

3. Applications

3.1 Séquential Estimation of a Conditional Expectation by the

linear model
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Let ρ1, ρ2, ..., ρp p functions of q real variables, measurable, known.

Let’s put ρ = (ρ1, ρ2, ..., ρp)
′

to appraise θ that minimizes E

[
(E[U/V ] − x′ρ(V ))2

]
, We consider the

stochastic approximation process (Xn) in R
p by :

Xn+1 = Xn − anρ(Vn)(ρ′(Vn)Xn − Un)

Where (U1, V1), (U2, V2), ..., (Un, Vn) is a sample of (U, V )formed of

independent random variables and distributed identically.

Let’s make hypotheses

(H6) ρ1(V ), ρ2(V ), ..., ρp(V ) are linearly independent.

(H7) Moments of order 4 of the vector (ρ1(V ), ρ2(V ), ..., ρp(V ), U) exists.

(H8) X1 is an random variable such that E[‖X1‖2] < ∞

Corollary

Under hypotheses H ′
1, H6, H7, H8, we have : Xn

a.s.−→ θ

Proof

Let φ the real function of R
q × R

p defined by :

φ(V, x) = x′ρ(V ) =

p∑
j=1

xjρj(V )

For j = 1, 2, ..., p,
∂φ(V, x)

∂xj

= ρj(V ), we have : ∇xφ(V, x) = ρ(V )

Let : A = E[ρ(V )ρ′(V )]

Under H7, the matrix A is symmetrical definite positive, therefore inversible.

Then :

θ∗ is solution unique of the equation

∇xg(x) = 2E[ρ(V )(ρ′(V )x − U)] = 0

We have : θ∗ = A−1E[ρ(V )U ]
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• Let’s prove that the hypothesis H2 is verified.

We have

g(x) = E[U2] + ‖x‖2 − 2 < x, θ∗ >A= E[U2] + ‖x − θ∗‖2
A − ‖θ∗‖2

A

≥ c‖x − θ∗‖2
A + d (c = λmin(A) and d = E[U2] − ‖θ∗‖2

A)

≥ 1

2
c‖x‖2 − c‖x‖2 + d ≥ e‖x‖2 + f (e =

c

2
and f = d− c‖x‖2)

Therefore, for i = 1, 2, ..., p, we have:

V ar

[
∂φ(V, x)

∂xi

(φ(V, x) − U)

]
= V ar

[
ρi(V )(x′ρ(V ) − U)

]

≤ E[ρ2
i (V )(x′ρ(V ) − U)2]

≤ a‖x‖2 + b (a = 2E[ρ2
i (V )‖ρ(V )‖2], b = 2E[ρ2

i (V )U2])

≤ Ag(x) + B (A =
1

e
, B = b − af

e
)

• Let’s prove that the hypothesis H3 is verified.

For i = 1, 2, ..., p, We have
∂g(x)

∂xi
= 2E[(x′ρ(V ) − U)ρi(V )]

Therefore : for i, j = 1, 2, ..., p, we have
∂2g(x)

∂xi∂xj

= 2E[ρj(V )ρi(V )], that doesn’t depend of x.

Hypotheses of the theorem 2.1 are verified, therefore :

Xn
a.s.−→ θ∗ or ‖Xn‖ a.s.−→ +∞

• Let’s prove that that we can not have ‖Xn‖ a.s.−→ +∞

Indeed : as
∞∑
1

an‖ ∇xg(Xn)‖2 < ∞ a.s. ( see [3] Lemma 2.1) and

∑
n an = +∞, there exists an sub-sequence of integers (nl) such that

‖∇xg(Xnl
)‖ a.s.−→ 0

Besides : ∇xg(x) = 2E[ρ(V )(ρ′(V )x − U)] = E[ρ(V )(ρ′(V )] = 2A(x − θ∗)

Therefore : ‖∇xg(Xn)‖2 ≥ 4λ2
min(A)‖Xn − θ∗‖2 (λmin(A) > 0)

Therefore : If ‖Xn‖ p.s.−→ +∞ then ‖∇xg(Xn)‖ a.s.−→ +∞. What is absurd. �

3.2 Sequential Estimation of parameters of a law mixture in
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classification

Let X1, X2, ..., Xn, ... a sample of X formed of random variables

independent, distributed identically of law µ and to values in R
q definied on

a probability space (Ω,A, P ).

We suppose that µ is a mixture of laws : µ =
∑r

j=1 pjµj with :

∀j, pj ≥ 0,
r∑

j=1

pj = 1 et µj is a law of probability on R
q.

Let F (resp. Fj) the function of distribution of µ (resp. µj)

We have : ∀x ∈ R
q, F (x) =

∑r
j=1 pjFj(x)

For j = 1, 2, ..., r, We suppose that pj depends a parameter βj and Fj of a

multidimentional parameter mj .

Let θ = (β1, β2, ..., βr, m
1, m2, ..., mr)′

Let p the dimension of θ and let Φ the real function of R
p ×R

q, measurable

such that :

Φ(x, θ) =
r∑

j=1

π(βj)Ψ(mj, x)

We suppose that functions π et Ψ are known verifying :

∀j, π(βj) ≥ 0,

r∑
j=1

π(βj) = 1

∀j, Ψ(mj , .) is a function of distribution in R
q.

We wish to determine the parameter θ of R
p such that Φ(x, θ) approach

F (x) in the least square sense.

Let f(θ) = E

[
(Φ(X, θ) − F (X))2

]

We look for θ∗ such that the function f is minimal for θ = θ∗.

Let Z a random variable in R
q of law µ and Y the indicatory function

defined by :

Y = IZ(X) =

⎧⎨
⎩

1 if x ∈ Dz

0 else
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with Dz = {x ∈ R
q : x ≥ z}

and : x′ = (x1, ..., xq) z′ = (z1, ..., zq)

x ≥ z ⇔ ∀j = 1, 2, ...q, xj ≥ zj

We have : E[IZ(x)] = P (Z ≤ x) = F (x)

E[Y/X ] = E[IZ(X)/X ] = F (X)

Therefore f(θ) = E

[
(E[Y/X ] − Φ(X, θ))2

]

Let g(θ) = E[(Y − Φ(X, θ))2] = E[(IZ(X) − Φ(X, θ))2]

The problem of estimation of θ∗ that minimizes f becomes to look for θ∗

such that g is minimal for θ = θ∗

We have : ∇g(θ) = 2E

[
∇θΦ(X, θ)

(
Φ(X, θ) − IZ(X)

)]

For estimate θ∗ by séquential schem, we define the process (Θn) in R
p by :

Θn+1 = Θn − an∇θΦ(Xn, Θn)

(
Φ(Xn, Θn) − IZn(Xn)

)

with (X1, Z1), (X2, Z2), ..., (Xn, Zn) a sample of (Z, X) formed of random

independent variables, distributed identically and (an) is asequence of

positive real numbers.

Corollary

Under H1, H2, H3, H4, H5, we have Θn
a.s.−→ θ∗ or ‖Θn‖ a.s.−→ +∞

Proof

It is a consequence of the previous theorem. �
3.3 Estimation of an observable function in random points.

Let h a real function of m real variables. Let an random variable X to values

in R
m. We suppose that we can observe the real random variable h(X).

We have E[h(X)/X ] = h(X). We can approach h(X) by a linear

combinaison of functions Υi(X), i = 1, 2, ..., p, and estimate so the function h

by using the general method of the gradient, with Y = h(X).

3.4 Estimation of an function h(x) = E[Z(x)].

Let a family of real random variable {Z(x), x ∈ R
m}; Let E[Z(x)] = h(x) and

let an random random variable X to values in R
m. We suppose that we can

observe the real random variable Z(X).

We have E[Z(X)/X ] = h(X). We can approach h(X) by a linear
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combinaison of functions Υi(X), i = 1, 2, ..., p, and estimate so the function h

by using the general method of the gradient, with Y = Z(X).

3.4 Estimation of a linear regression parameters.

The most direct application of the stochastic gradient method is the linear

regression. Y is the explained random variable, X1, X2, ..., Xm are the

explanatory random variables, that constitute the variable X ∈ R
m. We

approach E[Y/X1, X2, ..., Xm] by a linear combinaison of Υi(X),

i = 1, 2, ..., p.

3.5 Estimation of baysian discriminant function.

We distinguish r classes C1, C2, ..., Cr in a set of individuals. To classe a new

individual, we measure m variables X1, X2, ..., Xm, that constitute the

variable X ∈ R
m.

The utilization of the ordering baysian rule requires the knowledge of

probabilities to posteriori P (Ci/X).
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Thèse de Doctorat de troisième cycle, Université de Nancy 1 (1981).
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