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Abstract
In this paper, we present a new method for solving singular two-

point boundary value problem for multi-pantograph delay differential
equation having singular coefficients. Its exact solution is represented
in the form of series in reproducing kernel space. In the mean time, the
n-term approximation un(x) to the exact solution u(x) is obtained. An
numerical example is studied to demonstrate the accuracy of the present
method. Results obtained by the method are compared with the exact
solution of each example and are found to be in good agreement with
each other.
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1 Introduction

In this paper, we consider the following inhomogeneous second order multi-
pantograph delay differential equation with singularities in reproducing kernel
space⎧⎨
⎩

u′′(x) +
m∑

i=1

1
pi(x)

u′(hix) + 1
q(x)

u(x) = g(x), 0 < x, hi < 1, i = 1, . . . , m

u(0) = 0, u(1) = 0,
(1.1)
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where u(x) ∈W 3
2 [0, 1], g(x) ∈W 1

2 [0, 1], pi(x) , q(x) are continuous and maybe
equal to zero at 0 or 1. These equations arise in a variety of applications ,
such as numeber theory, electrodynamics, astrophysics, nonlinear dynamical
systems, probability theory on algebraic structure, quantum mechanics and
cell growth. Therefore, the problem has attracted much attention and has
been studied by many authors [1],[3-9],[10]. In recent years, much work has
been done in reproducing kernel space[2],[8],[11]. The basic motivation of this
work is to apply a new method to solve multi-pantograph delay differential
equation in reproducing kernel space.

In this paper, we will give the representation of exact solution to Eq.(1.1)
and approximate solution in the reproducing kernel space under the assump-
tion that the solution to Eq.(1.1) is unique. The approach is simple and
effective. If the solution to Eq.(1.1) is not unique, then the solution we obtain
is a least-norm solution.

After multiplying (1.1) by
m∏

i=1

pi(x)q(x), we find that

⎧⎪⎪⎨
⎪⎪⎩

m∏
i=1

pi(x)q(x)u
′′(x) + q(x)

m∑
i=1

u′(hix) +
m∏

i=1

pi(x)u(x) =
m∏

i=1

pi(x)q(x)g(x),

0 < x, hi < 1, i = 1, . . . , m
u(0) = 0, u(1) = 0,

(1.2)

Define operator L as follows:

Lu =
m∏

i=1

pi(x)q(x)u
′′(x) + q(x)

m∑
i=1

u′(hix) +
m∏

i=1

pi(x)u(x)

and let f(x) =
m∏

i=1

pi(x)q(x)g(x). Then Eq.(1.1) can be convert into following

form {
Lu = f(x), x ∈ [0, 1]
u(0) = 0, u(1) = 0,

(1.3)

where f ∈ W 1
2 [0, 1], u ∈ W 3

2 [0, 1]. W 1
2 [0, 1] and W 3

2 [0, 1] are defined in the
following section.

2 Several Reproducing Kernel Spaces

1 The reproducing kernel space W 3
2 [0, 1]

The inner product space W 3
2 [0, 1] is defined as W 3

2 [0, 1] = {u(x) | u, u′, u′′
are absolutely continuous real value functions, u, u′, u′′, u(3) ∈ L2[0, 1], u(0) =
0, u(1) = 0}. The inner product in W 3

2 [0, 1] is given by

(u(y), v(y))W 3
2

= u(0)v(0) + u′(0)v′(0) + u(1)v(1) +

∫ 1

0

u(3)v(3)dy, (2.1)



Singular multi-pantograph delay differential equation 1301

and the norm ‖ u ‖W 3
2

is denoted by ‖ u ‖W 3
2
=

√
(u, u)W 3

2
, where u, v ∈

W 3
2 [0, 1].

Theorem 2.1. The space W 3
2 [0, 1] is a reproducing kernel space. That is, for

any u(y) ∈ W 3
2 [0, 1] and each fixed x ∈ [0, 1], there exists Rx(y) ∈ W 3

2 [0, 1],
y ∈ [0, 1], such that (u(y), Rx(y))W 3

2
= u(x). The reproducing kernel Rx(y) can

be denoted by

Rx(y) =

⎧⎨
⎩

−((−1+x) y (6 x2 y−4 x3 y+x4 y+y4+x (120−120 y−5 y3+y4)))
120

, y ≤ x,
−(x (−1+y) (120 y−5 x3 y+x4 (1+y)+x y (−120+6 y−4 y2+y3)))

120
, y > x.

(2.2)

The proof of Theorem (2.1) see for [2,8].
2 The reproducing kernel space W 1

2 [0, 1]
The inner product space W 1

2 [0, 1] is defined by W 1
2 [0, 1] = {u(x) | u is abso-

lutely continuous real value function, u, u′ ∈ L2[0, 1]}. The inner product and
norm in W 1

2 [0, 1] are given respectively by

(u(x), v(x))W 1
2

=

∫ 1

0

(uv + u′v′)dx, ‖ u ‖W 1
2
=

√
(u, u)W 1

2
,

where u(x), v(x) ∈W 1
2 [0, 1]. In Ref.[11], the authors had proved that W 1

2 [0, 1]
is a complete reproducing kernel space and its reproducing kernel is

Rx(y) =
1

2 sinh(1)
[cosh(x+ y − 1) + cosh(|x− y| − 1)].

3 The solution of Eq.(1.3)

In this section, the solution of Eq.(1.3) is given in the reproducing kernel
space W 3

2 [0, 1].
In Eq.(1.3), it is clear that L : W 3

2 [0, 1] → W 1
2 [0, 1] is a bounded linear

operator. Put ϕi(x) = Rxi
(x) and ψi(x) = L∗ϕi(x) where L∗ is the adjoint

operator of L . The orthonormal system {ψi(x)}∞i=1 of W 3
2 [0, 1] can be derived

from Gram-Schmidt orthogonalization process of {ψi(x)}∞i=1,

ψi(x) =
i∑

k=1

βikψk(x), (βii > 0, i = 1, 2, ...). (3.1)

Theorem 3.1. For Eq.(1.3), if {xi}∞i=1 is dense on [0, 1], then {ψi(x)}∞i=1 is
the complete system of W 3

2 [0, 1] and ψi(x) = LyRx(y)|y=xi
.

Proof. We have

ψi(x) = (L∗ϕi)(x) = ((L∗ϕi)(y), Rx(y))
= (ϕi(y), LyRx(y)) = LyRx(y)|y=xi

.



1302 Ping Du and Fazhan Geng

The subscript y by the operator L indicates that the operator L applies to the
function of y.
Clearly, ψi(x) ∈ W 3

2 [0, 1].
For each fixed u(x) ∈W 3

2 [0, 1], let (u(x), ψi(x)) = 0, (i = 1, 2, ...), which means
that,

(u(x), (L∗ϕi)(x)) = (Lu(·), ϕi(·)) = (Lu)(xi) = 0. (3.2)

Note that {xi}∞i=1 is dense on [0, 1], hence, (Lu)(x) = 0. It follows that u ≡ 0
from the existence of L−1. So the proof of the Theorem 3.1 is complete.

Theorem 3.2. If {xi}∞i=1 is dense on [0, 1] and the solution of Eq.(1.3) is
unique, then the solution of Eq.(1.3) is

u(x) =

∞∑
i=1

i∑
k=1

βikf(xk)ψi(x). (3.3)

Proof. Applying Theorem 3.1, it is easy to know that {ψi(x)}∞i=1 is the com-
plete orthonormal basis of W 3

2 [0, 1].
Note that (v(x), ϕi(x)) = v(xi) for each v(x) ∈ W 1

2 [0, 1], hence we have

u(x) =
∞∑
i=1

(u(x), ψi(x))ψi(x)

=
∞∑
i=1

i∑
k=1

βik(u(x), L
∗ϕk(x))ψi(x)

=
∞∑
i=1

i∑
k=1

βik(Lu(x), ϕk(x))ψi(x)

=
∞∑
i=1

i∑
k=1

βik(f(x), ϕk(x))ψi(x)

=
∞∑
i=1

i∑
k=1

βikf(xk)ψi(x).

(3.4)

So, the proof of the theorem is complete.

Now, the approximate solution un(x) can be obtained by the n-term intercept
of the exact solution u(x) and

un(x) =
n∑

i=1

i∑
k=1

βikf(xk)ψi(x). (3.5)

Theorem 3.3. Assume u(x) is the solution of Eq.(1.3) and rn(x) is the error
between the approximate un(x) and the exact solution u(x). Then the error
rn(x) is monotone decreasing in the sense of ‖ · ‖W 3

2
.
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Proof. From (3.4), (3.5), it follows that

‖ rn ‖W 3
2

=‖
∞∑

i=n+1

i∑
k=1

βikf(xk)ψi(x) ‖W 3
2

=
∞∑

i=n+1

(
i∑

k=1

βikf(xk))
2.

(3.6)

(3.6) shows that the error rn is monotone decreasing in the sense of ‖ · ‖W 3
2
.

The proof is complete.

4 Numerical example

In this section, some numerical examples are studied to demonstrate the
accuracy of the present method. The examples are computed using Mathemat-
ica 5.0. Results obtained by the method are compared with the exact solution
of each example and are found to be in good agreement with each other.

Example 1
Consider equation

{
u′′(x) + 1

x
u′(1

2
x) + 1

x2u
′(1

4
x) + 1

1−x
u(x) = f(x), 0 < x ≤ 1,

u(0) = 1, u(1) = e,

where f(x) =
−(e

x
4 (−1+x))

4
− e

x
2 (−1+x)x

2
− ex (−2 + x) x2. The true solution is

ex. Using our method, we choose 20 points and 100 points on [0, 1] respectively.
The numerical results are given in the following table 1, 2.

Table 1: Numerical results for example 1(n = 26).
x True solution u(x) Approximate solution u20 Absolute error

0.001 1.001 1.001 3.8E-9
0.08 1.08329 1.08328 4.8E-06
0.16 1.17351 1.17349 2.1E-05
0.32 1.37713 1.37709 3.4E-05
0.48 1.61607 1.61605 2.5E-05
0.64 1.89648 1.89647 7.3E-06
0.80 2.22554 2.22555 1.1E-05
0.96 2.6117 2.61172 2.6E-05
1.00 2.71828 2.71828 0
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Table 2: Numerical results for example 1(n = 51).
x True solution u(x) Approximate solution u100 Absolute error

0.001 1.001 1.001 3.1E-10
0.08 1.08329 1.08329 2.6E-07
0.16 1.17351 1.17351 1.8E-06
0.32 1.37713 1.37713 4.1E-06
0.48 1.61607 1.61608 4.7E-06
0.64 1.89648 1.89649 4.3E-06
0.80 2.22554 2.22554 3.0E-06
0.96 2.6117 2.6117 1.0E-06
1.00 2.71828 2.71828 0

0.2 0.4 0.6 0.8 1

1·10-6

2·10-6
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4·10-6
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0.000015

0.00002

Figure 1: Figure of absolute errors |u− u100| and |u′ − u′100| for Example 5.1
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