
Applied Mathematical Sciences, Vol. 2, 2008, no. 26, 1253 - 1282

Θ(1) Time Neural Network Minimum

Distance Classifier and its Application

to Optical Character Recognition Problem

A. Namir

Département de Mathématiques et Informatique
Faculté des sciences Ben M’sik Université Hassan II, Mohammedia

B.P 7955, Sidi Othman, Casablanca, Marocco
a.Namir@yahoo.fr

M. Mestari

E.N.S.E.T Mohammedia Avenue Hssan II Mohammedia Morocco

K. Akodadi and A. Badi

Département de Mathématiques et Informatique
Faculté des sciences Ben M’sik Université Hassan II, Mohammedia

B.P 7955, Sidi Othman, Casablanca, Marocco

Abstract
We propose a special neural network model, NNC, (Neural Network

Classifier), which with a classification problem of l classes C1, C2, ..., Cl,
classifies an unknown vector to one class using a minimum distance
classification technique. The NNC consists of three kinds of neurons,
linear, quasi-linear and threshold-logic neurons, distributed over 12 lay-
ers. Thus, its processing time is constant and 12 times that of a single
neuron. NNC architecture is regular and simple, it can be easily imple-
mented using VLSI technology. High performance of NNC is demon-
strated by applying it to an optical character recognition problem.

Keywords: neural network classifier (NNC); minimum distance classifica-
tion (MDC); optical character recognition (OCR)

1 Introduction

Minimum distance classification (MDC) is a simple yet powerful technique



1254 A. Namir, M. Mestari, K. Akodadi and A. Badi

widely used in statistical recognition, clustering and many other applications
(such as pattern recognition and image processing (PRIP) applications) Bahl
et al. [1], David and Andrew, 1991 [3], Kung and Taur [10], Li and Dong
[11], Philip [21], Sethi and Sarvarayudu [22], Shore and Gray [23]. During
the past decades, considerable efforts have been devoted to developing special
computer architectures for PRIP. Recent advances in VLSI microelectronic
technology have triggered the idea of implementing PRIP algorithms directly
in specialized hardware chips. In this paper, our objective is to design a
special-purpose architecture of high processing speed which can be used for
implementing (MDC) technique. NNC network is best suited to achieve this
goal and is hardware implementable with very simple circuit elements, such as
resistors and linear operational amplifiers Mestari [16]. Unlike the digital par-
allel algorithms the proposed neural network solves the classification problem
without using floating-point arithmetics, the CPU (central processing unit),
the memory chips, and the synchronization clock.

NNC performs classification using minimum distance technique and has
a feedforward structure with three kinds of neurons, linear, quasi-linear and
threshold-logic neurons, displayed over 12 layers. Its overall processing time
is constant and 12 times that of a single neuron. This is in contrast with
conventional systolic array implementation, where processing time increases
with data size.

Three types of neurons are employed in NNC. All of them have been used
in constructing various kinds of neural networks Cichoki and Unbehauen [2],
Fukushima [5], Hopfield [7], Kohonen [9], Mestari and Namir [13], Mestari et
al. [14], Mestari and Namir [15], Mestari [16], Mestari and Namir [17], Mestari
and Namir [18], Mestari [19], Mestari [20]. Among all the neurons proposed
in the literature, they are probably the easiest to implement in hardware.

The approach to NNC construction herein proposed differs from that con-
ventially taken in the neural network field, where the solution to any given
problem necessitates taking a general purpose network and applying it by
learning Kung and Taur [10], William et al. [24], Frey and State [4]. In this
approach, our primary concern lies in how to organize neurons into a network
which can solve a specific problem with an emphasis on fully utilizing the
massive parallelism property offered by neural networks.

The rest of the paper is organized as follows: Section 2 describes the con-
struction of NNC. Section 3 gives an example of applying NNC to optical
character recognition (OCR) problem. Section 4 contains the conclusions.

2 Construction Of NNC

In this section we show how NNC is constructed. But first, we introduce
a special network AMAXNET (Adjustable MAXNET) which is essential for



Neural network minimum distance classifier 1255

construction. This network is described in subsection 2.2 after description of
the neurons employed in NNC and AMAXNET networks.

2.1 Artificial Neurons Used

NNC and AMAXNET employ three kinds of neuron, all of which are com-
monly used in neural network applications Fukushima [5], Kohonen [9], Lipp-
man [12], Mestari and Namir [13], Mestari et al. [14], Mestari and Namir [15],
Mestari [16], Mestari and Namir [17], Mestari and Namir [18], Mestari [19],
Mestari [20]. The only difference amongst these three kinds of neurons is in
their activation function, one employees the linear activation function, one the
quasi-linear activation function, and the other the threshold-logic activation
function. They are schematically illustrated in Fig. 1 (b).

These three kinds of neurons sum the n weighted inputs and pass the result
through a nonlinearity according to the equation

y = Φ

(
n∑

i=1

ωixi − θ

)
(1)

Where Φ is a limiting or nonlinear transfer characteristic, called an activation
function, θ (θ ∈ R) is the external threshold, also called an offset or bias, ωi

are the synaptic weights or strengths, xi are the inputs (i = 1, 2, ..., n), n is
the number of inputs and y represents the output (Cf. Fig. 1 (a)).

The linear activation function is defined as

ΦL(x)
def
= x (2)

the quasi-linear activation function is defined as

ΦQ(x)
def
=

{
x if x ≥ 0
0 otherwise

(3)

and the threshold-logic activation function is defined as

ΦT (x)
def
=

{
1 if x ≥ 0
0 otherwise

(4)

where x =
∑n

i=1 wixi − θ and n is the number of inputs.
All three types of neuron have already been implemented in the past using

analogue electronic circuits. A typical implementation of the linear neuron uses
a linear operational amplifier Hopfield and Tank [6]. The quasi-linear neuron
may be implemented using an op amp/diode active clamp circuit Hopfield
and Tank [6] or using a nonlinear resistor Kennedy and Chua [8]. For the
threshold-logic neuron, many different schemes for implementation have been
reported.



1256 A. Namir, M. Mestari, K. Akodadi and A. Badi

2.2 Construction of AMAXNET

A neural network, AMAXNET, which, with an array of real numbers as
input, outputs the kth largest element of the array is proposed. Overall pro-
cessing time is constant, and does not depend upon the size of the input array,
being just six times the processing time for a single neuron. First, however, two
definitions which are essential for construction of AMAXNET are introduced.

Definition 2.1 The order in the input array X = (x1, x2, ..., xn) of any
element xi (1 ≤ i ≤ n) is defined as being the number of elements of the input
array less than xi.

Definition 2.2 Let xi and xq be two elements of the same value. If (i ≤ q),
then xi is considered smaller than xq, otherwise xi is considered larger than
xq.

AMAXNET principle may be summarized thus: Overall, AMAXNET is
composed of n order networks, ONj (1 ≤ j ≤ n), and a selection network,
SN . Also, AMAXNET is equipped with a control input called an adjustment
input. This adjustment input allows choice of the order of the element to be
transferred to output.

The function of the order networks ONj (1 ≤ j ≤ n) is to compute the
order of each element xj in the input array. The selection network’s function,
however, is to select and transfer to output the element of the input array
corresponding to the order desired or chosen via the adjustment input.

2.2.1 Order Network

Let xi and xq be two elements of the input array X. The comparison
function of xi and xq is defined as follows:

for i ∈ {1, ..., q − 1},

comp(xi, xq)
def
=

{
1 if xq ≥ xi

0 otherwise

= ΦT (xq − xi) (5)

and for i ∈ {q + 1, ..., n},

comp(xi, xq)
def
=

{
1 if xq > xi

0 otherwise

= ΦT (−ΦT (xi − xq)) (6)



Neural network minimum distance classifier 1257

The order of any element xq in the input array X may be given by the
following order function:

ord(xq, X)
def
=

∑
i<q

comp(xi, xq) +
∑
i>q

comp(xi, xq) + 1

=
∑
i<q

ΦT (xq − xi) +
∑
i>q

ΦT (−ΦT (xi − xq)) + 1 (7)

The network for computing the order function (7) is shown in Fig. 2. This
network is denoted as ONq.

2.2.2 Construction of Selection Network

The function of the selection network is to select from among the elements
of input array X the element corresponding to the order fixed by the adjust-
ment input and to transfer it to output. This network is composed of n equality
sub-networks, ESN, followed by a linear neuron.

a) Equality Sub-network
The equality sub-network ESN determines whether the order of an element

is equal or not to a given number, k. The number k (1 ≤ k ≤ n) is fixed via
the adjustment input.

The function computed by the equality sub-network ESN is defined as
follows:

for all xi and 1 ≤ k ≤ n , eq[ord(xi, X), k]
def
=

{
1 if ord(xi, X) = k
0 otherwise

(8)

Proposition 2.3 For all xi and 1 ≤ k ≤ n,

eq[ord(xi, X), k] = ΦT (−ΦT (ord(xi, X) − k − 1) − ΦT (k − ord(xi, X) − 1))

where ΦT is defined in Eq. (4).

Proof : Three cases can be distinguished:
i) If ord(xi, X) = k, then ΦT (ord(xi, X)−k−1) = ΦT (k−ord(xi, X)−1) =

ΦT (−1)
def
= 0 and consequently eq[ord(xi, X), k] = ΦT (0)

def
= 1.

ii) If ord(xi, X) < k, then ord(xi, X)− k ≤ −1 and k− ord(xi, X) ≥ 1 =⇒
ΦT (ord(xi, X)−k−1) = 0, ΦT (k−ord(xi, X)−1) = 1 and −ΦT (ord(xi, X)−
k − 1) − ΦT (k − ord(xi, X) − 1) = −1 and consequently eq[ord(xi, X), k] =

ΦT (−1)
def
= 0.

iii) If ord(xi, X) > k, then ord(xi, X)−k ≥ 1 and k−ord(xi, X) ≤ −1 =⇒
ΦT (ord(xi, X)−k−1) = 1, ΦT (k−ord(xi, X)−1) = 0 and −ΦT (ord(xi, X)−



1258 A. Namir, M. Mestari, K. Akodadi and A. Badi

k − 1) − ΦT (k − ord(xi, X) − 1) = −1 and consequently eq[ord(xi, X), k] =

ΦT (−1)
def
= 0.

To summarize:
If ord(xi, X) = k, then eq[ord(xi, X), k] = 1, otherwise eq[ord(xi, X), k] = 0.

The equality network EN consists of three threshold-logic neurons as shown
by the diagram in Fig.3.

b) Selection Network

The selection network is shown in Fig.4 and is denoted as SN it detects
and transfers only the appropriate element whose order equals k (i.e., the kth

largest element x(k)) to output.

Proposition 2.4 Let x(k) be the kth largest element of the input array X,
then:

x(k) =
n∑

i=1

xi.eq[ord(xi, X), k] (9)

Proof : Suppose ord(xl, X) = k, then eq[ord(xl, X), k] = 1 and eq[ord(xi, X), k] =
0 ∀i ∈ {1, 2, ..., n} − {l}. Therefore:

x(k) = xl.eq[ord(xl, X), k] +
∑
i�=l

1≤i≤n

xi.eq[ord(xi, X), k]

= xl × 1 +
∑
i�=l

1≤i≤n

xi × 0

= xl

To summarize:

x(k) = xl if ord(xl, X) = k.

2.2.3 AMAXNET

AMAXNET is shown in Fig.5, where the adjustment input determines
which order statistic is to appear at the output. The network illustrated in
Fig.5 consists of two kinds of neurons arranged in six layers. The number
of neurons in AMAXNET for input size n is 3

2
n2 + 5

2
n + 1. There are six

layers of neurons in AMAXNET, thus the total processing time is six times
the processing time of a single neuron. As the number of elements of the input
array increases, only the number of neurons in each layer increases, not the
number of layers themselves. Therefore, AMAXNET’s total processing time
remains constant irrespective of the number of elements in the input array.



Neural network minimum distance classifier 1259

2.3 The NNC

In this subsection, our efforts will center on the hardware design of the
NNC. First, however, the minimum distance classification (MDC) technique is
briefly described.

Consider the classification problem of l classes C1, C2, ..., Cl where each
pattern class Cj has a reference or templates pattern M j . An MDC scheme
with respect to M1, M2, ..., M l classifies the unknown pattern X to class Cj

if d(X, M j) = min1≤i≤l{d(x, M i)}, where d(X, M j) is the distance defined
between X and M j . In statistical pattern recognition X is a feature vector; in
syntactic pattern recognition X is a structure such as string, tree or graph.

Let X = (x1, x2, ..., xK) and M j = (mj
1, m

j
2, ..., m

j
K) be two points in feature

space. The distance measure between X and M j is defined as follows:

d(X, M j)
def
= K −

K∑
i=1

dif [xi, m
j
i ] (10)

where

dif [xi, m
j
i ]

def
=

{
1 if xi = mj

i

0 otherwise
(11)

Proposition 2.5 Let X = (x1, x2, ..., xK) and Y = (y1, y2, ..., yK) be two
elements in K-dimensional space.

For all 1 ≤ i ≤ K, dif [xi, yi] = ΦT (−ΦQ(xi − yi) − ΦQ(yi − xi)) (12)

where ΦQ and ΦT are defined respectively in Eq. (3) and Eq. (4).

Proof : Tree cases can be distinguished:
i) If xi = yi, then xi − yi = yi − xi = 0 and consequently dif [xi, yi] =

ΦT (0) = 1 (Cf. Eq. (4)).
ii) If xi < yi, then ΦQ(xi − yi) = 0 and ΦQ(yi − xi) = yi − xi (Cf. Eq. (3))

and consequently dif [xi, yi] = ΦT (0 − (yi − xi)) = ΦT (xi − yi) = 0 (Cf. Eq.
(4)).

ii) If xi > yi, then ΦQ(xi − yi) = xi − yi and ΦQ(yi − xi) = 0 (Cf. Eq. (3))
and consequently dif [xi, yi] = ΦT (−(xi − yi) − 0) = ΦT (yi − xi) = 0 (Cf. Eq.
(4)).

Function (12) is computed by the network shown in Fig.6. This network is
denoted as DN (Difference Network).

Function (10) is computed by the distance evaluation network, DEN, illus-
trated by the diagram in Fig.7.

The classifier NNC is composed of l distance evaluation networks, DENs,
already seen above (Cf. Fig.7) and a transference network, which will be



1260 A. Namir, M. Mestari, K. Akodadi and A. Badi

studied below. For the NNC l distances must be calculated between the input
feature vector X and l reference vectors M1, M2, ..., M l, according to Eq. (10).
The minimum distance among the l distances to the input feature vector X,
min1≤j≤l{d(X, M j)}, must be selected. The index of the reference vector,
whose distance to the input feature vector X equals to min1≤j≤l{d(X, M j)},
is produced as the class of X:

class(X) = q if d(X, M q) = min
1≤j≤l

{d(X, M j)} (13)

where 1 ≤ q ≤ l.

Proposition 2.6 Let X = (x1, x2, ..., xK) and M j = (mj
1, m

j
2, ..., m

j
K) be

the input feature and the jth reference vectors respectively. The class of X can
be evaluated based on:

class(X) =
l∑

p=1

dif [d(X, Mp), min
1≤j≤l

{d(X, M j)}].p (14)

Proof :
Suppose d(X, M q) = min1≤j≤l{d(X, M j)}, then
class(X) = q, dif [d(X, M q), min1≤j≤l{d(X, M j)}] = 1 and
dif [d(X, Mp), min1≤j≤l{d(X, M j)}] = 0 ∀p ∈ {1, 2, ..., l} − {q}. Therefore:

l∑
p=1

dif [d(X,Mp), min
1≤j≤l

{d(X,M j)}].p = dif [d(X,M q), min
1≤j≤l

{d(X,M j)}].q

+
∑
p�=q

1≤p≤l

dif [d(X,Mp), min
1≤j≤l

{d(X,M j)}].p

= 1 × q +
∑
p�=q

1≤p≤l

0 × p

= q.

Proposition 2.7 Let X = (x1, x2, ..., xK) and M j = (mj
1, m

j
2, ..., m

j
K) be

the input and the jth reference vectors respectively, where j ∈ {1, 2, ..., l}.

d(X, M q) = min
1≤j≤l

{d(X, M j)} ⇐⇒

∀i ∈ {1, 2, ...,K},
l∑

p=1

dif [d(X,Mp), min
1≤j≤l

{d(X, M j)}].mp
i = mq

i where q ∈ {1, 2, ..., l}. (15)



Neural network minimum distance classifier 1261

Proof :
1. Suppose d(X,M q) = min1≤j≤l{d(X, M j)}, then dif [d(X,M q),min1≤j≤l{d(X, M j)}] = 1
and
dif [d(X,Mp),min1≤j≤l{d(X, M j)}] = 0 ∀p ∈ {1, 2, ..., l} − {q}. Therefore:

∀i ∈ {1, 2, ...,K},
l∑

p=1

dif [d(X,Mp), min
1≤j≤l

{d(X, M j)}].mp
i = dif [d(X,M q), min

1≤j≤l
{d(X, M j)}].mq

i

+
∑
p�=q

1≤p≤l

dif [d(X,Mp), min
1≤j≤l

{d(X, M j)}].mp
i

= 1 × mq
i +

∑
p�=q

1≤p≤l

0 × mp
i

= mq
i .

2. Suppose ∀i ∈ {1, 2, ...,K}, ∑l
p=1 dif [d(X,Mp),min1≤j≤l{d(X, M j)}].mp

i = mq
i .

Taking into account the fact that
∑l

p=1 dif [d(X,Mp),min1≤j≤l{d(X, M j)}] = 1 and ∀p ∈
{1, 2, ..., l}, dif [d(X,Mp),min1≤j≤l{d(X, M j)}] ∈ {0, 1}, we have:

∀i ∈ {1, 2, ...,K},
l∑

p=1

dif [d(X,Mp), min
1≤j≤l

{d(X, M j)}].mp
i =

(
l∑

p=1

dif [d(X,Mp), min
1≤j≤l

{d(X, M j)}]
)

.mq
i

⇐⇒ ∀i ∈ {1, 2, ...,K},
∑
p�=q

1≤p≤l

dif [d(X,Mp), min
1≤j≤l

{d(X, M j)}].mp
i

+

(
dif [d(X,M q), min

1≤j≤l
{d(X, M j)}] −

l∑
p=1

dif [d(X,Mp), min
1≤j≤l

{d(X, M j)}]
)

.mq
i = 0

⇐⇒ ∀i ∈ {1, 2, ...,K},
∑
p�=q

1≤p≤l

dif [d(X,Mp), min
1≤j≤l

{d(X, M j)}].mp
i

−
∑
p�=q

1≤p≤l

dif [d(X,Mp), min
1≤j≤l

{d(X, M j)}].mq
i = 0

⇐⇒ ∀i ∈ {1, 2, ...,K},
∑
p�=q

1≤p≤l

dif [d(X,Mp), min
1≤j≤l

{d(X, M j)}].(mp
i − mq

i ) = 0

⇐⇒ ∀p ∈ {1, 2, ..., l} − {q}, dif [d(X,Mp), min
1≤j≤l

{d(X, M j)}] = 0.

As
∑l

p=1 dif [d(X,Mp),min1≤j≤l{d(X, M j)}] = 1, we then have

dif [d(X,M q), min
1≤j≤l

{d(X, M j)}] = 1,

and then:
d(X,M q) = min

1≤j≤l
{d(X, M j)} (Cf. Eq. (11))



1262 A. Namir, M. Mestari, K. Akodadi and A. Badi

The function of the transference network is to select and transfer to out-
put both the class assigned to the input feature vector X and the refer-
ence vector M̂ which satisfies: d(X, M̂) = min1≤j≤l{d(X, M j)}, where M̂ ∈
{M1, M2, ..., M l}.

The transference network, TN, is built by combining an AMAXNET, l dif-
ference networks, DNs, and K+1 linear neurons as shown in Fig.8. AMAXNET
taking as input the l distances to the input feature vector X, d(X, M j),
j = 1, 2, ..., l, selects the minimum distance, min1≤j≤l{d(X, M j)}. The mini-
mum distance, min1≤j≤l{d(X, M j)}, thus calculated by AMAXNET is used by
the l DNs and K +1 linear neurons to identify and transfer to output both the
class assigned to the input feature vector X and the reference vector M̂ which
satisfies: d(X, M̂) = min1≤j≤l{d(X, M j)}, where M̂ ∈ {M1, M2, ..., M l}.

The network NNC illustrated in Fig.9 is constructed out of three types of
neuron the threshold-logic, linear and quasi-linear neurons arranged in 12 lay-
ers. Total processing time is constant, irrespective of the number of reference
vector, l, and the dimension of the feature vectors, K, and is only 12 times
that of a single neuron, in contrast to conventional hardware implementation,
where the processing time for classifying an unknown vector is proportional to
(l × K). This not economical when the number of test samples is large, nor
acceptable when real-time response is required.

NNC consists of 3
2
l2 + 17

2
l + K + 3 neurons. The total number of neurons

grows quadratically as the number of reference vectors, l, increases.

3 OCR example

As an example consider the optical character recognition (OCR) problem,
with Y a letter in {”a”,...,”z”}, and X a feature vector (x1, x2, ..., x27) whose
components are derived from a noisy image of Y . The problem is to recognize
a character image as one of the 26 letters, ”a”,...,”z”. Before the features can
be calculated, however, some preprocessing of the character images is required.

3.1 Preprocessing

To improve desirable feature vector properties, such as vector similarity
within a given class, the images are scaled to remove size variation. The
input character image, f(i, j), has 32 rows and 24 columns where i and j are
the row and column indexes, respectively. Each pixel is binary-valued, with
”0” representing white background and ”1” representing part of the printed
character. The smallest rectangular subimage is found that contains black
pixels. The images are then scaled so that the character fills the 32 by 24
frame, while maintaining a one-to-one height to width perspective.



Neural network minimum distance classifier 1263

3.2 Features

Our objective here is to describe the feature set used by the NNC. Our
basic approach in constructing a feature set has been to put many types of
features into the set. Features 10-27 are developed in William et al. [24].

Consequently, features 1-8, which are vector elements x1 through x8, are
shown in Table.1 . Feature 9 is the number of components in the character.
This helps distinguish ”i” and ”j” from characters formed by one component.
Features 10-13 compute the distances from the four corners of the character
image to the first black pixel encountered along the two diagonal lines. This
concept is illustrated in Fig.10. Feature 14 is the number of loops in the
character. This helps distinguish ”a”, ”b”, ”d”, ”e”, ”o”, ”p” and ”q” from ”g”
and from nonlooped characters. Features 15 and 16 are the vertical locations
of the centers of the loops if they exist. This allows us to distinguish ”a” from
”e”. If there is only one loop, feature 16 is zero. If there are no loops, features
15 and 16 are both zero.

By dividing the character matrix into four disjoint 16 by 12 pixel quadrants,
features 17-20 record the maximum horizontal distances from the image sides
to a black pixel in the same quadrant. This is indicated in Fig.11.

As shown in Fig.12, feature 21, records how many times column 12 crosses
part of the printed character. This helps distinguish ”s” and ”z” from other
characters.

Features 22-24 record the maximum widths of the character in the top five
rows, bottom five rows, and middle 10 rows, respectively (Cf. Fig.13). Features
25 and 26 are the height and width of the black portion of the character image.

For rows 20-32, let r(i) denote the column of the rightmost black pixel in
row i. Feature 27 equals max20≤i≤32{r(i)}−min20≤i≤32{r(i)}, and is depicted
in Fig.14.

The principal objective of this sub-section is to pick a large feature vector
X whose elements allow those main local properties to be shown, which differ
substantially for different character classes while being similar for different
example images of a given class (Cf. Table.2).

3.3 Classifier for OCR example

The neural network classifier to be used for OCR example has 27 inputs,
x1, x2,..., x27, and one output denoted, O, (Cf. Fig.17).

Let β be a letter in {”a”,...,”z”}. The loss function, l(β), which measures
the loss, or cost, incurred by classifying the image of a character to class β, is
defined as follows:

l(β) = |P (β)| − ∑
pi∈P (β)

pi (16)



1264 A. Namir, M. Mestari, K. Akodadi and A. Badi

where P (β) denote the set of main local properties of β (Cf. Table.2), and
pi ∈ P (β) equals ”1” when it is true and ”0” when it is false. pi may have
three different forms: (i) pi = dif [xi, xj ], (ii) pi = ΦT (xi − xj) or (iii) pi =
ΦT (−ΦT (xj−xi)), where xi and xj are two elements of the input feature vector
X.

Calculation of the loss function, l(β), only necessitates intervention of a
limited number of elements of input feature vector X. The network for com-
puting the loss function, l(β), is illustrated in Fig.15. This network is denoted
as LFEN (Loss Function Evaluation Network).

For example, the network for computing l(”b”) is constructed out by only
using the elements x7-x14, x17, x18, x21, x22 and x24-x26. This network is shown
in Fig.16.

Definition 3.1 Let β be a letter in {”a”,...,”z”}. The image of a character
is classified to class β if l(β) = min

α∈{”a”,...,”z”}
{l(α)}.

Definition 3.2 Let β be a letter in {”a”,...,”z”}. Let us posit αord(β) = β,
where ord(β) denote the order in {”a”,...,”z”} of β. The output O is evaluated
based on:

O =
26∑
i=1

i.dif [l(αi), min
1≤j≤26

{l(αj)}] (17)

where dif [., .] is the function given by Eqs (11) - (112).

Proposition 3.3 Let β be a letter in {”a”,...,”z”}. The image of a char-
acter is classified to class β if O = ord(β), where ord(β) is the order in
{”a”,...,”z”} of β.

Proof :
Suppose O = ord(β), then ∃q ∈ {1, 2, ..., 26} such that q = ord(β), and∑26

i=1 i.dif [l(αi), min1≤j≤26{l(αj)}] = q (Cf. Eq. (16)).
Taking into account the fact that

∑26
i=1 dif [l(αi), min1≤j≤26{l(αj)}] = 1 and

∀i ∈ {1, 2, ..., 26},
dif [l(αi), min1≤j≤26{l(αj)}] ∈ {0, 1}, we may write:

26∑
i=1

i.dif [l(αi), min
1≤j≤26

{l(αj)}] =

(
26∑
i=1

dif [l(αi), min
1≤j≤26

{l(αj)}]
)

.q

or, again:∑
i�=q

1≤i≤26

i.dif [l(αi), min
1≤j≤26

{l(αj)}]



Neural network minimum distance classifier 1265

+q

(
dif [l(αq), min

1≤j≤26
{l(αj}] −

26∑
i=1

dif [l(αi), min
1≤j≤26

{l(αj)}]
)

= 0

⇐⇒ ∑
i�=q

1≤i≤26

i.dif [l(αi), min
1≤j≤26

{l(αj)}] − q.
∑
i�=q

1≤i≤26

dif [l(αi), min
1≤j≤26

{l(αj)}] = 0

⇐⇒ ∑
i�=q

1≤i≤26

(i − q).dif [l(αi), min
1≤j≤26

{l(αj)}] = 0

⇐⇒ ∀i ∈ {1, 2, ..., 26} − {q}, dif [l(αi), min
1≤j≤26

{l(αj)}] = 0

⇐⇒ dif [l(αq), min
1≤j≤26

{l(αj)}] = 1

⇐⇒ l(αq) = min
1≤j≤26

{l(αj)}
⇐⇒ l(αord(β)) = min

1≤j≤26
{l(αj)}

⇐⇒ l(β) = min
1≤j≤26

{l(αj)}

Therefore, the image of a character is classified to class β based on the fact
that: l(β) = min1≤j≤26{l(αj)} (Cf. Def.3).

For example, the image of a character is classified to class ”c” if O = 3 =
ord(”c”).

4 Conclusion

We have shown a neural network solution in fixed time for a classification
problem. The neural network classifier, NNC, proposed in this paper consists
of three types of neurons, the linear, quasi-linear and threshold-logic neurons.
Among all the neurons proposed in the literature, they are probably the easiest
to implement in hardware. This NNC network has a very simple configuration,
which makes it less subject to the problem caused by poor absolute accuracy
in setting up the values of the connection weights. Furthermore, NNC archi-
tecture is regular and simple: the connection strengths between the neurons
are all fixed, and most of them are just +1 or -1. Therefore, this will greatly fa-
cilitate actual hardware implementation of the proposed NNC using currently
available VLSI technology.

The OCR example given demonstrates that the approach herein proposed
to NNC construction may be profitably applied to solving the classification
problem more rapidly and economically than a learning approach.



1266 A. Namir, M. Mestari, K. Akodadi and A. Badi

References

[1] L. R. Bahl, P.F. Brown, P. V. de Souza and R. L. Mercer ”A tree-based
statistical language model for natural longuage speech recognition”, IEEE
Trans. Acoust., Speech, Signal Processing, vol. 37, 1001-1008, 1989.

[2] A. Cichoki and R. Unbehauen, ”Neural Networks for solving systems of
linear equations and related problems”, IEEE Trans. Circuits Syst., vol.
39, 124-138, 1992.

[3] L. David and R. W. Andrew, ” Optimized feature extraction and the
bayes decision in feed-forward classifier networks”, IEEE Trans. Pattern
Anal. Machine Intell., vol. 13, no. 4, 355-364, 1991.

[4] P. W. Frey and D. J. Slate, ” Letter recognition using Holland-style adap-
tive classifier”, Machine Learning, vol. 6, no. 2, 161-182, 1991.

[5] K. Fukushima, .”A neural network for visual pattern recognition”, IEEE
Computer, pp. 65-75, Mar., 1988.

[6] J. J. Hopfield and D. W. Tank, ” Simple ’Neural’ optimization networks:
An A/D Converter , signal decision circuit, and a linear programming
circuit”, IEEE Trans. Circuit Syst., vol. CAS-33, 533-541, 1986.

[7] J. J. Hopfield, ” Neural networks and physical systems with emergent
collective computational ability”, Proc. National Academy of Sciences,
vol. 79, 2554-2558, 1982.

[8] M. P. Kennedy and L. O. Chua, ”Neural networks for nonlinear program-
ming”, IEEE Trans. Circuits Syst., vol. 35, 554-562, 1988.

[9] T. Kohonen, ”Correlation matrix memories”, IEEE Trans. Computers,
vol. C-21, 353-359, 1972.

[10] S. Y. Kung and J. S. Taur, ”Decision-Based Neural Networks with Sig-
nal/Image Classification Applications”, IEEE Trans. Neural Networks,



Neural network minimum distance classifier 1267

vol. 6, no. 1, 170-181, 1995.

[11] Li Wang and Dong-Chen He, ”Texture classification using texture spec-
trum”, Pattern Recognition, vol. 23, no. 8, 905-910, 1990.

[12] R.P. Lippman, ”An Introduction to Computing with Neural Nets”, IEEE
Trans. Accoust., Speech, Signal Processing, vol.35, pp.2-44, 1987.

[13] M. Mestari and A. Namir, ”A neural network implementation of L∞ Met-
ric Partitional Clustering in Fixed Time”, SAMS Journal, vol. 41, no. 2,
pp. 351-380, 2001.

[14] M. Mestari, A. Namir and J. Abouir, ”Switched Capacitor Neural Net-
works for Optimal Control of Non-linear Dynamic Systems: Design and
Stability Analysis”, SAMS Journal, vol. 41, no. 3, pp. 559-591, 2001.

[15] M. Mestari and A. Namir, ”AOSNET: A neural network implementation
of adjustable order statistic filters in fixed time”, SAMS Journal, vol. 36,
pp. 509-535, 2000.

[16] M. Mestari, ”An Analog Neural Network Implementation in Fixed Time of
Adjustable Order Statistic Filters and Applications”, IEEE Transactions
on Neural networks, vol.15, NO. 3, May 2004, pp. 766-785..

[17] M. Mestari and A. Namir, ”AMAXNET: A neural network implementa-
tion of adjustable MAXNET in fixed time”, IFAC-IFIP-IMACS Proc.
Internat. Conf. on Control of Industrial Systems, 20-22 May, Belfort,
(France), vol. 2, 543-549, 1997.

[18] M. Mestari and A. Namir, ”MinMaxNet: A neural network implemen-
tation of min/max filters”, IFIP Proc. Internat. Conf. on Optimization-
based Computer-Aided Modeling and Design, 28-30 May, Noisy-le-grand
Paris (France), vol. 1, 26.1-26.4, 1996.

[19] M. Mestari, ”Θ(1) Time Neural Network Minimum Distance Classifier”,
AMSE International Conference on Modelling and Simulation MS’2000



1268 A. Namir, M. Mestari, K. Akodadi and A. Badi

Las Palmas (Spain).

[20] M. Mestari, ”Design of Pattern Cluster Using Neural Networks”, AMSE
International Conference on Modelling and Simulation MS’2000 Las Pal-
mas (Spain).

[21] A. Chou Philip, ”Optimal partitioning for classification and regression
trees”, IEEE Trans. Pattern Anal. Machine Intell., vol. 13, no. 4, 340-354,
1991.

[22] I. K. Sethi and P. R. Sarvarayudu, ”Hierarchical classifier design using
mutual information”, IEEE Trans. Pattern Anal. Machine Intell., vol.
PAMI-4, 441-445, 1982.

[23] J. E. Shore and R. M. Gray, ”Minimum cross-entropy pattern classifica-
tion and cluster analysis”, IEEE Trans. Pttern Anal. Machine Intell., vol.
PAMI-4, 11-17, 1982.

[24] E. William Weiderman, T. Manry Michael, Hung-chun Yau and Wei Gong,
”Comparisons of a neural network and a nearest-neighbor classifier via the
numeric handprint recognition problem”, IEEE Trans. Neural Networks,
vol. 6, no. 6, 1524-1530, 1995.

Received: November 10, 2007



Neural network minimum distance classifier 1269

Feature Possible outcomes
x1 (north concavities) 1 noconcavity

2 shallow concavity
3 deep concavity
4 two concavities
5 three or more concavities

x2 (south concavities) 1 noconcavity
2 shallow concavity
3 deep concavity
4 two concavities
5 three or more concavities

x3 (northwest concavities) 1 noconcavity
2 northwest concavity

x4 (northeast concavities) 1 noconcavity
2 northeast concavity

x5 (southwest concavities) 1 noconcavity
2 southwest concavity

x6 (southeast concavities) 1 noconcavity
2 southeast concavity

x7 (vertical bars) 1 novertical bars
2 one narraow vertical bar
3 two vertical bars
4 three or more vertical bars
5 one wide bar on the right
6 one wide bar on the left

x8 (horizontal bars) 1 nohorizontal bars
2 one horizontal bar
3 two horizontal bars

TABLE 1 Features 1-8.



1270 A. Namir, M. Mestari, K. Akodadi and A. Badi

Character class main local properties
”a” p1: x7 = 1, p2: x8 = 1, p3: x9 = 1,

p4: x14 = 1, p5: x15 < θ1, p6: x21 = 3,
p7: x25 > x26, p8: x27 < x26

”e” p1: x7 = 1, p2: x8 = 1, p3: x9 = 1,
p4: x14 = 1, p5: θ1 < x15, p6: x15 < θ2,
p7: x21 = 3, p8: x25 > x26, p9: x27 = x26

”g” p1: x7 = 1, p2: x8 = 1, p3: x9 = 1,
p4: x14 = 2 , p5: x15 > θ2, p6: x16 < θ1,

p7: x21 = 4, p8: x25 > x26

”b” p1: x7 = 6, p2: x8 = 1, p3: x9 = 1,
p4: x10 < x11, p5: x13 = x12, p6: x14 = 1,
p7: x17 < x18, p8: x21 = 2 p9: x22 < x24,

p10: x25 > x26

”d” p1: x7 = 5, p2: x8 = 1, p3: x9 = 1,
p4: x10 > x11, p5: x13 = x12, p6: x14 = 1,
p7: x17 > x18, p8: x21 = 2 p9: x22 < x24,

p10: x25 > x26

”p” p1: x7 = 6, p2: x8 = 1, p3: x9 = 1,
p4: x10 = x11, p5: x13 < x12, p6: x14 = 1,
p7: x20 < x19, p8: x21 = 2 p9: x22 > x24,

p10: x25 > x26

”q” p1: x7 = 5, p2: x8 = 1, p3: x9 = 1,
p4: x10 = x11, p5: x13 > x12, p6: x14 = 1,
p7: x20 > x19, p8: x21 = 2 p9: x22 > x24,

p10: x25 > x26

”c” p1: x7 = 1, p2: x8 = 1, p3: x9 = 1,
p4: x10 = x11, p5: x13 = x12, p6: x14 = 0,
p7: x23 < x22, p8: x21 = 2 p9: x22 ≤ x24,
p10: x25 > x26 p11: x6 = 2 p12: x3 = 2

”r” p1: x7 = 2, p2: x8 =1 or 2, p3: x9 = 1,
p4: x10 < x11, p5: x12 > x13, p6: x14 = 0,
p7: x21 = 1 p8: x22 > x24, p9: x25 > x26,

p10: x6 = 2 p11:x3 = 1
”h” p1: x7 = 6, p2: x8 = 1, p3: x9 = 1,

p4: x10 < x11, p5: x17 < x18, p6: x14 = 0,
p7: x21 = 1 p8: x22 < x24, p9: x25 > x26,

p10: x27 = 0
”k” p1: x7 = 6, p2: x8 = 1, p3: x9 = 1,

p4: x10 < x11, p5: x17 < x18, p6: x14 = 0,
p7: x21 = 2 p8: x22 < x24, p9: x25 > x26,

p10: x27 > 0



Neural network minimum distance classifier 1271

Character class main local properties
”n” p1: x7 = 3, p2: x8 = 1, p3: x9 = 1,

p4: x14 = 0, p5: x21 = 1, p6: x1 =1 or 2,
p7: x25 > x26

”u” p1: x7 = 3, p2: x8 = 1, p3: x9 = 1,
p4: x14 = 0, p5: x21 = 1, p6: x1 = 3,

p7: x25 > x26

”m” p1: x7 = 4, p2: x8 = 1, p3: x9 = 1,
p4: x14 = 0, p5: x21 = 1, p6: x1 =1 or 2,

p7: x23 ≤ x22, p8: x23 ≤ x24, p9: x25 < x26

”w” p1: x7 = 1, p2: x8 = 1, p3: x9 = 1,
p4: x14 = 0, p5: x21 = 1, p6: x1 =3 or 4 or 5,

p7: x2 = 4, p8: x23 < x22, p9: x23 > x24,
p10: x22 > x24, p11: x25 < x26, p12: x17 < x20

”v” p1: x7 = 1, p2: x8 = 1, p3: x9 = 1,
p4: x14 = 0, p5: x21 = 1, p6: x1 =2 or 3,

p7: x23 < x22, p8: x23 > x24, p9: x22 > x24,
p10: x25 > x26, p11: x17 < x20

”x” p1: x7 = 1, p2: x8 = 1, p3: x9 = 1,
p4: x14 = 0, p5: x21 = 1, p6: x1 =2 or 3,

p7: x23 < x22, p8: x23 < x24, p9: x22 = x24,
p10: x25 > x26, p11: x17 = x20

”y” p1: x7 = 1, p2: x8 = 1, p3: x9 = 1,
p4: x14 = 0, p5: x21 = 1, p6: x1 = 3,

p7: x17 ≤ x20, p8: x22 > x24, p9: x25 > x26

”s” p1: x7 = 1, p2: x8 = 1, p3: x9 = 1,
p4: x14 = 0, p5: x21 = 3, p6: x22 = x24,

p7: x25 > x26

”z” p1: x7 = 1, p2: x8 = 3, p3: x9 = 1,
p4: x14 = 0, p5: x21 = 3, p6: x22 = x24,

p7: x25 > x26

”o” p1: x7 = 1, p2: x8 = 1, p3: x9 = 1,
p4: x14 = 1, p5: x21 = 2, p6: x23 > x22,

p7: x23 > x24, p8: x25 > x26, p9: x15 = θ1

”l” p1: x7 = 2, p2: x8 =1 or 2, p3: x9 = 1,
p4: x14 = 0, p5: x21 = 1, p6: x10 ≥ x11,

p7: x1 = 1, p8: x2 = 1, p9: x3 = 1,
p10: x6 = 1, p11: x22 ≤ x24, p12: x25 > x26

”i” p1: x7 = 2, p2: x8 =1 or 2, p3: x9 = 2,
p4: x14 = 0, p5: x21 = 1, p6: x10 = x11,

p7: x1 = 1, p8: x2 = 1, p9: x3 = 1,
p10: x6 = 1, p11: x17 ≤ x18, p12: x25 > x26



1272 A. Namir, M. Mestari, K. Akodadi and A. Badi

Character class main local properties
”j” p1: x7 =2 or 5, p2: x8 =1 or 2, p3: x9 = 2,

p4: x14 = 0, p5: x21 = 1, p6: x6 = 2,
p7: x10 > x11, p8: x17 > x18, p9: x25 > x26

”t” p1: x7 = 2, p2: x8 = 2, p3: x9 = 1,
p4: x14 = 0, p5: x21 = 2, p6: x6 = 1,

p7: x10 < x11, p8: x17 < x18, p9: x22 < x24

p10: x25 > x26

”f” p1: x7 = 2, p2: x8 =2 or 3, p3: x9 = 1,
p4: x14 = 0, p5: x21 =2 or 3, p6: x6 = 2,

p7: x10 < x11, p8: x17 < x18, p9: x22 > x24

p10: x25 > x26

TABLE.2: The main local porperties of each character class in {”a”,...,”z”},
where θ1 and θ2 are coefficients chosen by decision-markers (designers), and
satisfy: 0 < θ1 < θ2. The coefficients θ1 and θ2 help to distinguish ”e” from
”a”, and ”e” and ”a” from ”g”, respectively.



Neural network minimum distance classifier 1273

Figure 1: (a) Simplified functional model of an artificial basic neuron cell. (b)
Schematic representations of the linear neuron, the quasi-linear neuron, and
the threshold-logic neuron respectively. (c) Three possible unipolar transfer
characteristics.

Figure 2: The order network ONq, 1 ≤ q ≤ n.



1274 A. Namir, M. Mestari, K. Akodadi and A. Badi

Figure 3: Equality sub-network ESN.

Figure 4: Selection network SN.



Neural network minimum distance classifier 1275

Figure 5: The adjustable MAXNET, AMAXNET.

Figure 6: Difference network, DN.

Figure 7: Distance evaluation network, DEN.



1276 A. Namir, M. Mestari, K. Akodadi and A. Badi

Figure 8: Transference network, TN.



Neural network minimum distance classifier 1277

Figure 9: Neural network classifier, NNC.

Figure 10: Features 10-13.



1278 A. Namir, M. Mestari, K. Akodadi and A. Badi

Figure 11: Features 17-20.

Figure 12: Feature 21.



Neural network minimum distance classifier 1279

Figure 13: Features 22-24.

Figure 14: Feature 27



1280 A. Namir, M. Mestari, K. Akodadi and A. Badi

Figure 15: Loss function evaluation network, LFEN.



Neural network minimum distance classifier 1281

Figure 16: The network for computing the loss function, l(”b”), where
|P (”b”)| = 10 and P (”b”) = {dif [x7, 6], dif [x8, 1], dif [x9, 1], ΦT (−ΦT (x11 −
x10)), dif [x12, x13], dif [x14, 1], ΦT (−ΦT (x18 − x17)), dif [x21, 2], ΦT (−ΦT (x24 −
x22)), ΦT (−ΦT (x25 − x26))}.



1282 A. Namir, M. Mestari, K. Akodadi and A. Badi

Figure 17: Neural network classifier (NNC) for OCR example.


